Frequency Domain Analysis of LTI Systems

Professor Deepa Kundur

University of Toronto

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

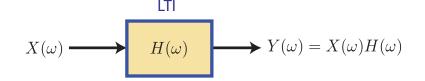
1 / 40

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Linear Time-Invariant (LTI) Systems

$$x(n) \longrightarrow h(n) \qquad y(n) = x(n) * h(n)$$

$$h(n) \longleftrightarrow H(\omega)$$



Frequency Domain Analysis of LTI Systems

Reference:

Sections 5.1, 5.2, 5.4 and 5.5 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

Professor Deepa Kundur (University of Toront@equency Domain Analysis of LTI Systems

2 / 40

The Frequency Response Function

- ▶ Recall for an LTI system: y(n) = h(n) * x(n).
- ► Suppose we inject a complex exponential into the LTI system:

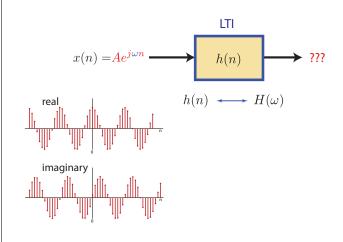
Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$x(n) = Ae^{j\omega n}$$

Note: we consider x(n) to be comprised of a pure frequency of ω rad/s

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Linear Time-Invariant (LTI) Systems

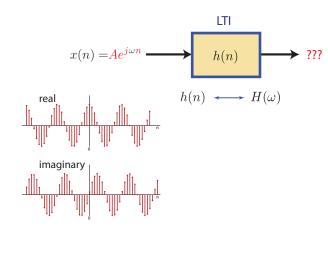


Professor Deepa Kundur (University of Toront@requency Domain Analysis of LTI Systems

5 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Linear Time-Invariant (LTI) Systems



Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

The Frequency Response Function

$$\therefore y(n) = \sum_{k=-\infty}^{\infty} h(k) A e^{j\omega(n-k)}$$

$$= \sum_{k=-\infty}^{\infty} h(k) A e^{j\omega n} \cdot e^{-j\omega k}$$

$$= A e^{j\omega n} \cdot \left[\sum_{k=-\infty}^{\infty} h(k) e^{-j\omega k} \right]$$

$$= A e^{j\omega n} H(\omega)$$

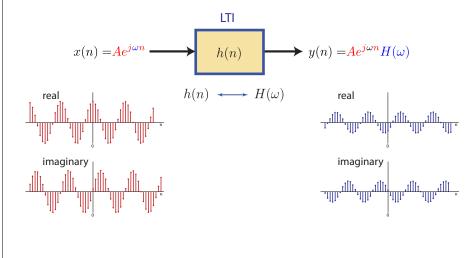
▶ Thus, $y(n) = H(\omega)x(n)$ when x(n) is a pure frequency.

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

6 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Linear Time-Invariant (LTI) Systems



Professor Deepa Kundur (University of Toront@equency Domain Analysis of LTI Systems

8 / 49

Professor Deepa Kundur (University of Toront@equency Domain Analysis of LTI Systems

The Frequency Response Function

Thus, when x(n) is a pure frequency,

$$y(n) = H(\omega)x(n)$$

output = scaled input
 $M \cdot v = \lambda \cdot v$

Professor Deepa Kundur (University of Toront@pequency Domain Analysis of LTI Systems

9 / 49

11 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

The Frequency Response Function

$$\underbrace{M \cdot v}_{\text{matrix-vector processing}} = \underbrace{\lambda \cdot v}_{\text{scaled input vector}}$$

$$y(n) = \underbrace{h(n) * Ae^{j\omega n}}_{\text{LTI system processing}} = \underbrace{H(\omega) Ae^{j\omega n}}_{\text{scaled input signal}}$$

- ▶ Therefore, a signal of the form $Ae^{j\omega n}$ is an eigenfunction of an LTI system.
- ▶ The function $H(\omega)$ represents the associated eigenvalue.

