

Discrete-Time Signals and Systems
Discrete-Time Signals and Systems
Reference:
Sections 2.1-2.5 of
John G. Proakis and Dimitris G. Manolakis, <i>Digital Signal Processing: Principles, Algorithms, and Applications</i> , 4th edition, 2007.

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

 $\delta(n) = \begin{cases} 1, & \text{for } n = 0 \\ 0, & \text{for } n \neq 0 \end{cases}$

2. unit step signal:

 $u(n) = \left\{ egin{array}{cc} 1, & ext{for } n \geq 0 \ 0, & ext{for } n < 0 \end{array}
ight.$

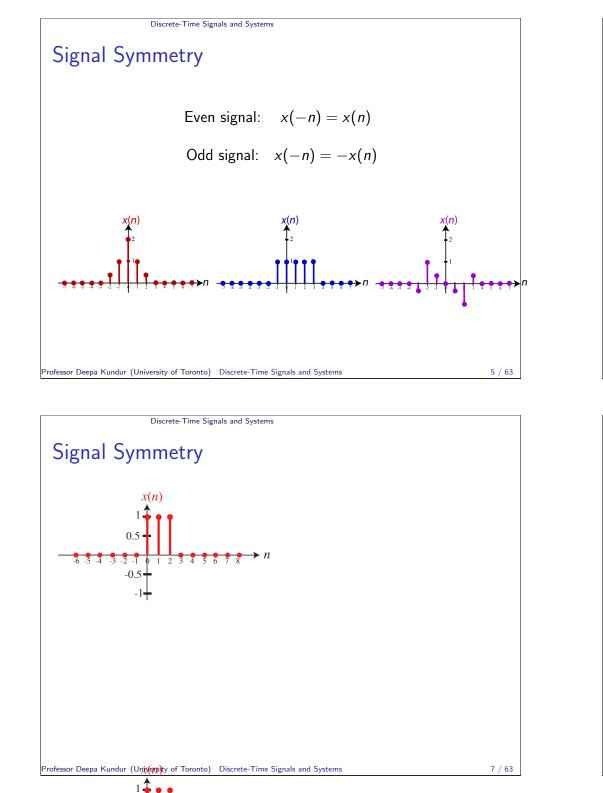
3. unit ramp signal:

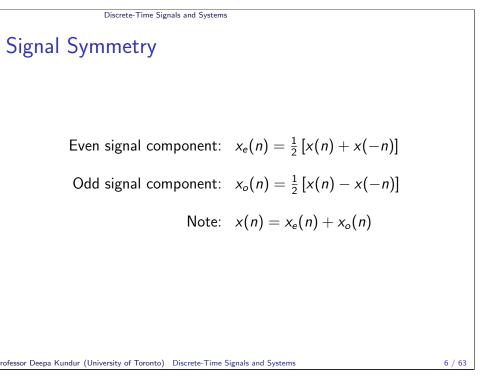
 $u_r(n) = \left\{ egin{array}{cc} n, & ext{for } n \geq 0 \ 0, & ext{for } n < 0 \end{array}
ight.$

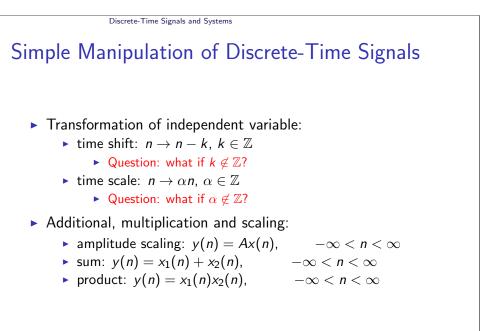
Note:

$$\frac{\delta(n)}{u(n)} = u(n) - u(n-1) = u_r(n+1) - 2u_r(n) + u_r(n-1)$$

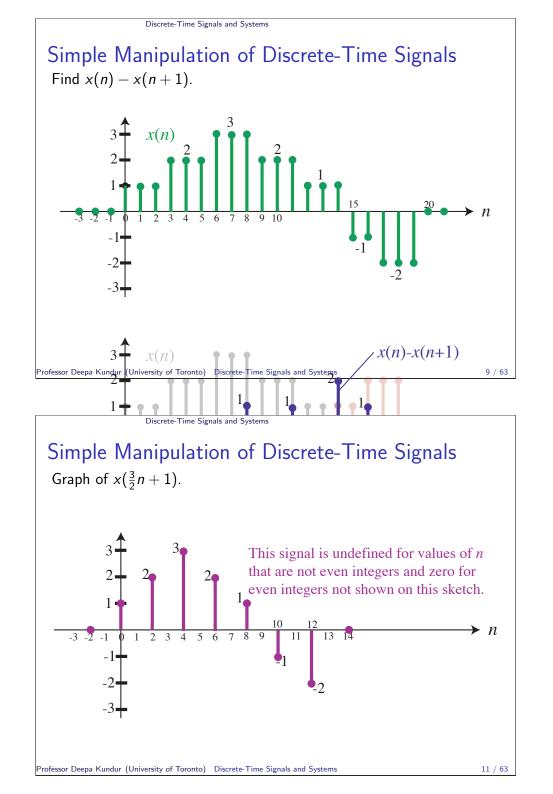
$$u(n) = u_r(n+1) - u_r(n)$$





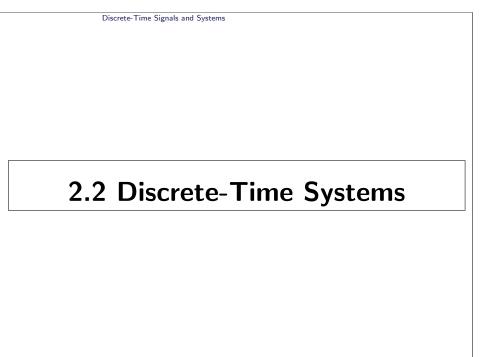


Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

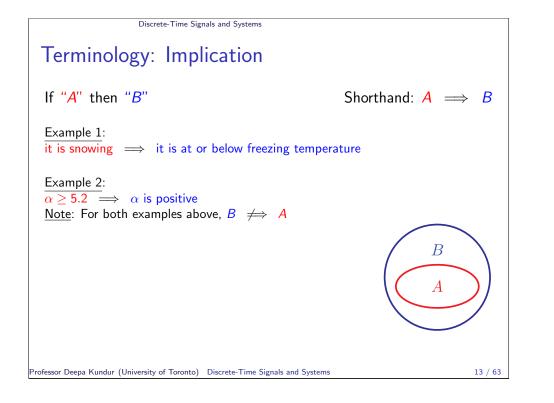


Simple Manipulation of Discrete-Time Signals I Find $x(\frac{3}{2}n+1)$.

		2	.3.	
	n	$\frac{3n}{2} + 1$	$x(\frac{3n}{2}+1)$	
	< -1	$< -\frac{1}{2}$	0 if $\frac{3n}{2} + 1$ is an integer; undefined otherwise	
	-1	$-\frac{1}{2}^{2}$ 1	undefined	
	0		x(1) = 1	
	1	5	undefined	
	2	4	x(4) = 2	
	3	5 4 <u>11</u> 2 7	undefined	
	4	7	x(7) = 3	
	5	$ \begin{array}{r} \frac{17}{2} \\ 10 \\ \frac{23}{2} \\ 13 \\ \frac{29}{2} \\ 16 \\ \frac{35}{2} \\ 19 \\ \end{array} $	undefined	
	6	10	x(10) = 2	
	7	23	undefined	
	8	13	x(13) = 1	
	9	29	undefined	
	10	16	x(16) = -1	
	11	35	undefined	
	12	19	x(19) = -2	
	> 12	> 19	0 if $\frac{3n}{2} + 1$ is an integer; undefined otherwise	
Professor Deepa Kundu	ır (Universit	y of Toronto)	Discrete-Time Signals and Systems	10 / 63



Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems



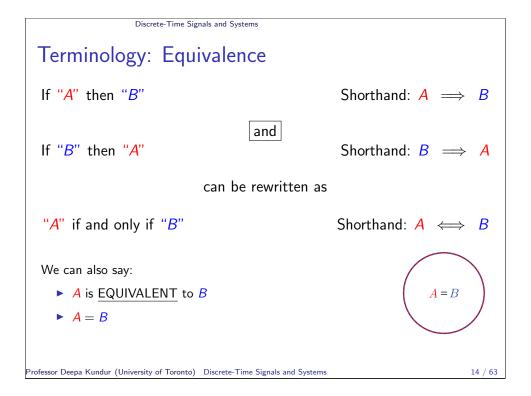
Discrete-Time Signals and Systems **Terminology: Input-Output Description** $input/ \underbrace{x(n)}_{\text{excitation}} \underbrace{\text{Discrete-time}}_{\text{System}} \underbrace{y(n)}_{\text{output/}} \underbrace{\text{output/}}_{\text{response}}$

Input-output description (exact structure of system is unknown or ignored):

$$y(n) = \mathcal{T}[x(n)]$$

"black box" representation:

$$x(n) \xrightarrow{\mathcal{T}} y(n)$$



Classification of Discrete-Time Systems

Discrete-Time Signals and Systems

Why is this so important?

- mathematical techniques developed to analyze systems are often contingent upon the general characteristics of the systems being considered
- For a system to possess a given property, the property must hold for every possible input to the system.
 - to disprove a property, need a single counter-example
 - ► to prove a property, need to prove for the general case

D	liscrete-Time Signals and Sy	stems		
Classificatio	on of Discre	te-7	Time Systems	
Common Syster	m Properties:			
	static	VS.	dynamic	
	time-invariant	VS.	time-variant	
	linear	VS.	nonlinear	
	causal	VS.	non-causal	
	stable	VS.	unstable systems	
	÷		÷	
Professor Deepa Kundur (Univer	sity of Toronto) Discrete-T	Time Sign	als and Systems	17 / 63

Static vs. Dynamic

- Consider the general system:
 - $y(n) = \mathcal{T}[x(n-N), x(n-N+1), \cdots, x(n-1), x(n), x(n+1), \\ \cdots, x(n+M-1), x(n+M)], \quad N, M > 0$
 - For N = M = 0, $y(n) = \mathcal{T}[x(n)]$, the system is static.
 - For 0 < N, M < ∞, the system is said to be dynamic with <u>finite</u> memory of duration N + M + 1.
 - For either N and/or M equal to infinite, the system is said to have <u>infinite</u> memory.

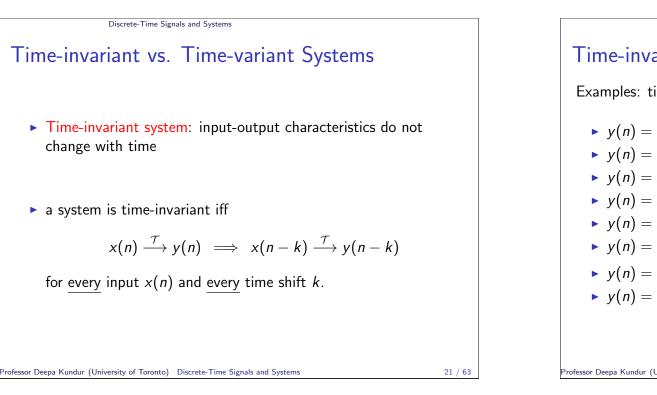
Discrete-Time Signals and Systems						
Static vs. Dynamic						
Static system (a.k.a. memoryless): the output at time n depends only on the input sample at time n; otherwise the system is said to be dynamic						
a system is static iff (if and only if)						
$y(n) = \mathcal{T}[x(n), n]$						
for every time instant n .						
ofessor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems	18 / 63					

