		Audio Special Effects	
	Aud	io Effects	
Audio Special Effects	•	Q: What is an audio effect ?	
Professor Deepa Kundur			
University of Toronto		A: artificially enhanced sound or sound processes used to emphasize artistic content in films, television, shows, live performance, animation, video, games, music or other m	
fessor Deepa Kundur (University of Toronto) Audio Special Effects	1 / 83 Professor De	epa Kundur (University of Toronto) Audio Special Effects	2 /
Audio Special Effects Common Audio Special Effects		Delay-Based Special Effects	
Two common types:			
 Delay-based special effects 			
 simple echo reverberation flanging chorus 		Delay-Based Special Effects	
Rate-conversion special effects			
 downsampling (decimation) upsampling voice gender changers 			
fessor Deepa Kundur (University of Toronto) Audio Special Effects	3 / 83 Professor De	epa Kundur (University of Toronto) Audio Special Effects	4

Delay-Based Special Effects	Delay-Based Special Effects
Delay Effects	Analog and Digital Delays
 Q: What is a delay effect? A: audio effect which records an input signal to an audio storage medium and then plays it back (possibly multiple times) into the recording again to create the sound of a repeating decaying echo. 	 Analog delay created by recording in a naturally reverberant space achieved using tape loops improvised on reel-to-reel magnetic recording systems signal is recorded on analog tape and played back from same piece of tape through the use of two different record and replay heads
 Q: What is this so popular? A: easy to achieve even before the use of computers while adding an attractive <u>texture</u> to the music. 	 adjusting loop length and distance between the read and write heads enables control over delayed echo Digital delay first introduced in 1984 by Boss Corporation provides great flexibility, portability and programmability
Professor Deepa Kundur (University of Toronto) Audio Special Effects 5 / 83	Professor Deepa Kundur (University of Toronto) Audio Special Effects 6 / 8
Delay-Based Special Effects	Delay-Based Special Effects Echoes

Examples of Delay Effects

Delay-based special effects:

- ► simple echo
- ► reverberation
- flanging
- chorus

<u>Note</u>: Check out course website on Handouts page for an example of a simple echo.

Single Echo

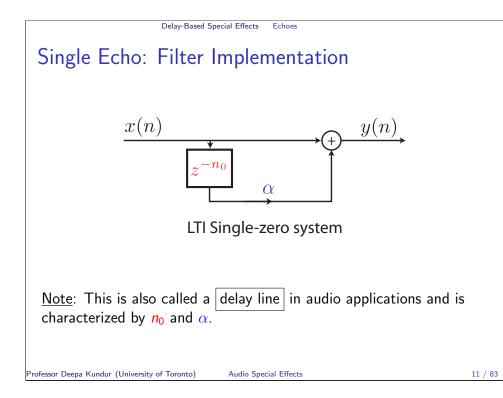
- Q: How can we achieve a <u>single</u> echo from a given sound signal x(n)?
 - A: add a delayed and attenuated version of x(n) to itself.

 $y(n) = x(n) + \alpha x(n-n_0)$

<u>Note</u>: The audio example available on the course web page was generated using $\alpha = 0.35$ and $n_0 = 20000$ with $F_s = 44 kHz$. Thus the echo delay is 20000/44000 = 0.45 sec.

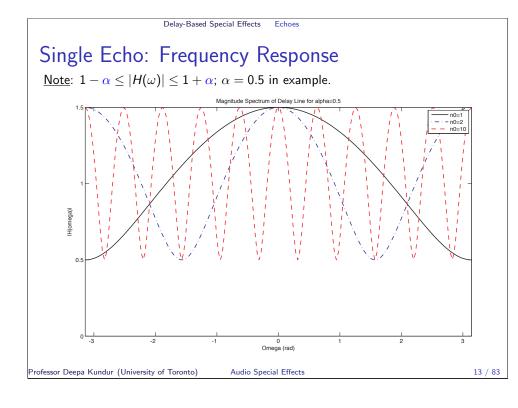
Delay-Based Special Effects Echoes

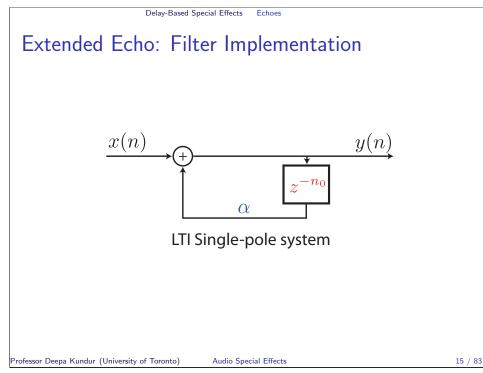
Single Echo


Q: How can we characterize this single echo generation system? *Hint:* The system is linear time-invariant?

Audio Special Effects

• A: impulse response and frequency response.


Professor Deepa Kundur (University of Toronto)


9 / 83

Delay-Based Special Effects Echoes Single Echo: Impulse Response $y(n) = x(n) + \alpha x(n - n_0)$ Let $x(n) = \delta(n)$ to give y(n) = h(n). $\therefore h(n) = \delta(n) + \alpha \delta(n - n_0)$. Professor Deepa Kundur (University of Toronto)

Draw-Based Special Effects Echoes Single Echoe: Frequency Response $h(n) = \delta(n) + \alpha \delta(n - n_0) \quad \text{FIR system}$ $H(\omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$ $= \sum_{n=-\infty}^{\infty} [\delta(n) + \alpha \delta(n - n_0)] e^{-j\omega n} = 1 + \alpha e^{-j\omega n_0}$ $|H(\omega)| = \sqrt{1 + \alpha^2 + 2\alpha \cos(\omega n_0)}$ Note: $1 - \alpha \le |H(\omega)| \le 1 + \alpha$.

