

aperiodic + dst in time $\stackrel{\text{DTFT}}{\longleftrightarrow}$ cts + periodic in freq \downarrow periodic repetition $\begin{array}{c} \text{periodic} + \text{dst in time} \quad \stackrel{\text{DTFS}}{\longleftrightarrow} \end{array}$ one period of dst-time samples $\stackrel{\mathsf{DFT}}{\longleftrightarrow}$ one period of dst-freg samples

 \downarrow sampling dst + periodic in freq

 $n = 0, 1, \dots, N - 1$ $k = 0, 1, \dots, N - 1$

Therefore, we define the Discrete Fourier Transform (DFT) as being a computable transform that approximates the DTFT.

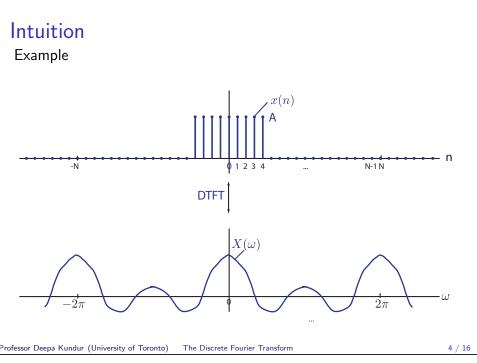
Overlap-Save and Overlap-Add for Real-time Processing

Reference:

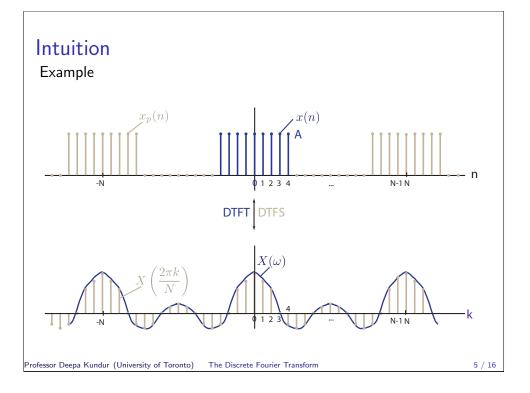
Section 7.1 of

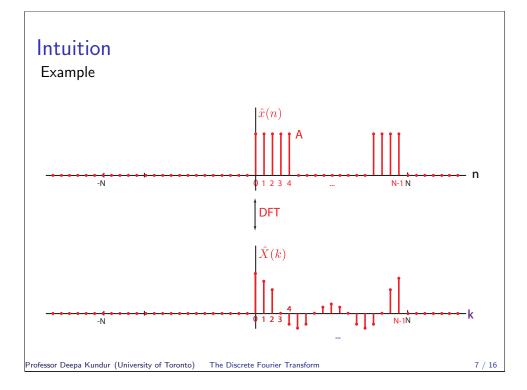
John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th edition, 2007.

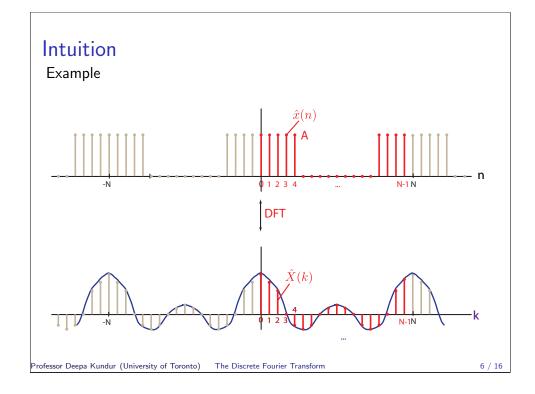
rofessor Deepa Kundur (University of Toronto) The Discrete Fourier Transform

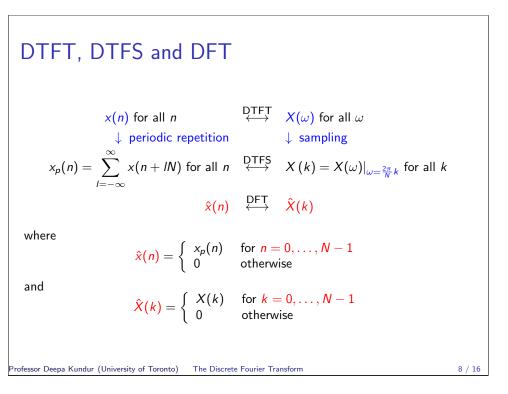


2 / 16









Frequency Domain Sampling

 Recall, sampling in time results in a periodic repetition in frequency.

$$x(n) = x_a(t)|_{t=nT} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a(\omega + \frac{2\pi}{T}k)$$

 Similarly, sampling in frequency results in periodic repetition in time.

