
1/ 31

Frequency Analysis of Discrete-Time Signals

Electrical and Computer Engineering
University of Toronto

Feb. 2013



2/ 31

The Fourier Series for Discrete-Time Periodic Signals

Synthesis:

x(n) =
N−1∑
k=0

cke
j2πkn/N

Analysis:

ck = 1
N

N−1∑
n=0

x(n)e−j2πkn/N

I Sequence x(n) with period N, x(n) = x(n + N)

I ck = ck+N , ck is a periodic sequence with fundamental
period N

I For a sampling frequency Fs ; range 0 ≤ k ≤ N − 1
corresponds to 0 ≤ F ≤ Fs
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The Fourier Series for Discrete-Time Periodic Signals

Power Density Spectrum of Periodic Signals

Px = 1
N

N−1∑
n=0
|x(n)|2

in terms of Fourier coefficients {ck}

Px = 1
N

N−1∑
n=0

x(n)x∗(n) = 1
N

N−1∑
n=0

x(n)

(
N−1∑
k=0

c∗k e
−j2πkn/N

)
Px =

N−1∑
k=0

c∗k

[
1
N

N−1∑
n=0

x(n)e−j2πkn/N
]

Px =
N−1∑
k=0

|ck |2
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The Fourier Series for Discrete-Time Periodic Signals

Real signals

If x(n) is a real signal, x∗(n) = x(n), is shown that c∗k = c−k i.e.
spectrum ck , k = 1, 2, ...,N/2 completely describes the signal in
the frequency domain.
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The Fourier Series for Discrete-Time Aperiodic Signals

Synthesis Equation:

x(n) = 1
2π

∫
2π

X (ω)e jωndω

Analysis Equation:

X (ω) =
∞∑

n=−∞
x(n)e−jωn
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The Fourier Series for Discrete-Time Aperiodic Signals

Energy Density Spectrum of Aperiodic Signals

Recall energy of a discrete-time signal x(n)

Ex =
∞∑

n=−∞
|x(n)|2

Ex =
∞∑

n=−∞
x∗(n)x(n) =

∞∑
n=−∞

[
1
2π

π∫
−π

X ∗(ω)e−jωndω

]
Ex = 1

2π

π∫
−π

X ∗(ω)

[ ∞∑
n=−∞

x(n)e−jωn
]
dω

Ex = 1
2π

π∫
−π
|X (ω)|2dω

I Energy Density Spectrum of x(n): Sxx(ω) = |X (ω)|2
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The Fourier Series for Discrete-Time Aperiodic Signals

Real signals

Let x(n) be a real signal:

I |X (−ω)| = |X (ω)|, even symmetry

I Sxx(−ω) = Sxx(ω), even symmetry

⇒ Frequency range of real discrete-time signals can be limited to
0 ≤ ω ≤ π or 0 ≤ F ≤ Fs/2
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Relationship of the Fourier Transform to the Z -Transform

Recall
z-Transform of sequence x(n):

X (z) =
∞∑

n=−∞
x(n)z−n, ROC: r2 ≤ |z | ≤ r1

Express complex z in polar format:

z = re jω ⇒ X (z)|z=re jω=
∑

[x(n)r−n] e−jωn

If X (z) converges for |z | = 1:

X (z)|z=e jω= X (ω) =
∑

[x(n)r−n] e−jωn

I Fourier Transform is viewed as the z-Transform of the
sequence evaluated on the unit circle.
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Figure courtesy of Proakis and Manolakis, Digital Signal
Processing.
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Frequency-Domain classification of Signals: Bandwidth
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Frequency-Domain classification of Signals: Bandwidth

Broad frequency domain classification

I Low-frequency signal: power/energy density spectrum
concentrated around zero.

I High-frequency signal.

I Medium-frequency/ bandpass signal.

Bandwidth

I A quantitative measure that refers to the range of frequencies
over which the power/energy density spectrum is
concentrated.

I Narrowband, wideband, bandlimited.
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The frequency Ranges of Some Natural Signals

...