Extended Echo: Impuse Response

Consider an infinite series of echos geometrically decaying in amplitude and with equally spaced delays:

$$y(n) = x(n) + \alpha x(n - n_0) + \alpha^2 x(n - 2n_0) + \cdots$$

Let
$$x(n) = \delta(n)$$
 to give $y(n) = h(n)$.

$$\therefore h(n) = \delta(n) + \alpha \delta(n - n_0) + \alpha^2 \delta(n - 2n_0) + \cdots$$
$$= \sum_{k=0}^{\infty} \alpha^k \delta(n - kn_0)$$

Professor Deepa Kundur (University of Toronto)

14 / 83

$\begin{aligned} \text{Extended Echo: Frequency Response} \\ h(n) &= \sum_{k=0}^{\infty} \alpha^k \delta(n - kn_0) \quad \text{IIR system} \\ H(\omega) &= \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n} \\ &= \sum_{n=-\infty}^{\infty} \left[\sum_{k=0}^{\infty} \alpha^k \delta(n - kn_0)\right] e^{-j\omega n} \\ &= \sum_{k=0}^{\infty} \sum_{n=-\infty}^{\infty} \alpha^k e^{-j\omega n} \delta(n - kn_0) \\ &= \sum_{k=0}^{\infty} \alpha^k e^{-j\omega kn_0} = \sum_{k=0}^{\infty} (\alpha e^{-j\omega n_0})^k = \frac{1}{1 - (\alpha e^{-j\omega n_0})} \end{aligned}$ for $|\alpha| < 1$. Instability occurs for $\alpha > 1$.

Audio Special Effects

Delay-Based Special Effects Echoes

Extended Echo as Reverberation

- Consider an original sound source x(n) of finite duration in the order of a few seconds.
- Specifically, let its time duration be T_d sec and its sample duration be N_d = L^{T_d}/_T = L T_d ⋅ F_s samples.
- ► Let the echo generation parameters be |α| < 1 and n₀ "small" such that

Audio Special Effects

$$n_0 \cdot T = rac{n_0}{F_s} \ll 1$$

(normally in the order of 0.01 - 1 msec)

Professor Deepa Kundur (University of Toronto)

Delay-Based Special Effects Echoes

Reverberation

Good examples at:

http://www.youtube.com/watch?v=cGBn7sU6m3k

Extended Echo as Reverberation

- When the original sound source is present, the echoes overlap first building up the overall sound effect.
 - For a source that is T_d sec in duration,

No. Overlapping Echoes =
$$\left[T_d \frac{F_s}{n_0} \right] = \left[\frac{N_d}{n_0} \right] \gg 1$$

 After the original source has stopped, the overall sound decays due to the echo reflections that eventually die out due to α < 1; sounds like you are in a music hall.

This overall process is a type of <u>reverberation</u>.

rofessor Deepa Kundur (University of Toronto) Audio Special Effects

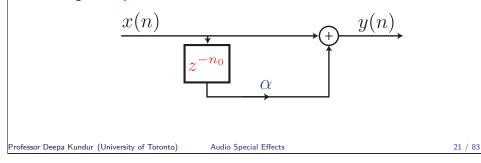
18 / 83

Delay-Based Special Effects Reverberation

Reverberation

Recall,

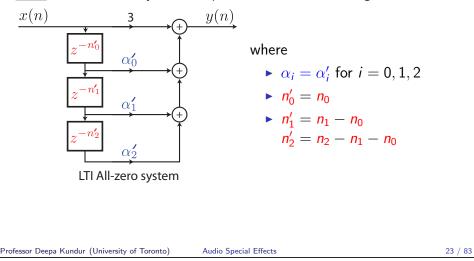
- First the echoes overlap with the original source signal building up the sound effect.
- When the original source has stopped, the sound may temporarily persist and then eventually die out.

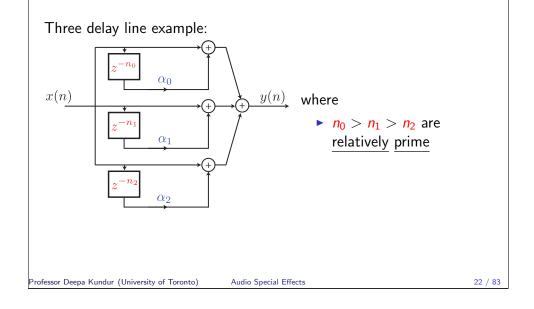

There are other ways to achieve a "richer" reverberation than our prior example . . .

Delay-Based Special Effects Reverberation

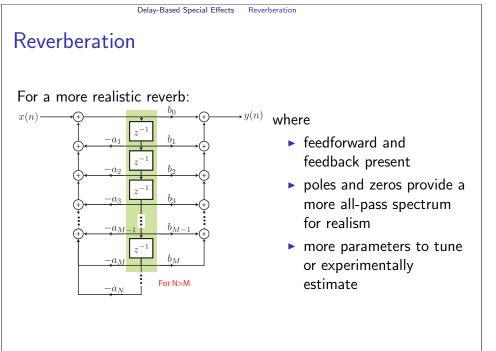
Reverberation

Example: More realistic reverb using multiple delay lines


- Use multiple delay lines with delays that are relatively prime, so that the echoes emanating from each lines do not ever overlap giving a richer sound.
- Single delay line:

