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Practical Frequency-Selective Digital Filter Design Practical Considerations in Digital Filter Design

Digital Filter Design

I Desired filter characteristics are specified in the frequency
domain in terms of desired magnitude and phase response of the
filter; i.e., H(ω) is specified.

Passband ripple

Stopband ripple

Passband edge frequency

Stopband edge frequency

Passband edge frequency

Stopband edge frequency

Passband ripple

Passband

Stopband

Transition
band

I Filter design involves determining the coefficients of a causal FIR
or IIR filter that closely approximates the desired frequency
response specifications.
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FIR versus IIR Filters

I FIR filters: normally used when there is a requirement of linear
phase

I FIR filter with the following symmetry is linear phase:

h(n) = ±h(M − 1− n) n = 0, 1, 2, . . . ,M − 1

I IIR filters: normally used when linear phase is not required and
cost effectiveness is needed

I IIR filter has lower sidelobes in the stopband than an FIR having
the same number of parameters

I if some phase distortion is tolerable, an IIR filter has an
implementation with fewer parameters requiring less memory
and lower complexity
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Linear Phase

Q: What is linear phase?

A: The phase is a straight line in the passband of the system.
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Linear Phase

Example: linear phase (all pass system)

I Group delay is given by the negative of the slope of the line
(more on this soon).
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Linear Phase

Example: linear phase (all pass system)

I Phase wrapping may occur, but the phase is still considered to
be linear.
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Linear Phase

Example: linear phase (high pass system)

I Discontinuities at the origin still correspond to a linear phase
system.
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Linear Phase

Example: linear phase (low pass system)

I Linear characteristics only need to pertain to the passband
frequencies only.

Passband
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DTFT Theorems and Properties

Recall,

Property Time Domain Frequency Domain
Notation: x(n) X (ω)

x1(n) X1(ω)
x2(n) X1(ω)

Linearity: a1x1(n) + a2x2(n) a1X1(ω) + a2X2(ω)
Time shifting: x(n − k) e−jωkX (ω)
Time reversal x(−n) X (−ω)
Convolution: x1(n) ∗ x2(n) X1(ω)X2(ω)
Correlation: rx1x2 (l) = x1(l) ∗ x2(−l) Sx1x2 (ω) = X1(ω)X2(−ω)

= X1(ω)X∗
2 (ω) [if x2(n) real]

Wiener-Khintchine: rxx (l) = x(l) ∗ x(−l) Sxx (ω) = |X (ω)|2

among others . . .
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Group Delay

Therefore,

y(n) = x(n − n0︸︷︷︸
group delay

)
F←→ Y (ω) = X (ω)e−jωn0

H(ω) =
Y (ω)

X (ω)
= e−jωn0

∠H(ω) = Φ(ω) = −ωn0 = −ω · group delay

In general (even for nonlinear phase systems),

group delay ≡ −dΦ(ω)

dω
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I Linear phase filters maintain the relative positioning of the
sinusoids in the filter passband.

I This maintains the structure of the signal while removing
unwanted frequency components.

Passband

linear in 
passband

-1 10-2-3 2 3 -1 10-2-3 2 3
n

input output
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Signal Magnitude versus Signal Phase

Q: Why is linear phase important?

Q: What can happen when there is loss of phase information?
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Signal Magnitude versus Signal Phase

A: To maintain the original “structure” of a signal in the passband
frequency range, linear phase (or close to linear phase) is required.
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Linear Phase FIR Filters

I As mentioned previously, FIR filters with the following symmetry
are linear phase:

h(n) = ±h(M − 1− n) n = 0, 1, 2, . . . ,M − 1

I Note that this means that

h(n) = +h(M − 1− n)

for n = 0, 1, 2, . . . ,M − 1, or

h(n) = −h(M − 1− n)

for n = 0, 1, 2, . . . ,M − 1.
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Linear Phase FIR Filters: Example

Q: Show that h(n) = δ(n)− δ(n − 1) is linear phase by determining
the associated phase and group delay.

Note: M = 2 and h(n) = −h(1− n) = −h(M − 1− n) for n = 0, 1.

n

h(n)

1

-1

1

0-2-3-4-5-6-7 2 3 4 5 6 7

-1

For n = 0, h(0) = −h(1− 0) = 1 and n = 1, h(1) = −h(1− 1) = −1.
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Linear Phase FIR Filters: Example

Q: Show that h(n) = δ(n)− δ(n − 1) is linear phase by determining
the associated phase and group delay.