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

LTI System Eigenfunction

$$M \cdot v = \lambda \cdot v$$

- ► Eigenfunction of a system:
 - ▶ an input signal that produces an output that differs from the input by a constant (possibly complex) multiplicative factor
 - multiplicative factor is called the eigenvalue

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

10 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

LTI System Eigenfunction

Implications:

- ► An LTI system can only change the amplitude and phase of a sinusoidal signal. It cannot change the frequency.
- An LTI system with inputs comprised of frequencies from set Ω_0 cannot produce an output signal with frequencies in the set Ω_0^c (i.e., the complement set of Ω_0).
- ▶ If you inject a signal comprised of frequencies 1 Hz, 4 Hz and 7Hz into a system and you get an output signal comprised of frequencies 1 Hz and 8 Hz, your system is not LTI.

Example: Nonlinear System

Suppose: $x(n) = \cos(2\pi f_1 n + \phi_1) + \cos(2\pi f_2 n + \phi_2)$ is injected into:

$$y(n) = x^{2}(n) \quad \text{nonlinear system}$$

$$= (\cos(2\pi f_{1}n + \phi_{1}) + \cos(2\pi f_{2}n + \phi_{2}))^{2}$$

$$= \cos^{2}(2\pi f_{1}n + \phi_{1}) + \cos^{2}(2\pi f_{2}n + \phi_{2}) + 2\cos(2\pi f_{1}n + \phi_{1})\cos(2\pi f_{2}n + \phi_{2})$$

$$= \left[\frac{1 + \cos(2\pi(2f_{1})n + 2\phi_{1})}{2}\right] + \left[\frac{1 + \cos(2\pi(2f_{2})n + 2\phi_{2})}{2}\right]$$

$$+ \left[\frac{\cos(2\pi(f_{1} - f_{2})n + (\phi_{1} - \phi_{2})) + \cos(2\pi(f_{1} + f_{2})n + (\phi_{1} + \phi_{2}))}{2}\right]$$

$$= \underbrace{1}_{\text{freq }0} + \frac{1}{2}\left[\cos(2\pi(2f_{1})n + 2\phi_{1}) + \cos(2\pi(2f_{2})n + 2\phi_{2})\right]$$

$$+ \cos(2\pi(f_{1} - f_{2})n + (\phi_{1} - \phi_{2})) + \cos(2\pi(f_{1} + f_{2})n + (\phi_{1} + \phi_{2}))\right]$$

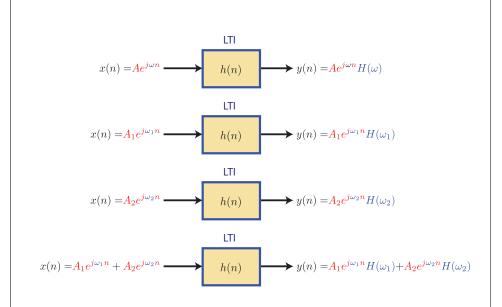
The output frequencies $(0, 2f_1, 2f_2, f_1 - f_2, f_1 + f_2)$ are different from the input frequencies (f_1, f_2) .

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

13 / 49

15 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems



Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Magnitude and Phase of $H(\omega)$

$$H(\omega) = |H(\omega)|e^{j\Theta(\omega)}$$
 $|H(\omega)| \equiv \text{ system gain for freq } \omega$
 $\angle H(\omega) = \Theta(\omega) \equiv \text{ phase shift for freq } \omega$
 $y(n) = H(\omega)Ae^{j\omega n}$
 $= |H(\omega)|e^{j\Theta(\omega)}Ae^{j\omega n}$
 $= A|H(\omega)|e^{j(\omega n + \Theta(\omega))}$

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

14 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

$$x(n) = A_1 e^{j\omega_1 n} + A_2 e^{j\omega_2 n}$$

$$h(n)$$

$$y(n) = A_1 e^{j\omega_1 n} H(\omega_1) + A_2 e^{j\omega_2 n} H(\omega_2)$$

$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{2\pi} Y(\omega) e^{j\omega n} d\omega$$

- An LTI system changes the amplitudes and phase shifts of the individual frequency components within x(n) to produce y(n).
- \blacktriangleright $H(\omega)$ dictates how frequency ω is changed in the signal.