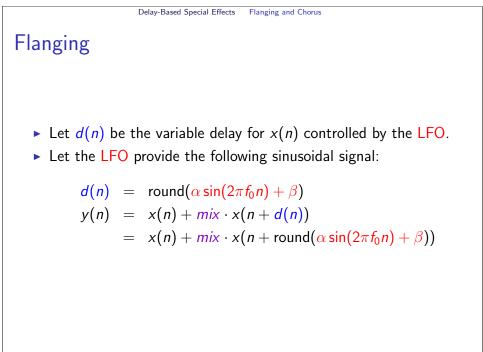

Delay-Based Special Effects Reverberation

Reverberation


<u>Note</u>: the three delay line is equivalent to the following:

Delay-Based Special Effects Reverberation

Reverberation


Audio Special Effects

Professor Deepa Kundur (University of Toronto)

•	process of mixing two signal together that are nearly identical such that one signal is a slightly variably delayed version of the other
	manifests like a "swooshing" sound
•	a variation of this sound often occurs when instruments are trying to tune to a tuning fork
ofessor [Deepa Kundur (University of Toronto) Audio Special Effects 25 / 8
	Delay-Based Special Effects Flanging and Chorus
Fla	nging
Fla	nging
Fla	nging Low Freq Oscillator
Fla	Low Freq
	$x(n) \xrightarrow{Variable} \xrightarrow{mix} y(n)$

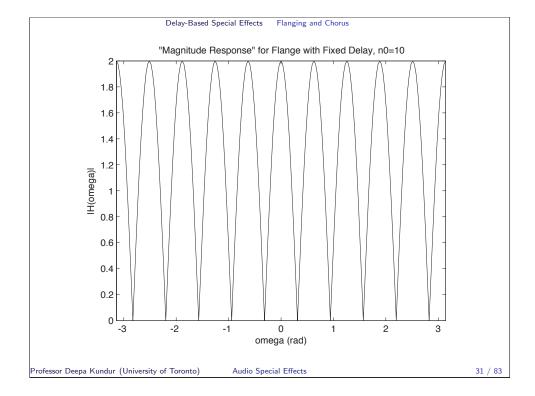
Delay-Based Special Effects Flanging and Chorus

Delay-Based Special Effects Flanging and Chorus Flanging Good examples at: http: //www.youtube.com/watch?v=NAqQvs_WXs8&feature=related Profesor Deepa Kundur (University of Toronto) Auto Special Effects Flanging and Chorus

Audio Special Effects

Professor Deepa Kundur (University of Toronto)

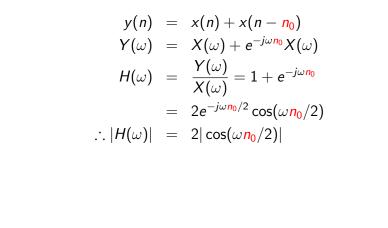
Delay-Based Special Effects Flanging and Chorus


Flanging

$y(n) = x(n) + mix \cdot x(n + round(\alpha \sin(2\pi f_0 n) + \beta))$

- <u>rate</u> is given by f_0 and is generally small; typically $f_0 \cdot F_s$ should be 0.7 Hz (classical flange sound) up to 6 Hz (slight whammy effect) or even 20 Hz (mechanistic warble effect).
- sweep depth is given by 2α; α should be selected so that the temporal (i.e., refers to seconds not samples) sweep depth is around a couple of milliseconds.
- delay is given by $\beta \alpha$ and represents the minimum delay reached by the LFO; typically β should be set so that the delay is 1-10 milliseconds; note: human ear will perceive an echo (not flange) if the delay is more than 50-70 milliseconds!

Professor Deepa Kundur (University of Toronto) Audio Special Effects


29 / 83

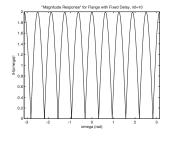
Delay-Based Special Effects Flanging and Chorus

Flanging: Instantaneous "Frequency Response"

Consider fixed delay n_0 and mix = 1:

Delay-Based Special Effects Flanging and Chorus

Audio Special Effects


 spectrum nulls occur when argument of the cosine is an odd multiple of π:

$$\omega rac{n_0}{2} = (2k+1)\pi$$
 or $\omega = rac{2(2k+1)\pi}{n_0}$

for k = 0, 1, 2, ...

Professor Deepa Kundur (University of Toronto)

• If the delay n_0 varies, then so do the spectrum nulls.

Audio Special Effects

Professor Deepa Kundur (University of Toronto)

Delay-Based Special Effects Flanging and Chorus

Flanging: Instantaneous "Frequency Response"

Thus, one can envision flanging as being the result of changing the position of the nulls of the frequency response.

A cautionary note: the flanging system is not LTI therefore, it's frequency response does not fully characterize it, or we may say it has no frequency response!

Thus, this analysis is just a tool to intuitively explain the flange effect.

Audio Special Effects

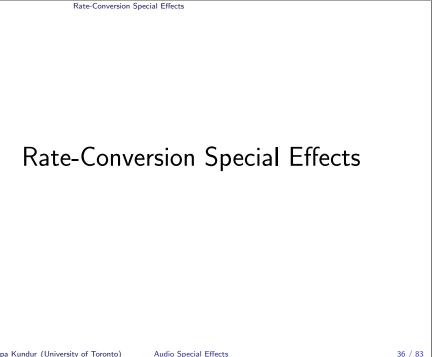
Professor Deepa Kundur (University of Toronto)