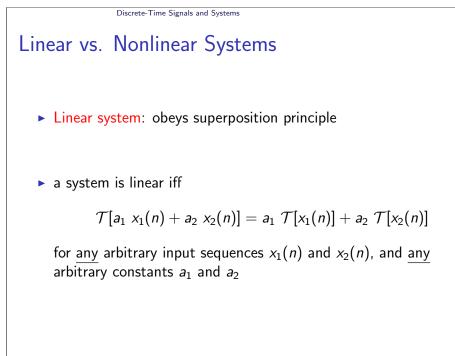
Static vs. Dynamic Examples: memoryless or not? • $y(n) = A x(n), A \neq 0$ • $y(n) = A x(n) + B, A, B, \neq 0$ • $y(n) = x(n) \cos(\frac{\pi}{25}(n-5))$ • y(n) = x(-n)• y(n) = x(-n)• y(n) = x(n+1)• $y(n) = \frac{1}{1-x(n+2)}$ • $y(n) = e^{3x(n)}$

Discrete-Time Signals and Systems

► $y(n) = \sum_{k=-\infty}^{n} x(k)$

Ans: Y, Y, Y, N, N, N, Y, N





Time-invariant vs. Time-variant Systems

Examples: time-invariant or not?

y(n) = A x(n), A ≠ 0
y(n) = A x(n) + B, A, B, ≠ 0
y(n) = x(n) cos($\frac{\pi}{25}n$)
y(n) = x(-n)
y(n) = x(n+1)
y(n) = $\frac{1}{1-x(n+2)}$ y(n) = $e^{3x(n)}$ y(n) = $\sum_{k=-\infty}^{n} x(k)$ Ans: Y, Y, N, N, Y, Y, Y, Y

Discrete-Time Signals and Systems

Linear Systems: Homogeneity A system is linear iff

$$\mathcal{T}[a_1 x_1(n) + a_2 x_2(n)] = a_1 \mathcal{T}[x_1(n)] + a_2 \mathcal{T}[x_2(n)]$$

• Homogeneity: Let $a_2 = 0$.

$$\mathcal{T}[a_1 x_1(n)] = a_1 \mathcal{T}[x_1(n)]$$

$$x(n) \xrightarrow{\mathcal{T}} y(n) \implies a_1 x(n) \xrightarrow{\mathcal{T}} a_1 y(n)$$

for any constant a_1 .

Linear Systems: Additivity

A system is linear iff

$$\mathcal{T}[a_1 \ x_1(n) + a_2 \ x_2(n)] = a_1 \ \mathcal{T}[x_1(n)] + a_2 \ \mathcal{T}[x_2(n)]$$

• Additivity: Let $a_1 = a_2 = 1$.

 $\mathcal{T}[x_1(n) + x_2(n)] = \mathcal{T}[x_1(n)] + \mathcal{T}[x_2(n)]$

$$\begin{array}{ccc} x_1(n) \xrightarrow{\mathcal{T}} y_1(n) \\ x_2(n) \xrightarrow{\mathcal{T}} y_2(n) \end{array} \implies x_1(n) + x_2(n) \xrightarrow{\mathcal{T}} y_1(n) + y_2(n) \end{array}$$

25 / 63

27 / 63

Ans: Y, N, Y, Y, Y, N, N, Y

for any input sequences $x_1(n)$ and $x_2(n)$.

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems

Linear vs. Nonlinear Systems

Examples: linear or not?

- ► $y(n) = A x(n), A \neq 0$
- ► y(n) = A x(n) + B, $A, B, \neq 0$
- $\flat y(n) = x(n)\cos(\frac{\pi}{25}n)$
- ► y(n) = x(-n)
- ▶ y(n) = x(n+1)
- ▶ $y(n) = \frac{1}{1-x(n+2)}$
- ► $y(n) = e^{3x(n)}$
- $y(n) = \sum_{k=-\infty}^{n} x(k)$

 Discrete-Time Signals and Systems

 Linear Systems: Additivity

 Therefore:

 Linearity = Homogeneity + Additivity

 Need both!