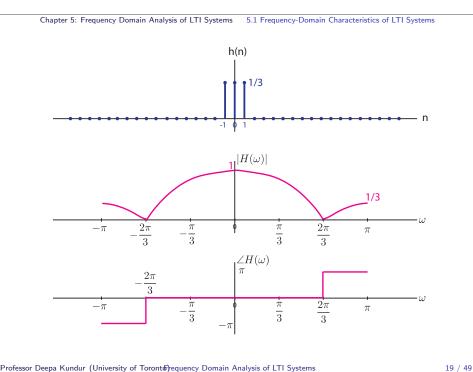
Professor Deepa Kundur (University of Toront@equency Domain Analysis of LTI Systems

$$y(n) = \frac{1}{3} [x(n+1) + x(n) + x(n-1)]$$

By inspection, $h(n) = \frac{1}{3}\delta(n+1) + \frac{1}{3}\delta(n) + \frac{1}{3}\delta(n-1)$.

$$\therefore H(\omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n} = \sum_{n=-1}^{1} \frac{1}{3}e^{-j\omega n}$$
$$= \frac{1}{3}[e^{j\omega} + 1 + e^{-j\omega}] = \frac{1}{3}(1 + 2\cos(\omega))$$

Professor Deepa Kundur (University of Toront@pequency Domain Analysis of LTI Systems



Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Example:

What is the phase of $H(\omega) = \frac{1}{3}(1 + 2\cos(\omega))$?

$$|H(\omega)| = \frac{1}{3}|1 + 2\cos(\omega)|$$

$$\Theta(\omega) = \begin{cases} 0 & 0 \le \omega \le \frac{2\pi}{3} \\ \pi & \frac{2\pi}{3} \le \omega < \pi \end{cases}$$

rofessor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

18 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.2 Frequency Response of LTI Systems

Frequency Response of LTI Systems

z-Domain ω -Domain

 $H(z) \stackrel{\mathbf{z}=\mathbf{e}^{j\omega}}{\Longrightarrow} H(\omega)$

system function $\stackrel{z=e^{j\omega}}{\Longrightarrow}$ frequency response

 $Y(z) = X(z)H(z) \stackrel{z=e^{j\omega}}{\Longrightarrow} Y(\omega) = X(\omega)H(\omega)$

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

Frequency Response of LTI Systems

▶ If H(z) converges on the unit circle, then we can obtain the frequency response by letting $z = e^{j\omega}$:

$$H(\omega) = H(z)|_{z=e^{j\omega n}} = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$$
$$= \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}}$$

for rational system functions.

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

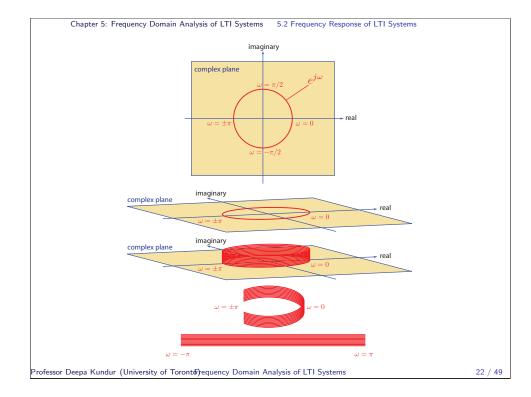
21 / 49

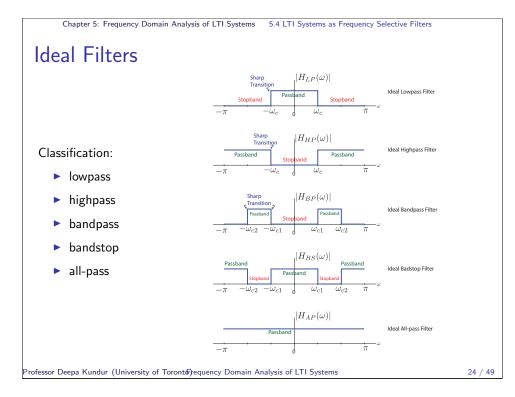
Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