33 / 83

Delay-Based Special Effects Flanging and Chorus

Chorus

- A chorus effect sounds likes more than one instrument is playing.
- ► Good examples at:


http://www.youtube.com/watch?v=ZSL1w9UeSgc

From Flange to Chorus

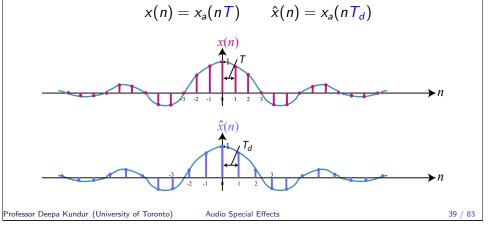
- ► Overall a classic flange has a delay ranging between 1 10 milliseconds.
- ▶ To create a chorus effect, this delay range must be between 30 -50 milliseconds
- ► A delay above 50 milliseconds will be perceived as an echo.

rofessor Deepa Kundur (University of Toronto)

Audio Special Effects

Rate-Conversion Special Effects

- Shifting, stretching and/or expanding spectral information across frequency bands can provide interesting effects especially for voice signals.
- Roughly speaking moving spectral content to lower frequencies adds base making a voice sound more male. Similarly, moving spectral content to higher frequency adds treble making a voice sound more female.
- One way to achieve spectral shifts, stretches and expansions is through sampling rate conversion.


Professor Deepa Kundur (University of Toronto) Audio Special Effects

37 / 83

Rate-Conversion Special Effects

Sampling Rate Conversion

Goal: Given a discrete-time signal x(n) sampled at period T from an underlying continuous-time signal x_a(t), determine a new sequence x̂(n) that is a sampled version of x_a(t) at a different sampling rate T_d.

Sampling Rate Conversion

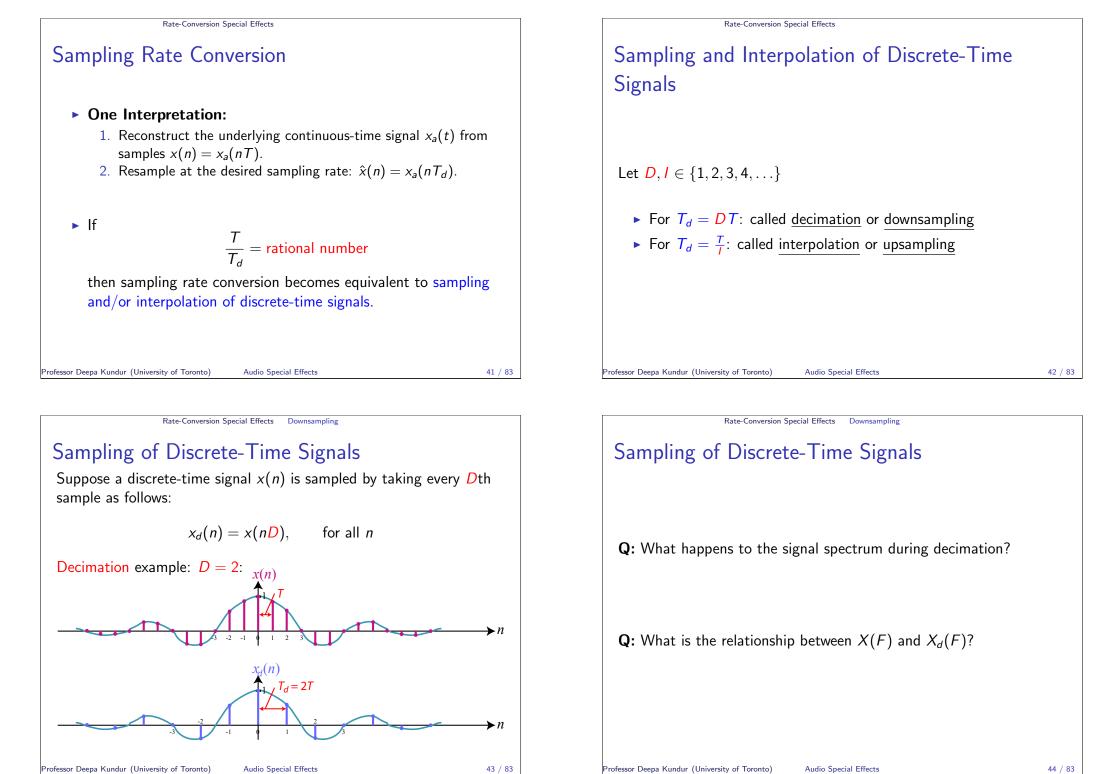
Reference:

Sections 11.2, 11.3 and 11.4 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

rofessor Deepa Kundur (University of Toronto)

Audio Special Effects


Rate-Conversion Special Effects

Sampling Rate Conversion for Audio Effects

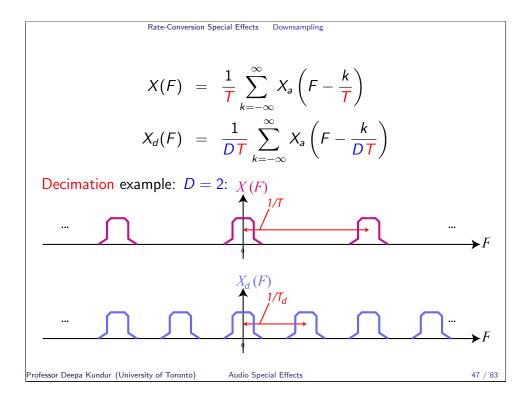
Two fundamental questions for use in audio effects applications:

- What does sampling rate conversion do to the frequency spectrum of a signal?
- How is it best to implement sampling rate conversion?

