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The Fourier Series for Discrete-Time Periodic Signals

Synthesis:
N—1
X(n) — Z Cke_]27Tkn/N
k=0
Analysis:
N—1 _
Ck = % Z X(n)efj27rkn/N
n=0

» Sequence x(n) with period N, x(n) = x(n+ N)

> Cx = Ck+N, Ck is a periodic sequence with fundamental
period N

» For a sampling frequency Fs; range 0 < k< N -1
corresponds to 0 < F < Fg
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— Discrete—time periodic square wave with period N
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The Fourier Series for Discrete-Time Periodic Signals

Power Density Spectrum of Periodic Signals
& 2
Po=% T Ix(o)

in terms of Fourier coefficients {c}

N—1 N_1 N1 .
Pe=1% > x(n)x*(n) =4 3 x(n) (Z CZe—J27rkn/N>

n=0 n=0 k=0
N-1 N—-1
Po= % i[4S xtoe o]
k=0 n=0
N—-1 5
Po= 3" el
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The Fourier Series for Discrete-Time Periodic Signals

Real signals
If x(n) is a real signal, x*(n) = x(n), is shown that ¢ = c_y i.e.
spectrum cx, k = 1,2,..., N/2 completely describes the signal in

the frequency domain.

5/31



The Fourier Series for Discrete-Time Aperiodic Signals

Synthesis Equation:

x(n) = %éf X(w)e"dw

Analysis Equation:

X(w)= > x(n)e«r

n=—0o0
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Figure 4.2.4

Fourier transform pair in (4.2.35) and (4.2.36).



The Fourier Series for Discrete-Time Aperiodic Signals

Energy Density Spectrum of Aperiodic Signals
Recall energy of a discrete-time signal x(n)

Eo= 3 o)
E, = n_ioo x*(n)x(n) = n_iioo [;ﬁ _}‘r X*(w)ejwndw]

Eo=2 [ X £ xijerr| d

n=—oo

=2 f X (w)[*de

» Energy Density Spectrum of x(n): Se(w) = |X(w)[?
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The Fourier Series for Discrete-Time Aperiodic Signals

Real signals
Let x(n) be a real signal:
> [X(—w)| = |X(w)|, even symmetry

> Six(—w) = Six(w), even symmetry

= Frequency range of real discrete-time signals can be limited to
O<w<mor0<F<F)2
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Relationship of the Fourier Transform to the Z-Transform

Recall
z-Transform of sequence x(n):

X(z) = i x(mMz=", ROC: n < |z|<n

n=—oo

Express complex z in polar format:
z=ref = X(2)|,peiw= 3 [x(n)r—"] e~Jwn
If X(z) converges for |z| = 1:

X(2)]yeeiw= X(w) = 3 [x(n)r="] e~Jen

» Fourier Transform is viewed as the z-Transform of the
sequence evaluated on the unit circle.
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Figure 4.2.9 relationship between X (z) and X (w) for the sequence in
Example 4.2.4, with A = 1and L =10

Figure courtesy of Proakis and Manolakis, Digital Signal
Processing. 11/ 31



Frequency-Domain classification of Signals: Bandwidth
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Figure 4.2.10 (a) Low-frequency, (b) high-frequency, and

(c) medium-frequency signals.
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Frequency-Domain classification of Signals: Bandwidth

Broad frequency domain classification
» Low-frequency signal: power/energy density spectrum
concentrated around zero.
» High-frequency signal.

» Medium-frequency/ bandpass signal.

Bandwidth

» A quantitative measure that refers to the range of frequencies
over which the power/energy density spectrum is
concentrated.

» Narrowband, wideband, bandlimited.
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Inside the radio wave spectrum

Almost every wireless technology - from cell phones to garage door openers - uses radio waves to communicate.
Some services, such as TV and radio broadcasts, have exclusive use of their frequency within a geographic area. areas on this chart
But many devices share frequencies, which can cause interference. Examples of radio waves used by everyday devicesire reserved

Most of the white

for military, federal
government and
industry use

2.4 GHz band

Used by more than 300
consumer devices, including
microwave ovens, cordless
phones and wireless Wi-Fi
networks (Wi-Fi and networks
Bluetooth)

Satellite Security
v alari

300
GHz

of different lengths that travel at the speed of light;
other parts of the spectrum include visible light and
X-rays; the shortest wavelengths have the highest
frequency, measured in hertz

Source: New America Foundation, MCT, Howstuffworks.com
Graphic: Nathaniel Levine, Sacramento Bee
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AMradio  Remote-  BroadcastTV GPS Satellite Weather Cable TV Highway Police  sent short,
535 kHz controlled UHF channels (Global positioning radio radar  satellite tolltags radar unubstructéd
to 1,700 kHz toys 14-83 systems) transmissions '
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Frequencies in this range are considered Diffcult for signals
more valuable because they can penetrate to penetrate dense . .
dense objects, such as a building made objects Signals in this zone can
out of concrete travel long distances, but
could be blocked by trees
and other objects
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1 kilohertz (kHz) = 1,000 hertz

