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Frequency-Domain C/S of LTI Systems

LTI
y(n)x(n)

I LTI: Linear Time-Invariant system

I h(n), the impulse response of an LTI systems describes the
time domain c/s.

I H(ω), the frequency response describes the frequency-domain
c/s.

I h(n)
F←−−→ H(ω)

I study: system response to excitation signals that are a
weighted linear combination of sinusoids or complex
exponentials.
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Frequency-Domain C/S of LTI Systems

I Recall the response of an LTI system to input signal x(n)

y(n) =
∞∑

k=−∞
h(n)x(n − k) (1)
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Frequency-Domain C/S of LTI Systems

I Excite the system with a complex exponential, i.e. let
x(n) = Ae jωn,−∞ < n <∞,−π < ω < π

y(n) =
∞∑

k=−∞
h(k)

[
Ae jω(n−k)

]
= A

[ ∞∑
k=−∞

h(k)e−jωk

]
e jωn

= Ae jωnH(ω)

(2)

where,

H(ω) =
∞∑

k=−∞
h(k)e−jωk (3)
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Frequency-Domain C/S of LTI Systems

Observations

I y(n) is in the form of a complex exponential with same
frequency as input, multiplied by a factor.

I The complex exponential signal x(n) is called an eigenfunction
of the system.

I H(ω) evaluated at the frequency of the input is the
corresponding eigenvalue of the system.



5/ 25

Frequency-Domain C/S of LTI Systems

Observations, cont.

I As H(ω) is a Fourier transform, it is periodic with period 2π

I H(ω) is a complex-valued function, can be expressed in polar
form

H(ω) = |H(ω)|eφω

I h(k) is related to H(ω) through

h(k) =
1

2π

π∫
−π

H(ω)e jωkdω
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Frequency-Domain C/S of LTI Systems

Real-valued impulse response

An LTI system with a real-valued impulse response, exhibits
symmetry properties as derived in section 4.4.1

I |H(ω)| ⇒ even function of ω

I φ(ω)⇒ odd function of ω.

I Consequently, it is enough to know |H(ω)| and φ(ω) for
−π ≤ ω ≤ π,



7/ 25

Example

I Determine the output sequence of the system with impulse
response

h(n) = (
1

2
)nu(n)

when the input signal is

x(n) = Ae jπn/2,−∞ < n <∞
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Example, cont.

I Solution: evaluate H(ω)

H(ω) =
∞∑

n=−∞
h(n)e−jωn =

1

1− 1
2e
−jω

H(ω =
π

2
) =

1

1 + j 12
=

2√
5
e−j26.6

o

I Thus, output is

y(n) = A

(
2√
5
e−j26.6

o

)
e jπn/2

=
2√
5
Ae j(πn/2−26.6

o),−∞ < n <∞

I system effect on the input: amplitude scale and phase shift

I change frequency, we change amount of scale change and
phase shift.
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Example: Moving Average Filter

I Determine the magnitude and phase of H(ω) for the
three-point moving average (MA) system.

y(n) =
1

3
[x(n + 1) + x(n) + x(n − 1)]

and plot these functions for 0 ≤ ω ≤ π
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Example: Moving Average Filter, cont.

I Solution:

h(n) = {1

3
,

1

3
,

1

3
}

consequently,

H(ω) =
∑
n

h(k)e−jωk =
1

3
(e jω + 1 + e−jω) =

1

3
(1 + 2 cosω)

Hence

|H(ω)| =
1

3
|1 + cosω|

φ(ω) =


0, 0 ≤ ω ≤ 2π

3

π,
2π

3
≤ ω < π
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Example: system response to sinusoids

I Determine the response of the system in Example 5.1.1, for
the input signal

x(n) = 10− 5 sin
π

2
n + 20 cosπn,−∞ < n <∞

I Recall, the frequency response of the system is

H(ω) =
1

1− 1
2e
−jω
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Example, cont.

I Solution

I Idea Recognise the frequency of each part of the input signal,
and find corresponding system response.

I First term 10, fixed signal ⇒ ω = 0

H(0) =
1

1− 1
2

= 2

I 5 sin π
2n has a frequency ω = π/2, thus

H(
π

2
) =

2√
5
e−j26.6

o

I 20 cosπn has a frequency ω = π

H(π) =
2

3
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Frequency Domain c/s of LTI systems

The General Case

I Most general case: input to the system is an arbitrary linear
combination of sinusoids of the form

x(n) =
L∑

i=1

Ai cos(ωin + φi ),−∞ < n <∞

Where {Ai} and {φi} amplitude and phase of corresponding
sinusoidal component i .