rofessor Deepa Kundur (University of Toronto) Audio Special Effects

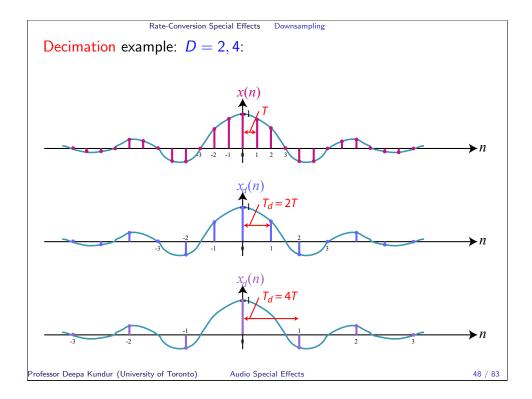
Rate-Conversion Special Effects Downsampling

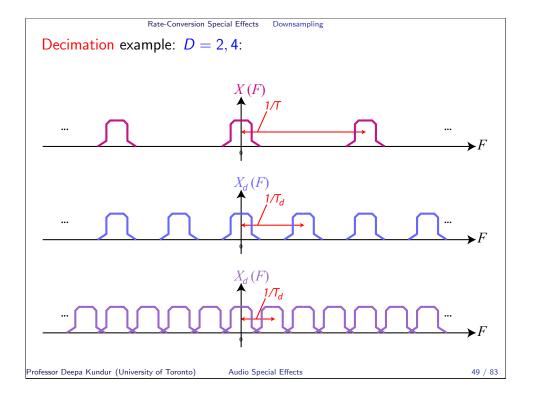
Sampling of Discrete-Time Signals

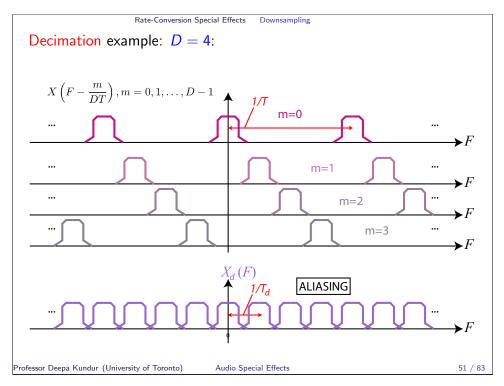

Recall when we sample a continuous-time signal x(t) to produce x(n), we have the following relationships:

$$\begin{aligned} x(n) &= x_a(nT) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(F) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a\left(F - \frac{k}{T}\right) \\ \text{sampling} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \text{periodic extension} \end{aligned}$$

Audio Special Effects


Professor Deepa Kundur (University of Toronto)


45 / 83



Suppose $\begin{aligned} x_d(n) &= x(nD) &= x_a(nD, T) \\ x(n) &= x_a(nT) \end{aligned}$ $\begin{aligned} x(n) &= x_a(nT) \\ X(F) &= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a\left(F - \frac{k}{T}\right) \\ x_d(n) &= x_a(nD, T) \end{aligned}$ $\begin{aligned} X_d(F) &= \frac{1}{DT} \sum_{k=-\infty}^{\infty} X_a\left(F - \frac{k}{DT}\right) \end{aligned}$ Protesor Deeps Kundr (University of Toroto) Auto Section Effects = 26 J and 26 J an

Rate-Conversion Special Effects Downsampling

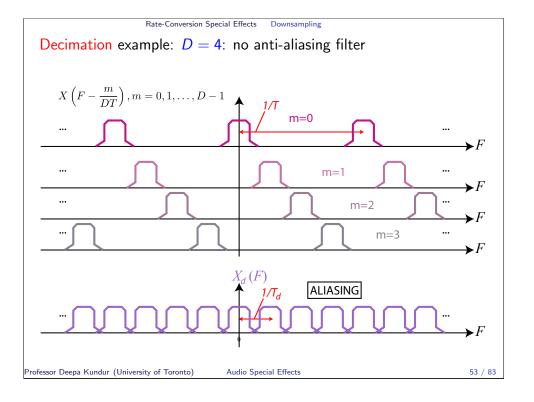
Rate-Conversion Special Effects Downsampling

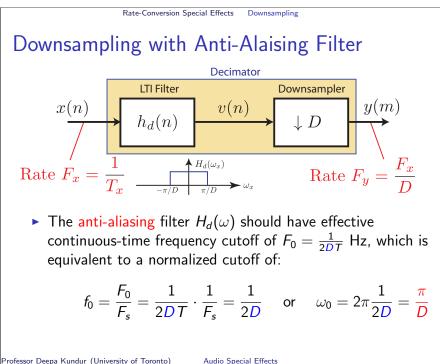
Sampling of Discrete-Time Signals

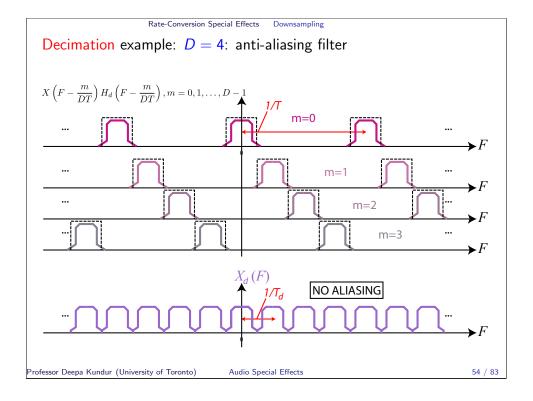
Therefore, from

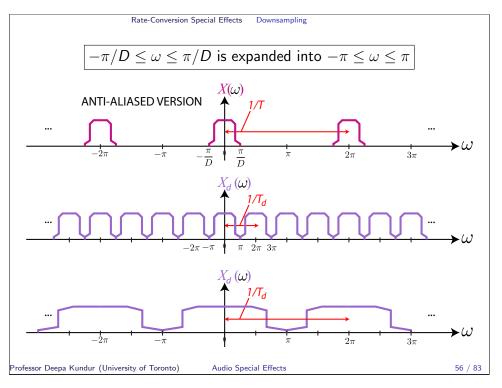
$$X(F) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a \left(F - \frac{k}{T} \right)$$
$$X_d(F) = \frac{1}{DT} \sum_{k=-\infty}^{\infty} X_a \left(F - \frac{k}{DT} \right)$$

