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Overlap-Save and Overlap-Add for Real-time

Processing

Reference:

Section 7.1 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Intuition

aperiodic + dst in time
DTFT←→ cts + periodic in freq

↓ periodic repetition ↓ sampling

periodic + dst in time
DTFS←→ dst + periodic in freq

one period of dst-time samples
DFT←→ one period of dst-freq samples

n = 0, 1, . . . ,N − 1 k = 0, 1, . . . ,N − 1

Therefore, we define the Discrete Fourier Transform (DFT) as being a

computable transform that approximates the DTFT.
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Intuition
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Intuition
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DTFT, DTFS and DFT

x(n) for all n
DTFT←→ X (ω) for all ω

↓ periodic repetition ↓ sampling

xp(n) =
∞∑

l=−∞

x(n + lN) for all n
DTFS←→ X (k) = X (ω)|ω= 2π

N k for all k

x̂(n)
DFT←→ X̂ (k)

where

x̂(n) =

{
xp(n) for n = 0, . . . ,N − 1
0 otherwise

and

X̂ (k) =

{
X (k) for k = 0, . . . ,N − 1
0 otherwise
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Frequency Domain Sampling

I Recall, sampling in time results in a periodic repetition in
frequency.

x(n) = xa(t)|t=nT
F←→ X (ω) =

1

T

∞∑
k=−∞

Xa(ω +
2π

T
k)

I Similarly, sampling in frequency results in periodic repetition in
time.

xp(n) =
∞∑

l=−∞

x(n + lN)
F←→ X (k) = X (ω)|ω= 2π

N
k
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Frequency Domain Sampling and Reconstruction

I Therefore,

x(n)
F←→ X (ω)

xp(n)
F←→ X (k)

I Implications:
I The samples of X (ω) can be used to reconstruct xp(n).
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Frequency Domain Sampling and Reconstruction

I Q: Can we reconstruct x(n) from the samples of X (ω)?
I Can we reconstruct x(n) from xp(n)?

I A: Maybe.

xp(n) =

[
∞∑

l=−∞

x(n + lN)

]
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Frequency Domain Sampling and Reconstruction
N = 4
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Frequency Domain Sampling and Reconstruction
N = 4
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Frequency Domain Sampling and Reconstruction

I x(n) can be recovered from xp(n) if there is no overlap when
taking the periodic repetition.

I If x(n) is finite duration and non-zero in the interval
0 ≤ n ≤ L− 1, then

x(n) = xp(n), 0 ≤ n ≤ N − 1 when N ≥ L

I If N < L then, x(n) cannot be recovered from xp(n).
I or equivalently X (ω) cannot be recovered from its samples

X
(
2π
N k
)

due to time-domain aliasing
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The Discrete Fourier Transform Pair

I DFT and inverse-DFT (IDFT):

X (k) =
N−1∑
n=0

x(n)e−j2πk
n
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)e j2πk
n
N , n = 0, 1, . . . ,N − 1

Note: we drop the ·̂ notation from now on.

�
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