1 megahertz (MHz) = 1 million hertz
1 gigahertz (GHz) = 1 billion hertz

©2008 MCT
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The frequency Ranges of Some Natural Signals

» Biological signals: Speech 100 — 4000Hz, Sphygmomanogram
0 — 200Hz

» Seismic Signals: Seismic exploration signals 10 — 100Hz,
Earthquakes 0.01 — 10Hz

» Electromagnetic Signals: Infrared 3x10'1 — 3x10'4, Bluetooth
2,4002,483.5MHz
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Frequency-Domain and Time-Domain Signal Properties

v

Continuous-time = aperiodic spectra

v

Discrete-time = periodic spectra

v

Periodic signals = discrete spectra

v

Aperiodic (finite energy) = continuous spectra
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Continuous-time signals

Time-domain

Frequency-domain
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Discrete-time signals

Time-domain

Frequency-domain

Fourier series

x(n)

TTT.TTT 'I'T? h
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x(n)= Y, c eienNkn

k=

Discrete and periodic

Discrete and periodic

Fourier trans

x(n)

SaiNNETE

X(w)

-3-2-1012

X(w) = i x(n)e-jon

n=-eo

x(n) = zl”jh X(w)eion dw

Discrete and aperiodic

Continuous and periodic
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Properties of the Fourier Transform for Discrete-Time

Signals
Notation

Direct Transform (Analysis)

X(w) = F{x(n)} = 5 x(n)een

n=—oo

Inverse Transform (Synthesis)

x(n) = F7H{X(w)} = %J X(w)e/“"dw

Fourier Transform pair

x(n) = X(w)

19/ 31



Symmetry Properties of the Fourier Transform

Real Signals

» symmetry leads to simpler formulas for direct and inverse
Fourier transform.
» If x(n) is real, x;(n) = 0 and using e /¥ = cosw — jsinw
» Spectrum of a Real signal has Hermitian symmetry:
oo
X*(w) = X(—w) Xgr(w) = >_ x(n)coswn

n=—0o0
o0

Xi(w)=— > x(n)sinwn

» Magnitude has even symmetry |X(w)| = [X(—w)]
» Phase has odd symmetry Z/X(—w) = —ZX(w)

» Table 4.4 for a summery of symmetry properties.
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Figure 4.4.3  Graph of Xg(w) and X,(w) for the transform in Example 4.4.1.

Proakis and Manolakis, Digital Signal Processing, Fourth Edition.
©2007, 1996 Pearson Education, Inc. All rights reserved. 0-13187374-1.
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Fourier Transform Theorems and Properties

Periodicity

» Discrete-time Fourier Transform is periodic with period 27
X(w +27) = X(w)
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Fourier Transform Theorems and Properties

Linearity
If
xa(n) ¢ X1(w)
x2(n) LN Xo(w)
Then

apx (n) + a2xa(n) «—— a1 X1 (w) + a2 Xo(w)
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Fourier Transform Theorems and Properties

Time Shifting
If
x(n) < X(w)
Then
x(n — k) 5 eIk X (w)
F{x(n = k)} = |X(w)|e/lX() A

» A shift in time domain by k samples, affects only the phase of
the signal.
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Fourier Transform Theorems and Properties

Frequency Shifting
If

x(n) +—— X(w)
Then

/40y () +—— X(w — wo)
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Figure 4.4.8 |lllustration of the frequency-shifting property of the Fourier
transform (wp < 27 — @,).
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Fourier Transform Theorems and Properties

Convolution
If
x1(n) < Xy(w)
x2(n) < Xo(w)
Then

x(n) = x1(n) * xo(n) +—— X(w) = X1 (w)Xo(w)
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Fourier Transform Theorems and Properties

Modulation
If

x(n) +—— X(w)

Then

x(n) cos won PELEN 2 IX(w + wo) + X(w — wo)]

Proof uses coswon = 3 (e/“0" + e~Jwon)
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Figure 4.4.9 Graphical representation of the modulation theorem.
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Fourier Transform Theorems and Properties

Correlation Theorem

If

x1(n) +—— Xi(w)
Then

x2(n) LN Xo(w)
Then

Faxo (M) = Sy (W) = Xa(w)Xo(-w)
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Fourier Transform Theorems and Properties

Correlation Theorem: proof
cross correlation

Faxe () = 2 x1(k)xa(k — n)
multiply by e #“" and then
n=—o00

Sax(W)= > rxv@(”)e_jwn:

n=—0oo

> [ > xl(k)xQ(k—n)]

n=—oo | k=—co
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