 If a system is not homogeneous, it is not linear.

 If a system is not additive, it is not linear.

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

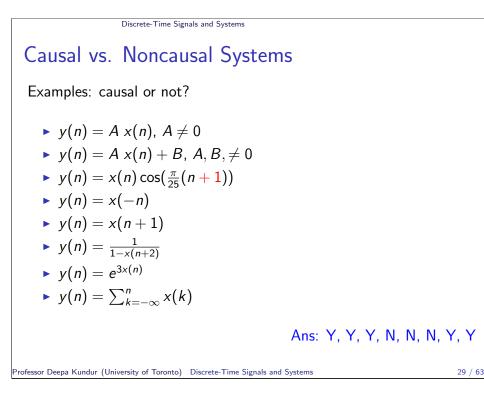
Discrete-Time Signals and Systems

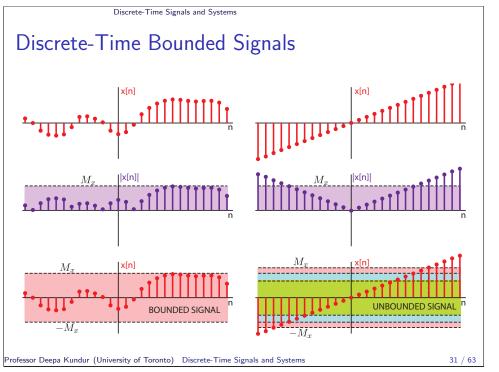
Causal vs. Noncausal Systems

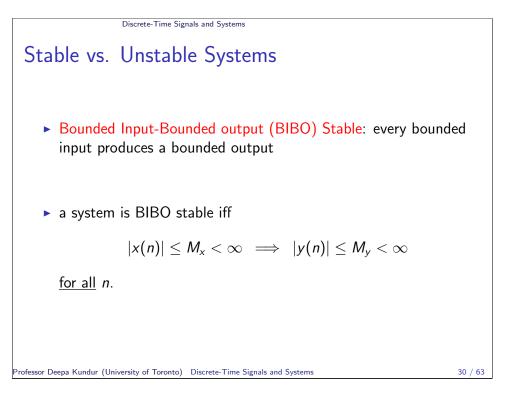
- Causal system: output of system at any time *n* depends only on present and past inputs
- ► a system is causal iff

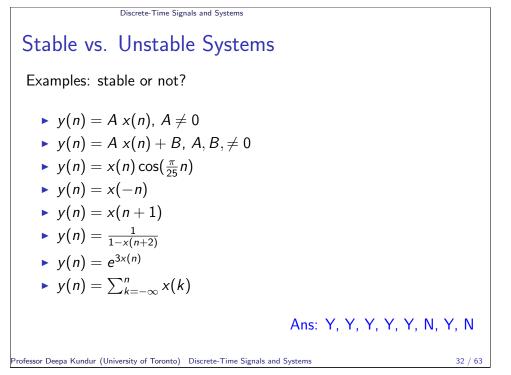
$$y(n) = \mathcal{T}[x(n), x(n-1), x(n-2), \ldots]$$

for all n









Final Remarks

For a system to possess a given property, the property must hold for every possible input and parameter of the system.

► to disprove a property, need a single counter-example

• to prove a property, need to prove for the general case

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems

The Convolution Sum

Recall:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k) \delta(n-k)$$

Discrete-Time Signals and Systems

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems

The Convolution Sum

k

Let the response of a linear time-invariant (LTI) system to the unit sample input $\delta(n)$ be h(n).

$$\delta(n) \xrightarrow{\mathcal{T}} h(n)$$

$$\delta(n-k) \xrightarrow{\mathcal{T}} h(n-k)$$

$$\alpha \ \delta(n-k) \xrightarrow{\mathcal{T}} \alpha \ h(n-k)$$

$$x(k) \ \delta(n-k) \xrightarrow{\mathcal{T}} x(k) \ h(n-k)$$

$$\sum_{k=-\infty}^{\infty} x(k)\delta(n-k) \xrightarrow{\mathcal{T}} \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$x(n) \xrightarrow{\mathcal{T}} y(n)$$

33 / 63

The Convolution Sum

Therefore,

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = x(n) * h(n)$$

for any LTI system.

