Properties of the Fourier Transform for Discrete-Time
Signals
Notation

» Direct Transform (Analysis)

X(w)=F{x(n)}= > x(n)e " (1)
» Inverse Transform (Synthesis)
x(n) = F1{X(w)} = % / X(@)e*dw (2
27

» Fourier Transform pair
x(n) LN X(w)
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Symmetry Properties of the Fourier Transform

» Exploiting symmetry to arrive at simpler formulas for both the
direct and inverse Fourier transform.

Suppose x(n) and X(w) are complex-valued functions.

x(n) = xr(n) + jxi(n)
X(w) = Xr(w) + jXi(w)

using (remember cos —w = cosw and sin —w = —sinw )

e ¥ =cosw — jsinw
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Symmetry Properties of the Fourier Transform-cont
into equation 1

Xr(w) + jX(w Z [xr(n) 4 jx;(n)] [coswn — j sinwn]
Xr(w) = Z [xr(n) coswn + x;(n) sinwn]
Z [xr(n)sinwn — x;(n) coswn]

Similarly with equation 1, we get

1
xr(n) = 277/[XR( ) coswn — Xjsinwn] dw
2T
1
xi(n) = oy / [Xr(w) sinwn + X coswn] dw

27
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Special cases: Real signals

For a real x(n) = x;(n) =0

o0

Xr(w) = Z x(n) coswn

n=—oo
o0

Xi(w) =— Z x(n)sinwn

n=—oo

Recall cos(—wn) = coswn and sin(—wn) = —sinwn we get:

» The spectrum of a real signal has Hermitian symmetry.
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Real Signals, cont.

» Magnitude and phase spectra for real signals

w)| = \/X2 ) + X?(w), (even)

—1 Xj(w
/X(w) =tan"1 FL (odd)

» Inverse transform of a real signal, x(n) = xg(n) implies

x(n) = /[XR )coswn — Xj(w) sinwn] dw

x(n) = % / [Xr(w) coswn — X;(w) sinwn] dw
0
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Special cases: Real and even signals

» If x(n) is real and even x(—n) = x(n), then x(n) cos(wn) is
even and x(n)sin(wn) is odd

Xr(w) = x(0) +2 Z x(n) coswn, (even)

n=1

A><) (LL)) =0

1 K
x(n) = - /XR(w) cos wndw
0

> real and even signals have a real-valued spectra, which is also
even in w.
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Example 4.4.2

» Determine the Fourier transform of the signal

A—M<n<M
x(n) =
0,elsewhere

solution
Notice that x(—n) = x(n) = x(n) real and even.

M
X(w) =Xp(w)=A (1 + 2Zcoswn>

n=1

Since X(w) is real,

[X(w) =

M
A (1 +2Zcoswn>‘

n=1
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Example, cont.

PhaseX (w) = { 0
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Example: linearity

» Determine the Fourier transform of the signal

x(n)=a" -1<a<1

solution
Let x(n) = x1(n) + x2(n) where

a’’n>0
alm =10, 20

and

a "' n<0
xo(n) = {

0,n>0
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example, cont.

we are going to use the linearity property X(w) = Xi(w) + Xa(w)

as follows:
o o
X1(w) = Z —en — Za e Jwn — Z(ae‘”)”
n=—o0 n=0

Using geometric series rule for [ae /7| < 1

1

X =1
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example, cont

Similarly, for x2(n)

[e's) -1
Xo(w) = Z xo(n)e 4 = Z a Mewn
n=—o0 n=—o0
—1 00
= Z ae” " = Z(aeiw)k
n=—o00 k=1
_ aelv
1 —aew

Thus,
X(w) = X1 (w) + X2(w)
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example: convolution

» Determine the Fourier transform of the sequence
x1(n) = x2(n) = {1,1,1}

Solution
Since x(n) is real and even,

Xi(w) = Xo(w) =1+ 2cosw
Using the convolution property of the Fourier transform

X(w) = X1(w)Xo(w) = (1 + 2 cosw)?
=3+ 4cosw + 2cos 2w
=342(e¥ + ) + (¢ + e I)
x(n) ={1,2,3,2,1}
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Properties of the Fourier Transform for Discrete-time
signals

Wiener-Khintchine theorem
For x(n), a real signal

Foc(1) < Su(w)

» Energy spectral density of an energy signal is the Fourier
transform of the signal autocorrelation sequence.

> Recall, i (M) 6 Sy (W) = X1 (w)Xo(—w)
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Properties of the Fourier Transform for Discrete-time
signals

Parseval's theorem

If
x1(n) +—— Xy(w)
And
xo(n) < Xo(w)
Then

[e.e]

> xa(n)x3(n) = 217T/X1(w)X2*(w)dw

n=—oo
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Properties of the Fourier Transform, Parseval's theorem

» Proof: starting with the right side

1

2 [ > sa(n)e
27

n=—oo

X5 (w)dw

S xal)g(n)

n=—oo

. 1 * —jwn -
> o)y [ Xi(w)ede -

27
» For x(n) = x1(n) = xa(n), Parseval's reduces to:

> )P =5 [ IX()Pde

n=—oo
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Properties of the Fourier Transform, Parseval's theorem

» Can use Parsevals' theorem to find:

™

Eo=ra0)= 3 Ix(n)P= 217T/|X(w]2dw - ;T/Sxx(w)dw
27

n=—o0 -7

» Example: refer back to 4.4.4 E, = 3, and r(0) =3
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Differentiation in the frequency domain

x(n) +—— X(w)

nx(n) PRLIEN J d);iw)

» Proof:
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