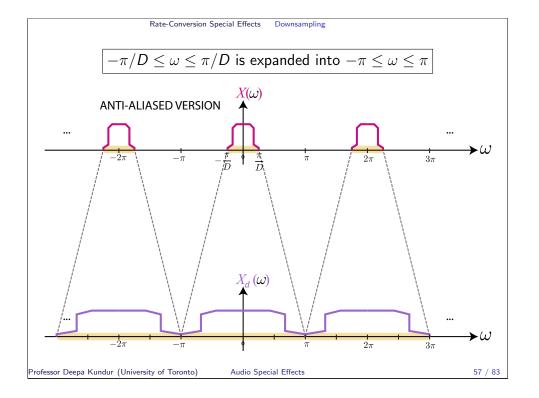
By inspection, we have:

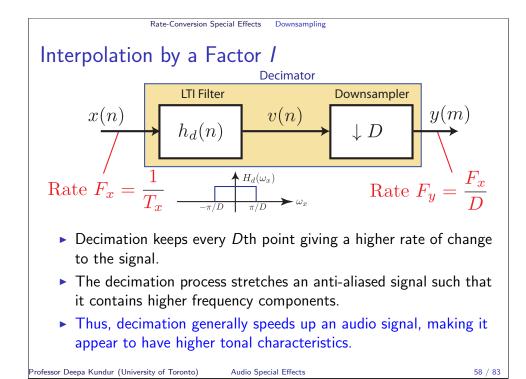

$$X_d(F) = \frac{1}{D} \sum_{m=0}^{D-1} X\left(F - \frac{m}{DT}\right)$$

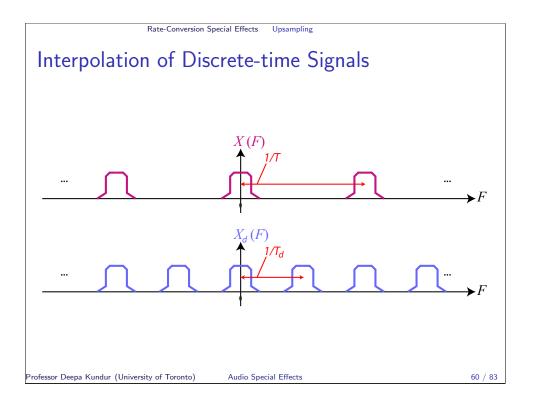

rofessor Deepa Kundur (University of Toronto) Audio Special Effects

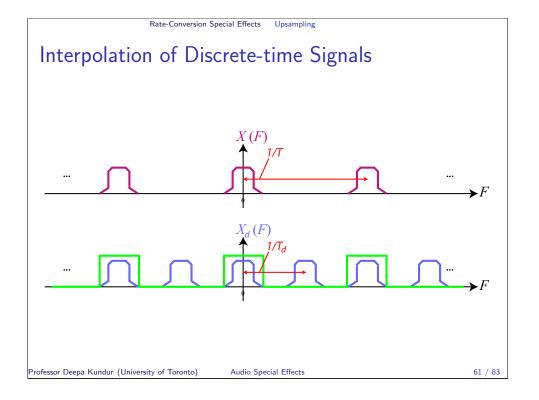

50 / 83


Aliasing from Decimation Thus, $Cts-time Sampling \iff X_a(F) \text{ repeated infinite times} \\ Dst-time Sampling \iff X(F) \text{ repeated finite times}$ To avoid aliasing when decimating via factor D: $Maximum \text{ Frequency } \leq \frac{1}{2DT}$ Thus an anti-aliasing filter is applied prior to decimation.


Professor Deepa Kundur (University of Toronto) Audio Special Effects






Rate-Conversion Special Effects Upsampling Interpolation of Discrete-time Signals $x^{(n)}$ $x^{(n)}$ $x^$

• Interpolation for $T_d = \frac{T}{D}$ is possible if no aliasing exists in the signal to be interpolated.

<u>Note</u>: We will later change D to I to distinguish between the decimation and interpolation factors. We use D here for simplicity as interpolation is being described, in part, as the *reverse process* of decimation.

Rate-Conversion Special Effects Upsampling

Interpolation of Discrete-time Signals

Step 1:
$$x_a(t)$$
 can be reconstructed from $x_d(n)$ as follows

$$x_a(t) = \sum_{m=-\infty}^{\infty} x_d(m) \frac{\sin \frac{\pi}{DT}(t - mDT)}{\frac{\pi}{DT}(t - mDT)}$$

Step 2: Sample $x_a(t)$ to produce x(n):

$$\begin{aligned} x(n) &= x_a(nT) = \sum_{m=-\infty}^{\infty} x_d(m) \frac{\sin \frac{\pi}{DT}(nT - mDT)}{\frac{\pi}{DT}(nT - mDT)} \\ &= \sum_{m=-\infty}^{\infty} x_d(m) \frac{\sin \frac{\pi}{D}(n - mD)}{\frac{\pi}{D}(n - mD)} \end{aligned}$$

Professor Deepa Kundur (University of Toronto)