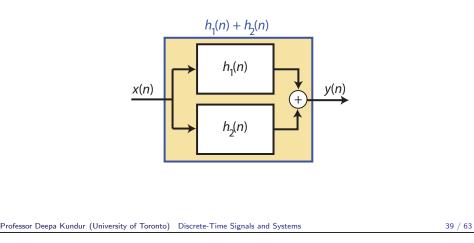
Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems

Properties of Convolution

Distributive Law:

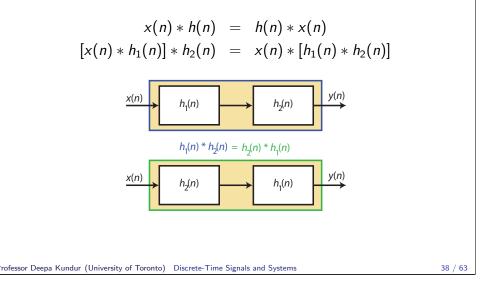
$$x(n) * [h_1(n) + h_2(n)] = x(n) * h_1(n) + x(n) * h_2(n)$$



Discrete-Time Signals and Systems

Properties of Convolution

Associative and Commutative Laws:



Discrete-Time Signals and Systems

Causality and Convolution

37 / 63

For a causal system, y(n) only depends on present and past inputs values. Therefore, for a causal system, we have:

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=-\infty}^{-1} h(k)x(n-k) + \sum_{k=0}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=0}^{\infty} h(k)x(n-k)$$

where h(n) = 0 for n < 0 to ensure causality.

2.4 Discrete-time Systems Described by Difference Equations

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems

Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$
 a nonrecursive systems

Infinite impulse response (IIR):

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$
 } recursive systems

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

41 / 63

Finite vs. Infinite Impulse Response

For causal LTI systems, h(n) = 0 for n < 0.

Finite impulse response (FIR):

$$y(n) = \sum_{k=0}^{M-1} h(k) x(n-k)$$

Infinite impulse response (IIR):

$$y(n) = \sum_{k=0}^{\infty} h(k) x(n-k)$$

How would one realize these systems?

rofessor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

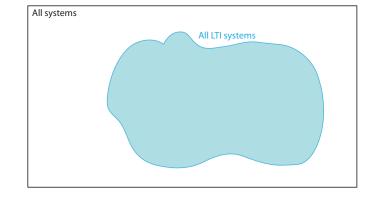
Discrete-Time Signals and Systems

System Realization

. . .

There is a practical and computationally efficient means of implementing all FIR and a family of IIR systems that makes use of

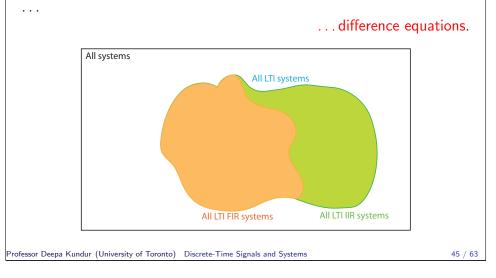
... difference equations.



Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

System Realization

There is a practical and computationally efficient means of implementing all FIR and a family of IIR systems that makes use of



Discrete-Time Signals and Systems

System Realization

General expression for Nth-order LCCDE:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \qquad a_0 \triangleq \mathbb{C}$$

Initial conditions: $y(-1), y(-2), y(-3), \ldots, y(-N)$.