LTI Systems as Frequency-Selective Filters

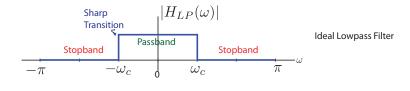
- ► <u>Filter</u>: device that <u>discriminates</u>, according to some attribute of the input, what passes through it
- ▶ For LTI systems, given $Y(\omega) = X(\omega)H(\omega)$
 - \blacktriangleright $H(\omega)$ acts as a kind of weighting function or spectral shaping function of the different frequency components of the signal

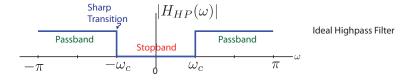
$$LTI$$
 system \iff Filter

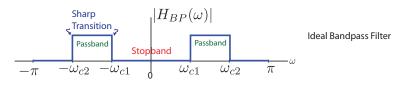




Ideal Filters







Professor Deepa Kundur (University of Toront@pequency Domain Analysis of LTI Systems

25 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

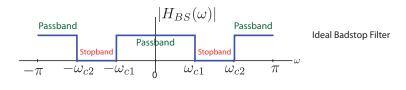
Ideal Filters

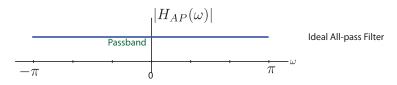
- Common characteristics:
 - flat (typically unity for C = 1) frequency response magnitude in passband and zero frequency response in stopband
 - ▶ linear phase; for constants C and n_0

$$H(\omega) = \left\{ egin{array}{ll} C \mathrm{e}^{-j\omega n_0} & \omega_1 < |\omega| < \omega_2 \\ 0 & \mathrm{otherwise} \end{array} \right.$$

Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

Ideal Filters





Professor Deepa Kundur (University of Toront@equency Domain Analysis of LTI Systems

26 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

Ideal Filters

▶ Suppose $H(\omega) = Ce^{-j\omega n_0}$ for all ω :

$$\begin{array}{ccc} \delta(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & 1 \\ \\ \delta(n-n_0) & \stackrel{\mathcal{F}}{\longleftrightarrow} & 1 \cdot e^{-j\omega n_0} \\ \\ \hline \textit{C} \cdot \delta(n-n_0) & \stackrel{\mathcal{F}}{\longleftrightarrow} & \textit{C} \cdot 1 \cdot e^{-j\omega n_0} = \textit{C}e^{-j\omega n_0} \end{array}$$

▶ Therefore, $h(n) = C\delta(n - n_0)$ and:

$$y(n) = x(n) * h(n) = x(n) * C\delta(n - n_0) = Cx(n - n_0)$$

What's more important?

Ideal Filters

► Therefore for ideal linear phase filters:

$$H(\omega) = \left\{ egin{array}{ll} Ce^{-j\omega \mathbf{n_0}} & \omega_1 < |\omega| < \omega_2 \\ 0 & ext{otherwise} \end{array} \right.$$

- signal components in stopband are annihilated
- ▶ signal components in passband are shifted (and scaled by passband gain which is unity (for C = 1))

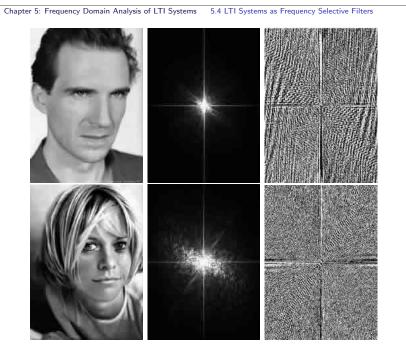
Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