64 / 83

62 / 83

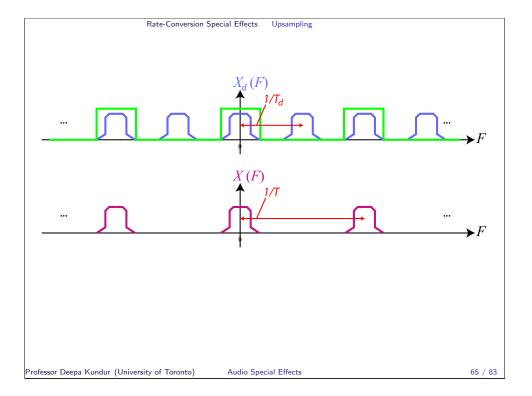
Interpolation of Discrete-time Signals

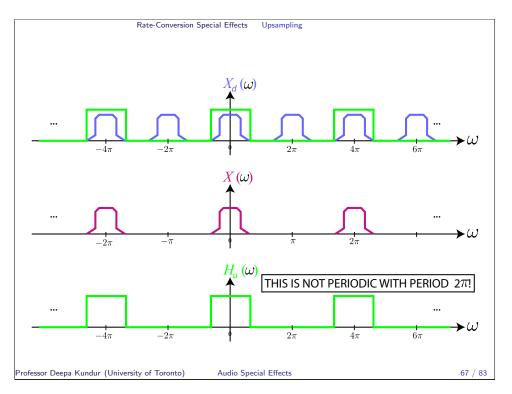
Analysis Strategy:

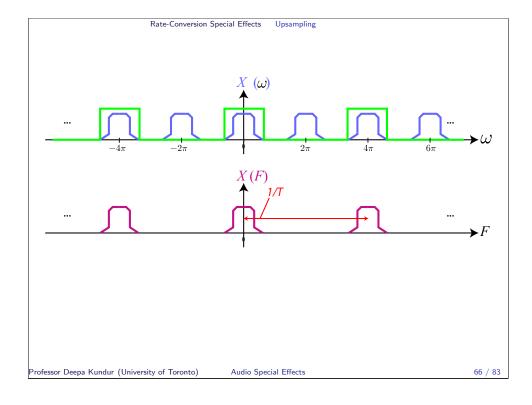
- ▶ We consider the process of discrete-time interpolation; i.e., obtaining x(n) from its decimated version $x_d(n) = x(nD)$.
- ▶ We will assume that no aliasing resulted from the decimation process.
- We will determine a relationship between x(n) and $x_d(n)$ in the following way:
 - 1. Let us mathematically reconstruct $x_a(t)$ from $x_d(n)$ assuming a sampling period of DT.

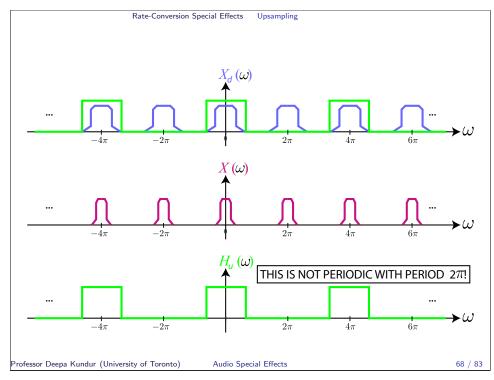
Upsampling

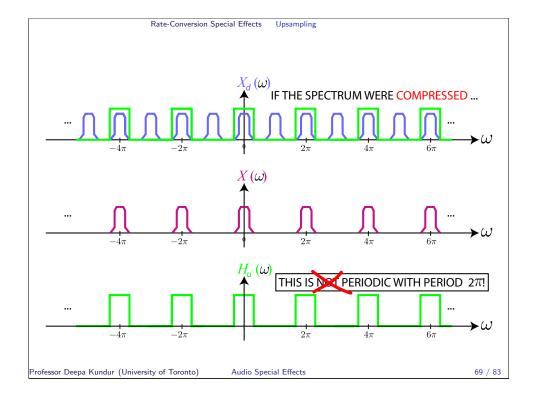
2. Let us then sample $x_a(t)$ with a sampling period of T to construct x(n).

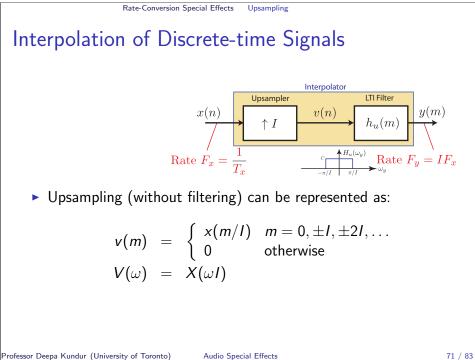

Audio Special Effects rofessor Deepa Kundur (University of Toronto)

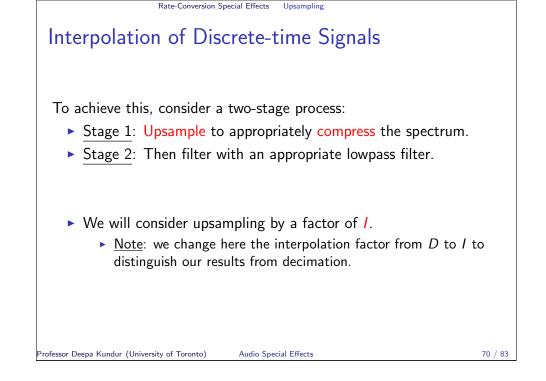

Rate-Conversion Special Effects Upsampling
Interpolation of Discrete-time Signals