Note: This system corresponds to:

y(n) = x(n) ∗ h(n) = x(n) ∗ [δ(n)− δ(n − 1)]

= x(n) ∗ δ(n)− x(n) ∗ δ(n − 1)

= x(n)− x(n − 1) (first difference system)

first difference ⇔ dst-time derivative ⇒ highpass filter
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Linear Phase FIR Filters: Example

H(ω) =
∞∑

n=−∞

h(n)e−jωn

= 1 · e−jω·0 + (−1) · e−jω·1

= 1− e−jω = e−jω/2
(
e jω/2 − e−jω/2

)
= e−jω/2 · 2j sin(ω/2) = 2je−jω/2 sin(ω/2)
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Linear Phase FIR Filters: Example

Note:

|H(ω)| = |2je−jω/2 sin(ω/2)|
= |2| · |j | · |e−jω/2| · | sin(ω/2)|
= 2 · 1 · 1 · | sin(ω/2)| = 2| sin(ω/2)|

linear in 
passband

2
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Linear Phase FIR Filters: Example

Φ(ω) = ∠2je−jω/2 sin(ω/2)

= ∠2︸︷︷︸
=0

+ ∠j︸︷︷︸
=π/2

+∠e−jω/2︸ ︷︷ ︸
=−ω/2

+ ∠ sin(ω/2)︸ ︷︷ ︸
=

{
0 0 < ω < π
π −π < ω < 0

=

{
π
2
− ω

2
0 < ω < π

3π
2
− ω

2
−2π −π < ω < 0

=

{
π−ω
2

0 < ω < π
−π−ω

2
−π < ω < 0
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Linear Phase FIR Filters: Example

Φ(ω) =

{
π−ω
2

0 < ω < π
−π−ω

2
−π < ω < 0

2
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Linear Phase FIR Filters: Example

linear in 
passband

2

Group Delay:

−dΦ(ω)

dω
=

1

2
− πδ(ω)

=

{
1
2

ω 6= 0
−πδ(ω) ω = 0

=
1

2
= constant

(in passband)
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Linear Phase FIR Filters: Example 2

Q: Show that h(n) = δ(n) + δ(n − 1) is linear phase by determining
the associated phase and group delay.

Note: M = 2 and h(n) = +h(1− n) = +h(M − 1− n) for n = 0, 1.

n

h(n)

1

-1 10-2-3-4-5-6-7 2 3 4 5 6 7

1

For n = 0, h(0) = +h(1− 0) = 1 and n = 1, h(1) = +h(1− 1) = 1.
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Linear Phase FIR Filters: Example 2

Q: Show that h(n) = δ(n) + δ(n − 1) is linear phase by determining
the associated phase and group delay.

Note: This system corresponds to:

y(n) = x(n) ∗ h(n) = x(n) ∗ [δ(n) + δ(n − 1)]

= x(n) ∗ δ(n) + x(n) ∗ δ(n − 1)

= x(n) + x(n − 1) (scaled averaging system)

averager ⇒ dst-time smoother ⇒ lowpass filter
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Linear Phase FIR Filters: Example 2

H(ω) =
∞∑

n=−∞

h(n)e−jωn

= 1 · e−jω·0 + (+1) · e−jω·1

= 1− e−jω = e−jω/2
(
e jω/2 + e−jω/2

)
= e−jω/2 · 2 cos(ω/2) = 2e−jω/2 cos(ω/2)
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Linear Phase FIR Filters: Example 2

Note:

|H(ω)| = |2e−jω/2 cos(ω/2)|
= |2| · |e−jω/2| · | cos(ω/2)|
= 2 · 1 · | cos(ω/2)| = 2| cos(ω/2)|

linear in 
passband

2
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Linear Phase FIR Filters: Example 2

Φ(ω) = ∠2e−jω/2 cos(ω/2)

= ∠2︸︷︷︸
=0

+∠e−jω/2︸ ︷︷ ︸
=−ω/2

+∠ cos(ω/2)︸ ︷︷ ︸
=0

= −ω
2
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Linear Phase FIR Filters: Example 2

Φ(ω) = −ω
2

2
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Linear Phase FIR Filters: Example 2

linear in 
passband

2

Group Delay:

−dΦ(ω)

dω
=

1

2
= constant

(in passband)
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Ideal Filters

An ideal lowpass filter is given by:

H(ω) =

{
1 |ω| ≤ ωc

0 ωc < |ω| ≤ π

The impulse response is given by:

h(n) =

{ ωc

π
n = 0

ωc

π
sin(ωcn)
ωcn

n 6= 0
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Limitations of Practical Filters

I An ideal filter is not causal since h(n) 6= 0 for n < 0.