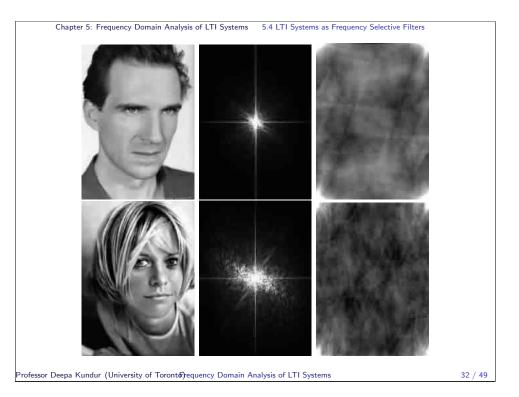
29 / 49

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

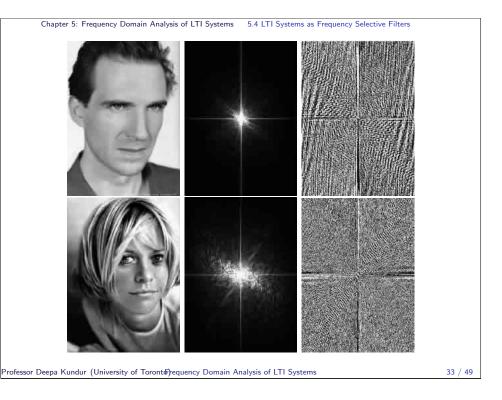
Phase versus Magnitude

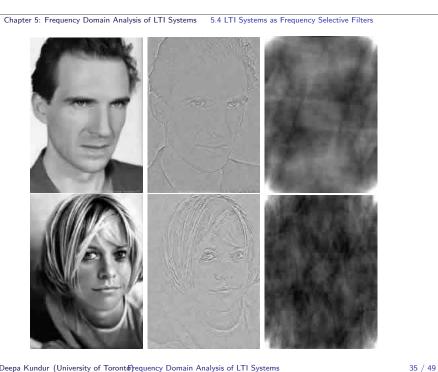
30 / 49

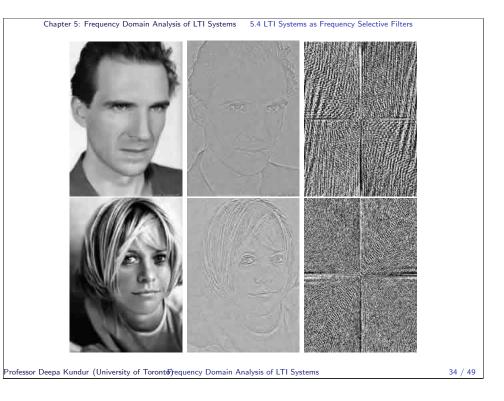




Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems







Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Why Invert?

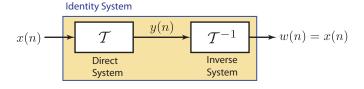
- ▶ There is a fundamental necessity in engineering applications to undo the unwanted processing of a signal.
 - ▶ reverse intersymbol interference in data symbols in telecommunications applications to improve error rate; called equalization
 - correct blurring effects in biomedical imaging applications for more accurate diagnosis; called restoration/enhancement
 - ▶ increase signal resolution in reflection seismology for improved geologic interpretation; called deconvolution

Professor Deepa Kundur (University of Toront@requency Domain Analysis of LTI Systems

Invertibility of Systems

- ▶ Invertible system: there is a one-to-one correspondence between its input and output signals
- ▶ the one-to-one nature allows the process of reversing the transformation between input and output; suppose

$$y(n) = \mathcal{T}[x(n)]$$
 where \mathcal{T} is one-to-one $w(n) = \mathcal{T}^{-1}[y(n)] = \mathcal{T}^{-1}[\mathcal{T}[x(n)]] = x(n)$



Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

37 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Invertibility of LTI Systems

► Therefore,

$$h(n) * h_I(n) = \delta(n)$$

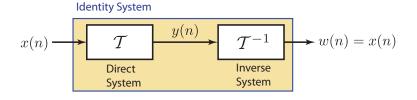
- For a given h(n), how do we find $h_i(n)$?
- ▶ Consider the z—domain

$$H(z)H_{I}(z) = 1$$

$$H_{I}(z) = \frac{1}{H(z)}$$

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Invertibility of LTI Systems