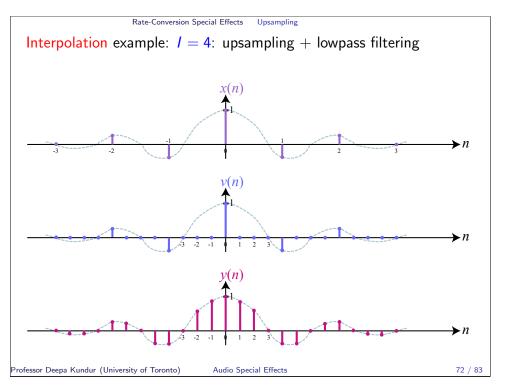

$$x(n) = \sum_{m=-\infty}^{\infty} x_d(m) \left[\frac{\sin \frac{\pi}{D}(n-mD)}{\frac{\pi}{D}(n-mD)} \right]$$

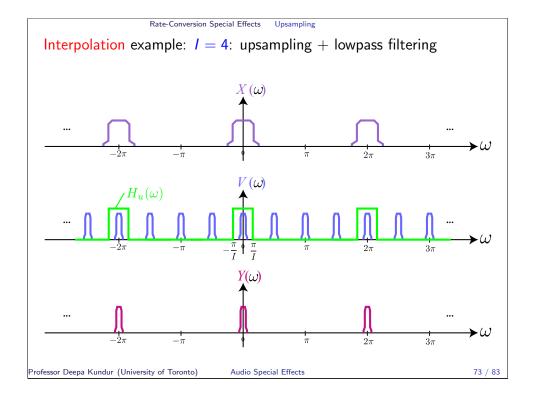

$$= \sum_{m=-\infty}^{\infty} x_d(m) g_{BL}(n-mD)$$
where


$$g_{BL}(n) = D \frac{\sin(\pi/D)n}{\pi n} \quad \xleftarrow{\mathcal{F}} \quad G_{BL}(\omega) = \begin{cases} D & |\omega| \leq \frac{\pi}{D} \\ 0 & \frac{\pi}{D} < |\omega| \leq \pi \end{cases}$$



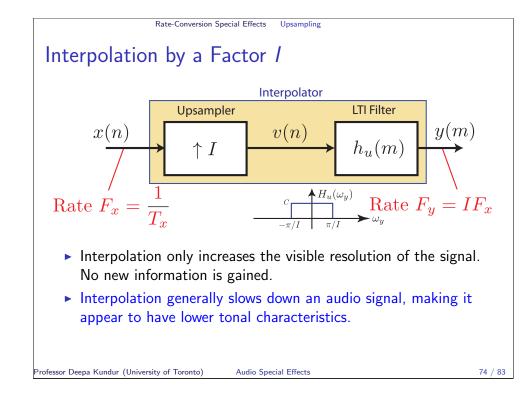


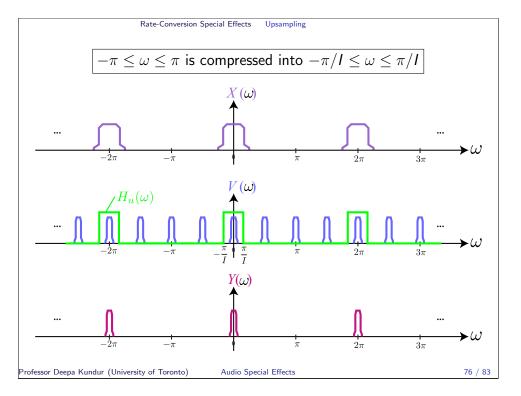


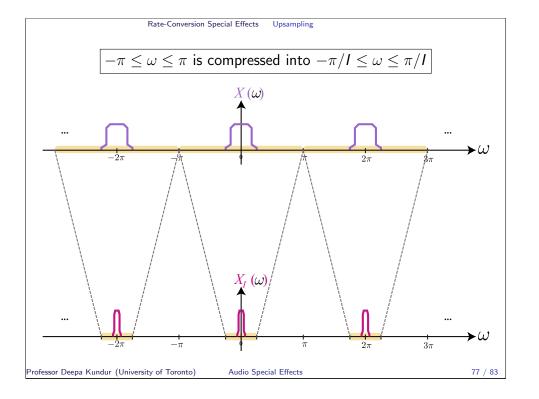


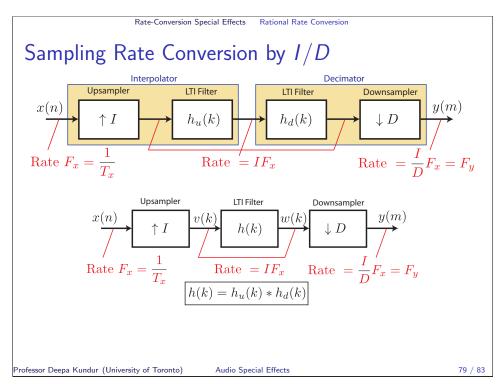
Overall, $V(\omega) = X(\omega I)$ $H_{u}(\omega) = \begin{cases} I & 0 \le |\omega| \le \pi/I \\ 0 & \text{otherwise} \end{cases}$

Rate-Conversion Special Effects


$$Y(\omega) = H_u(\omega)V(\omega) = \begin{cases} IX(\omega I) & 0 \le |\omega| \le \pi/I \\ 0 & \text{otherwise} \end{cases}$$


Upsampling


 $Y(\omega) = \left\{ egin{array}{cc} IX(\omega I) & 0 \leq |\omega| \leq \pi/I \ 0 & ext{otherwise} \end{array}
ight.$


$$-\pi \le \omega \le \pi$$
 is compressed into $-\pi/I \le \omega \le \pi/I$