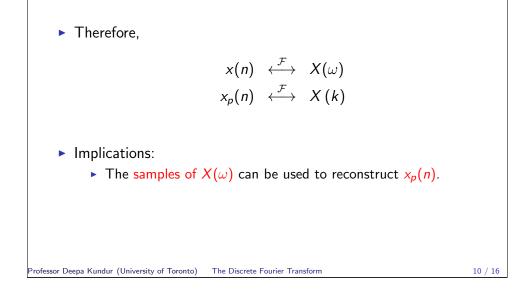
$$x_p(n) = \sum_{l=-\infty}^{\infty} x(n+lN) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(k) = X(\omega)|_{\omega = \frac{2\pi}{N}k}$$

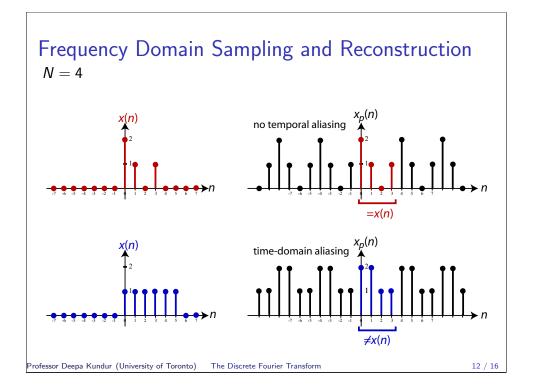
Professor Deepa Kundur (University of Toronto) The Discrete Fourier Transform

9 / 16

Frequency Domain Sampling and Reconstruction • Q: Can we reconstruct x(n) from the samples of $X(\omega)$? • Can we reconstruct x(n) from $x_p(n)$? • A: Maybe. $x_p(n) = \left[\sum_{l=-\infty}^{\infty} x(n+lN)\right]$

Frequency Domain Sampling and Reconstruction





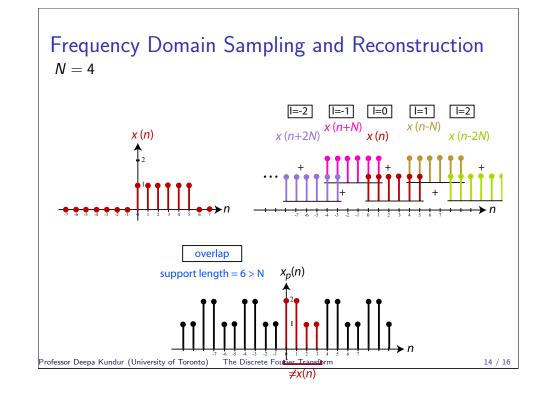


Frequency Domain Sampling and Reconstruction

- ► x(n) can be recovered from x_p(n) if there is no overlap when taking the periodic repetition.
- If x(n) is finite duration and non-zero in the interval 0 ≤ n ≤ L − 1, then

$$x(n) = x_p(n), \quad 0 \le n \le N-1$$
 when $N \ge L$

- If N < L then, x(n) cannot be recovered from $x_p(n)$.
 - or equivalently $X(\omega)$ cannot be recovered from its samples $X\left(\frac{2\pi}{N}k\right)$ due to time-domain aliasing



The Discrete Fourier Transform Pair

▶ DFT and inverse-DFT (IDFT):

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi k \frac{n}{N}}, \quad k = 0, 1, \dots, N-1$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi k \frac{n}{N}}, \quad n = 0, 1, \dots, N-1$$

Note: we drop the $\hat{\cdot}$ notation from now on.