I System response will be of the form:

y(n) =
L∑

i=1

Ai |H(ωi )| cos [ωin + φi + Θ(ωi )]

Where |H(ωi )| and Θ(ωi ) are the magnitude and phase
imparted by the system to the individual frequency
components of the input signal.
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Steady-State and Transient Response to Sinusoidal Input
Signals

I If excitation signal (exponential or sinusoidal) applied at some
finite time instant,e.g. n = 0

response = steady-state + transient

I Example: let
y(n) = ay(n − 1) + x(n)

system response to any x(n) applied at n = 0

y(n) = an+1y(−1)+
n∑

k=0

akx(n−k), n ≥ 0, y(−1) initial condition

I Let x(n) be a complex exponential

x(n) = Ae jωn, n ≥ 0
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Steady-State and Transient Response to Sinusoidal Input
Signals, cont.

I We get,

y(n) = an+1y(−1) + A
n∑

k=0

ake jω(n−k)

= an+1y(−1) + A

[
n∑

k=0

(ae−jω)k

]
e jωn

= an+1y(−1) + A
1− an+1e−jω(n+1)

1− ae−jω
e jωn, n ≥ 0

= an+1y(−1)− Aan+1e−jω(n+1)

1− ae−jω
e jωn +

A

1− ae−jω
e jωn
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Steady-State and Transient Response to Sinusoidal Input
Signals, cont.

I BIBO stable, if |a| < 1

I Since |a| < 1, the terms containing an+1 → 0, as n→∞.

I Steady-state response:

yss(n) = lim
n→∞

y(n) =
A

1− ae−jω
e jωn

= AH(ω)e jωn

I Transient response of the system:

ytr (n) = an+1y(−1)− Aan+1e−jω(n+1)

1− ae−jω
e jωn, n ≥ 0
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Steady-State Response to Periodic Input Signals

I Let the input signal x(n) to a stable LTI be periodic with
fundamental period N.

I Periodic → −∞ < n <∞→ total response of the system is
the steady-state response.

I Using the Fourier series representation of a periodic signal

x(n) =
N−1∑
k=0

cke
j2πkn/N , k = 0, 0, ...,N − 1



19/ 25

Steady-State Response to Periodic Input Signals, cont.

I Evaluating the system response for each complex exponential

xk(n) = cke
j2πkn/N , k = 0, 1, ...,N − 1

yk(n) = ckH

(
2πk

N

)
e j2πkn/N , k = 0, 1, ...,N − 1

where

H(
2πk

N
) = H(ω)|ω=2πkn/N , k = 0, 1, ...,N − 1
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Steady-State Response to Periodic Input Signals, cont.

I Superposition principle for linear systems:

y(n) =
N−1∑
k=0

ckH

(
2πk

N

)
e j2πkn/N , −∞ < n <∞

I LTI system response to a periodic input signal is also periodic
with the same period N, with coefficients related by

dk = ckH

(
2πk

N

)
, k = 0, 1, ...,N − 1
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Response to Aperiodic Input Signals

I Let {x(n)} ne the aperiodic input sequence, {y(n)} output
sequence, and {h(n)} unit sample response.

I By Convolution theorem

Y (ω) = H(ω)X (ω)

In polar form, magnitude and phase of the output signal:

|Y (ω)| = |H(ω)||X (ω)|
∠Y (ω) = ∠H(ω) + ∠X (ω)

I Output of an LTI system can NOT contain frequency
components that are not contained in the input signal.
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Response to Aperiodic Input Signals, cont.

I Energy density spectra of input and output

|Y (ω)|2 = |H(ω)|2|X (ω)|2

Syy (ω) = |H(ω)|2Sxx(ω)

I Energy of the output signal

Ey =
1

2π

π∫
−π

Syy (ω)dω

=
1

2π

π∫
−π

|H(ω)|2Sxx(ω)dω
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Example

I A linear time-invariant system is characterized by its impulse
response

h(n) =

(
1

2

)2

u(n)

I Determine the spectrum and energy density spectrum of the
output signal when the system is excited by the signal

x(n) =

(
1

4

)2

u(n)
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Example: Solution

I Frequency response of the system

H(ω) =
∞∑
n=0

(
1

2

)2

e−jωn

=
1

1− 1
2e
−jω

I Similiarly, Fourier transform of the input sequence

X (ω) =
1

1− 1
4e
−jω

I Spectrum of the output signal

Y (ω) = H(ω)X (ω)

=
1

(1− 1
2e
−jω)(1− 1

4e
−jω)
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Example, cont.

I energy density spectrum

Sxx(ω) = |Y (ω)|2 = |H(ω)|2|X (ω)|2

=
1

(54 − cosω)(1716 −
1
2 cosω)