I Biological signals: Speech 100− 4000Hz , Sphygmomanogram
0− 200Hz

I Seismic Signals: Seismic exploration signals 10− 100Hz ,
Earthquakes 0.01− 10Hz

I Electromagnetic Signals: Infrared 3x1011− 3x1014, Bluetooth
2, 4002, 483.5MHz
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Frequency-Domain and Time-Domain Signal Properties

I Continuous-time ⇒ aperiodic spectra

I Discrete-time ⇒ periodic spectra

I Periodic signals ⇒ discrete spectra

I Aperiodic (finite energy) ⇒ continuous spectra
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Properties of the Fourier Transform for Discrete-Time
Signals

Notation

Direct Transform (Analysis)

X (ω) = F{x(n)} =
∞∑

n=−∞
x(n)e−jωn

Inverse Transform (Synthesis)

x(n) = F−1{X (ω)} = 1
2π

∫
2π

X (ω)e jωndω

Fourier Transform pair

x(n)
F←−−→ X (ω)
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Symmetry Properties of the Fourier Transform

Real Signals

I symmetry leads to simpler formulas for direct and inverse
Fourier transform.

I If x(n) is real, xI (n) = 0 and using e−jω = cosω − j sinω

I Spectrum of a Real signal has Hermitian symmetry:

X ∗(ω) = X (−ω) XR(ω) =
∞∑

n=−∞
x(n) cosωn

XI (ω) = −
∞∑

n=−∞
x(n) sinωn

I Magnitude has even symmetry |X (ω)| = |X (−ω)|
I Phase has odd symmetry ∠X (−ω) = −∠X (ω)

I Table 4.4 for a summery of symmetry properties.
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Fourier Transform Theorems and Properties

Periodicity

I Discrete-time Fourier Transform is periodic with period 2π

X (ω + 2π) = X (ω)
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Fourier Transform Theorems and Properties

Linearity

If

x1(n)
F←−−→ X1(ω)

x2(n)
F←−−→ X2(ω)

Then

a1x1(n) + a2x2(n)
F←−−→ a1X1(ω) + a2X2(ω)
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Fourier Transform Theorems and Properties

Time Shifting

If

x(n)
F←−−→ X (ω)

Then

x(n − k)
F←−−→ e−jωkX (ω)

F{x(n − k)} = |X (ω)|e j[∠X (ω)−ωk]

I A shift in time domain by k samples, affects only the phase of
the signal.
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Fourier Transform Theorems and Properties

Frequency Shifting

If

x(n)
F←−−→ X (ω)

Then

e jω0nx(n)
F←−−→ X (ω − ω0)
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Fourier Transform Theorems and Properties

Convolution
If

x1(n)
F←−−→ X1(ω)

x2(n)
F←−−→ X2(ω)

Then

x(n) = x1(n) ∗ x2(n)
F←−−→ X (ω) = X1(ω)X2(ω)
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Fourier Transform Theorems and Properties

Modulation
If

x(n)
F←−−→ X (ω)

Then

x(n) cosw0n
F←−−→ 1

2 [X (ω + ω0) + X (ω − ω0)]

Proof uses cosω0n = 1
2

(
e jω0n + e−jω0n

)
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Fourier Transform Theorems and Properties

Correlation Theorem
If

x1(n)
F←−−→ X1(ω)

Then

x2(n)
F←−−→ X2(ω)

Then

rx1x2(m)
F←−−→ Sx1x2(ω) = X1(ω)X2(−ω)
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Fourier Transform Theorems and Properties

Correlation Theorem: proof

cross correlation

rx1x2(n) =
∞∑
−∞

x1(k)x2(k − n)

multiply by e−jωn and then
∞∑

n=−∞

Sx1x2(ω) =
∞∑

n=−∞
rx1x2(n)e−jωn =

∞∑
n=−∞

[
∞∑

k=−∞
x1(k)x2(k − n)

]
e−jωn
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