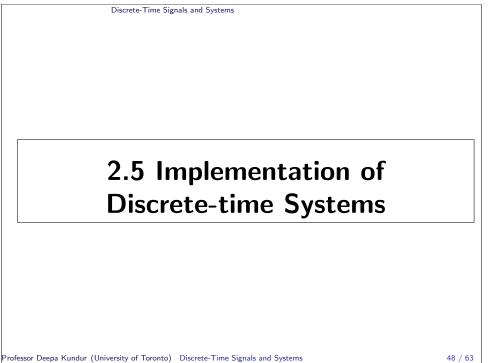
Need: (1) constant scale, (2) addition, (3) delay elements.

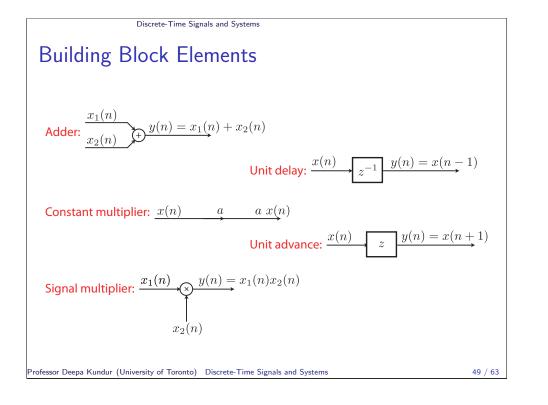
System Realization

There is a practical and computationally efficient means of implementing all FIR and a family of IIR systems that makes use of . . .

... difference equations.

All systems iomic interest Systems Described by LCCDEs All LTI FIR systems All LTI IIR systems rofessor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 46 / 63





FIR System Realization: Example

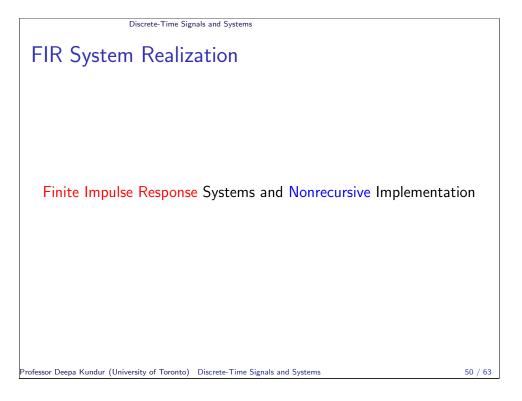
Consider a 5-point local averager:

$$y(n) = \frac{1}{5} \sum_{k=n-4}^{n} x(k) \quad n = 0, 1, 2, \dots$$

• The impulse response is given by:

$$h(n) = \frac{1}{5} \sum_{k=n-4}^{n} \delta(k)$$

= $\frac{1}{5} \delta(n-4) + \frac{1}{5} \delta(n-3) + \frac{1}{5} \delta(n-2) + \frac{1}{5} \delta(n-1) + \frac{1}{5} \delta(n)$

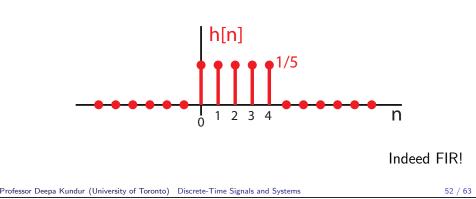


Discrete-Time Signals and Systems

FIR System Realization: Example

Consider a 5-point local averager:

$$y(n) = \frac{1}{5} \sum_{k=n-4}^{n} x(k) \quad n = 0, 1, 2, \dots$$



FIR System Realization: Example

Consider a 5-point local averager:

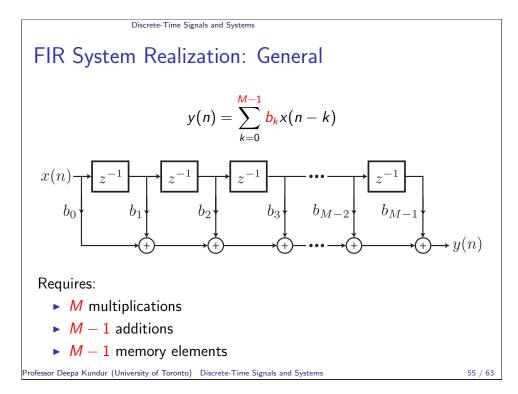
$$y(n) = \frac{1}{5} \sum_{k=n-4}^{n} x(k) \quad n = 0, 1, 2, \dots$$

Memory requirements stay constant; only need to store 5 values (4 last + present).