Impluse response = $\delta(n)$ y(n) $\rightarrow w(n) = x(n)$ h(n) $h_I(n)$ x(n)Inverse Direct System System

rofessor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

38 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Invertibility of Rational LTI Systems

▶ Suppose, H(z) is rational:

$$H(z) = \frac{A(z)}{B(z)}$$

$$B(z)$$

$$H_I(z) = \frac{B(z)}{A(z)}$$

poles of H(z) = zeros of $H_I(z)$

zeros of H(z) = poles of $H_1(z)$

Professor Deepa Kundur (University of Toront@equency Domain Analysis of LTI Systems

39 / 49

Professor Deepa Kundur (University of Toront&) requency Domain Analysis of LTI Systems

Professor Deepa Kundur (University of Toront&) requency Domain Analysis of LTI Systems

41 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Example

Determine the inverse system of the system with impulse response $h(n) = (\frac{1}{2})^n u(n).$

- $H(z) = \frac{1}{1 \frac{1}{2}z^{-1}}$, ROC: $|z| > \frac{1}{2}$.
- ► Therefore,

$$H_I(z) = \frac{1}{H(z)} = 1 - \frac{1}{2}z^{-1}$$

▶ By inspection,

$$h_l(n) = \frac{\delta(n)}{2} - \frac{1}{2}\delta(n-1)$$

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Common Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{\frac{1}{1-z^{-1}}}{\frac{1}{1-az^{-1}}}$	z > a
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos(\omega_0 n))u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
8	$(\sin(\omega_0 n))u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$(a^n\cos(\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\sin\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

42 / 49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Common Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos(\omega_0 n))u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
8	$(\sin(\omega_0 n))u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$(a^n\cos(\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\sin\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a

43 / 49

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

z-Transform Properties

Property	Time Domain	z-Domain	ROC
Notation:	x(n)	X(z)	ROC: $r_2 < z < r_1$
	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC_2
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least $ROC_1 \cap ROC_2$
Time shifting:	x(n-k)	$z^{-k}X(z)$	At least ROC, except
			z = 0 (if $k > 0$)
			and $z = \infty$ (if $k < 0$)
z-Scaling:	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	$\times (-n)$	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation:	x*(n)	$X^{*}(z^{*})$	ROC
z-Differentiation:	$n \times (n)$	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution:	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least $ROC_1 \cap ROC_2$

Professor Deepa Kundur (University of Toront&)equency Domain Analysis of LTI Systems

45 / 49

among others ...

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Common Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	AII z
2	u(п)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$rac{1}{1-az^{-1}}$	z > a
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos(\omega_0 n))u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
8	$(\sin(\omega_0 n))u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$(a^n\cos(\omega_0n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\sin\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a

Another Example

Determine the inverse system of the system with impulse response $h(n) = \delta(n) - \frac{1}{2}\delta(n-1)$.

$$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[\delta(n) - \frac{1}{2}\delta(n-1)\right]z^{-n}$$

$$= 1 - \frac{1}{2}z^{-1}$$

$$H_{l}(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

Professor Deepa Kundur (University of Toront@requency Domain Analysis of LTI Systems

16 / 10

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Common Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\overline{1-az^{-1}}$	z > a
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos(\omega_0 n))u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
8	$(\sin(\omega_0 n))u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$(a^n\cos(\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin(\omega_0 n) u(n)$	$\frac{1-az^{-1}\sin\omega_0}{1-2az-1\cos\omega_0+a^2z^{-2}}$	z > a

Professor Deepa Kundur (University of Toront&) equency Domain Analysis of LTI Systems

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Another Example

There are two possibilities for inverses:

► Causal + stable inverse ($|z| > \frac{1}{2}$ includes unit circle):

$$h_I(n) = \left(\frac{1}{2}\right)^n u(n)$$

► Anticausal + unstable inverse ($|z| < \frac{1}{2}$ does not include unit circle):

$$h_I(n) = -\left(\frac{1}{2}\right)^n u(-n-1)$$

Professor Deepa Kundur (University of Toront⊕) equency Domain Analysis of LTI Systems

