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Properties of the Fourier Transform for Discrete-Time
Signals

Notation

I Direct Transform (Analysis)

X (ω) = F{x(n)} =
∞∑

n=−∞
x(n)e−jωn (1)

I Inverse Transform (Synthesis)

x(n) = F−1{X (ω)} =
1

2π

∫
2π

X (ω)e jωndω (2)

I Fourier Transform pair

x(n)
F←−−→ X (ω)
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Symmetry Properties of the Fourier Transform

I Exploiting symmetry to arrive at simpler formulas for both the
direct and inverse Fourier transform.

Suppose x(n) and X (ω) are complex-valued functions.

x(n) = xR(n) + jxI (n)

X (ω) = XR(ω) + jXI (ω)
(3)

using (remember cos−ω = cosω and sin−ω = − sinω )

e−jω = cosω − j sinω
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Symmetry Properties of the Fourier Transform-cont
into equation 1

XR(ω) + jXI (ω) =
∞∑

n=−∞
[xR(n) + jxI (n)] [cosωn − j sinωn]

XR(ω) =
∞∑

n=−∞
[xR(n) cosωn + xI (n) sinωn]

XI (ω) = −
∞∑

n=−∞
[xR(n) sinωn − xI (n) cosωn]

Similarly with equation 1, we get

xR(n) =
1

2π

∫
2π

[XR(ω) cosωn − XI sinωn] dω

xI (n) =
1

2π

∫
2π

[XR(ω) sinωn + XI cosωn] dω
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Special cases: Real signals

For a real x(n)⇒ xI (n) = 0

XR(ω) =
∞∑

n=−∞
x(n) cosωn

XI (ω) = −
∞∑

n=−∞
x(n) sinωn

Recall cos(−ωn) = cosωn and sin(−ωn) = − sinωn we get:

XR(−ω) = XR(ω),(even)

XI (−ω) = −XI (ω),(odd)

⇒ X ∗(ω) = X (−ω)

I The spectrum of a real signal has Hermitian symmetry.
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Real Signals, cont.

I Magnitude and phase spectra for real signals

|X (ω)| =
√

X 2
R(ω) + X 2

I (ω), (even)

∠X (ω) = tan−1 XI (ω)
XR(ω)

, (odd)

I Inverse transform of a real signal, x(n) = xR(n) implies

x(n) =
1

2π

∫
2π

[XR(ω) cosωn − XI (ω) sinωn] dω

x(n) =
1

π

π∫
0

[XR(ω) cosωn − XI (ω) sinωn] dω
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Special cases: Real and even signals

I If x(n) is real and even x(−n) = x(n), then x(n) cos(ωn) is
even and x(n) sin(ωn) is odd

XR(ω) = x(0) + 2
∞∑
n=1

x(n) cosωn, (even)

XI (ω) = 0

x(n) =
1

π

π∫
0

XR(ω) cosωndω

I real and even signals have a real-valued spectra, which is also
even in ω.
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Example 4.4.2

I Determine the Fourier transform of the signal

x(n) =

{
A,−M ≤ n ≤ M

0,elsewhere

solution
Notice that x(−n) = x(n)⇒ x(n) real and even.

X (ω) = XR(ω) = A

(
1 + 2

M∑
n=1

cosωn

)

Since X (ω) is real,

|X (ω)| =

∣∣∣∣∣A
(

1 + 2
M∑
n=1

cosωn

)∣∣∣∣∣
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Example, cont.

PhaseX (ω) =

{
0,X (ω) > 0

π,X (ω) < 0
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Example: linearity

I Determine the Fourier transform of the signal

x(n) = a|n|,−1 < a < 1

solution
Let x(n) = x1(n) + x2(n) where

x1(n) =

{
an, n ≥ 0

0, n < 0

and

x2(n) =

{
a−n, n < 0

0, n ≥ 0
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example, cont.

we are going to use the linearity property X (ω) = X1(ω) + X2(ω)
as follows:

X1(ω) =
∞∑

n=−∞
x1(n)e−jωn =

∞∑
0

ane−jωn =
∞∑
n=0

(ae−jω)n

Using geometric series rule for |ae−jωn| < 1

X1(ω) =
1

1− ae−jω
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example, cont

Similarly, for x2(n)

X2(ω) =
∞∑

n=−∞
x2(n)e−jωn =

−1∑
n=−∞

a−ne−jωn

=
−1∑

n=−∞
ae jω

−n
=
∞∑
k=1

(ae jω)k

=
ae jω

1− ae jω

Thus,
X (ω) = X1(ω) + X2(ω)
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example: convolution

I Determine the Fourier transform of the sequence

x1(n) = x2(n) = {1, 1, 1}

Solution
Since x(n) is real and even,

X1(ω) = X2(ω) = 1 + 2 cosω

Using the convolution property of the Fourier transform

X (ω) = X1(ω)X2(ω) = (1 + 2 cosω)2

= 3 + 4 cosω + 2 cos 2ω

= 3 + 2(e jω + e−jω) + (e j2ω + e−j2ω)

x(n) = {1, 2, 3, 2, 1}
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Properties of the Fourier Transform for Discrete-time
signals

Wiener-Khintchine theorem
For x(n), a real signal

rxx(l)
F←−−→ Sxx(ω)

I Energy spectral density of an energy signal is the Fourier
transform of the signal autocorrelation sequence.

I Recall, rx1x2(m)
F←−−→ Sx1x2(ω) = X1(ω)X2(−ω)
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Properties of the Fourier Transform for Discrete-time
signals

Parseval’s theorem
If

x1(n)
F←−−→ X1(ω)

And

x2(n)
F←−−→ X2(ω)

Then
∞∑

n=−∞
x1(n)x∗2 (n) =

1

2π

π∫
−π

X1(ω)X ∗2 (ω)dω
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Properties of the Fourier Transform, Parseval’s theorem

I Proof: starting with the right side

1

2π

∫
2π

[ ∞∑
n=−∞

x1(n)e−jωn

]
X ∗2 (ω)dω

=
∞∑

n=−∞
x1(n)

1

2π

∫
2π

X ∗2 (ω)e−jωndω =
∞∑

n=−∞
x1(n)x∗2 (n)

I For x(n) = x1(n) = x2(n), Parseval’s reduces to:

∞∑
n=−∞

|x(n)|2 =
1

2π

∫
2π

|X (ω)|2dω
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Properties of the Fourier Transform, Parseval’s theorem

I Can use Parsevals’ theorem to find:

Ex = rxx(0) =
∞∑

n=−∞
|x(n)|2 =

1

2π

∫
2π

|X (ω|2dω =
1

2π

π∫
−π

Sxx(ω)dω

I Example: refer back to 4.4.4 Ex = 3, and rxx(0) = 3
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Differentiation in the frequency domain

x(n)
F←−−→ X (ω)

nx(n)
F←−−→ j

dX (ω)

dω

I Proof:

dX (ω)

dω
=

d

dω

[ ∞∑
n=−∞

x(n)e−jωn

]

=
∞∑

n=−∞
x(n)

d

dω
e−jωn

= −j
∞∑

n=−∞
nx(n)e−jωn