53 / 63

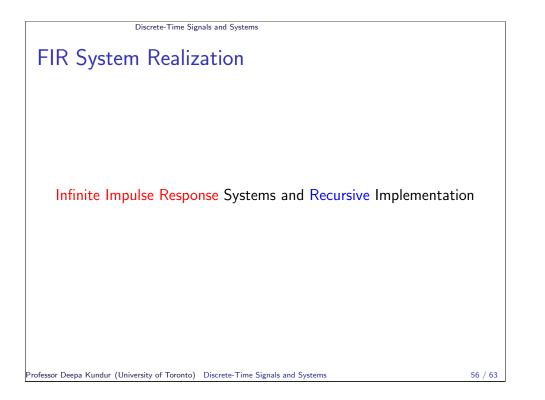
fixed number of adders required

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems



FIR System Realization: Example $y(n) = \frac{1}{5} \sum_{k=n-4}^{n} x(k) = \sum_{k=n-4}^{n} \frac{1}{5} x(k)$ $\therefore y(n) = \frac{1}{5}x(n-4) + \frac{1}{5}x(n-3) + \frac{1}{5}x(n-2) + \cdots$ $\cdots \frac{1}{5}x(n-1) + \frac{1}{5}x(n)$ x(n-3)x(n-1)x(n-2)x(n-4)x(n)1/5↓1/5 1/5 1/5 u(n)Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 54 / 63

Discrete-Time Signals and Systems

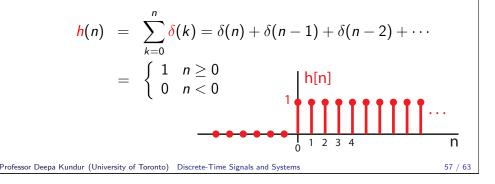


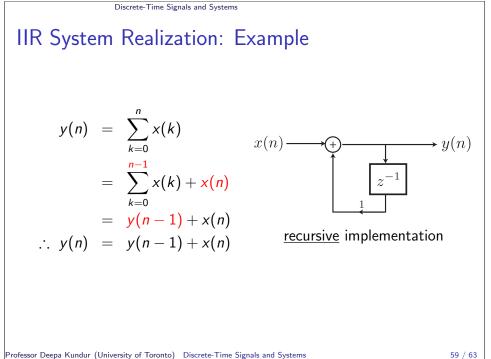
IIR System Realization: Example

Consider an accumulator:

$$y(n) = \sum_{k=0}^{n} x(k)$$
 $n = 0, 1, 2, ...$ for $y(-1) = 0$

• The impulse response is given by:





Discrete-Time Signals and Systems

IIR System Realization: Example

Consider an accumulator:

$$y(n) = \sum_{k=0}^{n} x(k)$$
 $n = 0, 1, 2, ...$ for $y(-1) = 0$.

▶ IIR memory requirements seem to grow with increasing n!

ofessor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems Direct Form I vs. Direct Form II Realizations $y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$ is equivalent to the cascade of the following systems: $\underbrace{v(n)}_{\text{output 1}} = \sum_{k=0}^{m} b_k \underbrace{x(n-k)}_{\text{input 1}}$ nonrecursive $\underbrace{y(n)}_{\text{output }2} = -\sum_{k=1}^{n} a_k y(n-k) + \underbrace{v(n)}_{\text{input }2}$ <u>recursive</u>