I From the Paley-Wiener Theorem: for causal LTI systems where
necessarily h(n) = 0 for n < 0, |H(ω)| can be zero only at a
finite set of points in a frequency interval, but not over a finite
band of frequencies.

Can correspond to a
causal �lter

Cannot correspond to a
causal �lter

magnitude response
is zero at �nite points

magnitude response
is zero in a �nite band
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Limitations of Practical Filters

I Rippling occur in the passband and stopband – Why?

I imposing causality is like truncating h(n) so it has no negative
part, which results in Gibbs phenomenon – i.e., ringing/rippling
effect for H(ω)

ringing
F←→ truncation (Gibbs in time-domain)

truncation
F←→ ringing (H(ω) pass/stopband rippling)

I In addition, filters with finite parameters will demonstrate a
measurable transition between passband and stopband.
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Practical Frequency Selective Filters

I Ideal filter characteristics of sharp transitions and flat gains may
not be absolutely necessary for most practical applications.

Passband
Stopband

Sharp
Transition

I Relaxing these conditions provides an opportunity to realize
causal finite parameter filters that approximate ideal filters as
close as we desire.
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Practical Frequency Selective Filters

Passband ripple

Stopband ripple

Passband edge frequency

Stopband edge frequencyPassband

Stopband

Transition
band
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Desired Frequency Response

Given: Hd(ω) (desired frequency response)

Hd(ω) =
∞∑

n=−∞

hd(n)e−jωn

hd(n) =
1

2π

∫ π

−π
Hd(ω)e jωndω

Recall for a digital FIR implementation, hd(n) needs to be finite
duration; say, of length M . Therefore, it is required that hd(n) = 0
for n < 0 and n > M − 1.

In general, hd(n) is infinite duration . . .

Professor Deepa Kundur (University of Toronto)Practical Frequency-Selective Digital Filter Design 40 / 64



Practical Frequency-Selective Digital Filter Design Design of Linear-Phase FIR Filters using Windows

Design of Linear-Phase FIR Filters using Windows

Q: How do we make hd(n) finite duration?

A: windowing . . .

Consider the rectangular window

w(n) =

{
1 n = 0, 1, . . . ,M − 1
0 otherwise

h(n) = hd(n) w(n)

=

{
hd(n) n = 0, 1, . . . ,M − 1
0 otherwise
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Example
Rectangular window, M = 8

-1 10
n

-2-3 2 3

1

h (n)d

-1 0
n

-2-3

1

h(n)

w(n)

-1 0
n

-2-3 1 2 3 6 8754 9 101 2 3 6 8754 9 10

6 87 96 87 9

1

1 2 3 6 87 9 10
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Windowing Distortion
Q: What is the distortion introduced by windowing?

A: Look in the frequency domain . . .

convolution
F←→ multiplication

multiplication
F←→ convolution

hd(n)w(n)
F←→ Hd(ω) ∗W (ω)

h(n) = hd(n)w(n)
F←→ H(ω) =

1

2π

∫ π

−π
Hd(ω) W (ω − ν)︸ ︷︷ ︸

depends on w(n)

dν

W (ω) =
M−1∑
n=0

w(n)e−jωn
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Windowing Distortion

I Convolving Hd(ω) with W (ω) has the effect of smoothing out
the frequency response of the resulting filter.

I For no distortion from windowing, want W (ω) to be close to a
delta function, δ(ω)

I W (ω) is partially characterized by:
I main lobe width (in rad/s)
I peak amplitude of side lobe (in dB)
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Windowing Distortion

Main Lobe (causes smoothing)

Sidelobes (causes ringing e�ect)

width of
main lobe

peak height
of sidelobes

(in dB scale)

I increasing window length generally reduces the width of the
main lobe

I peak of sidelobes is generally independent of M
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Characteristics of Different Windows

Window Main lobe Peak sidelobe
type width (dB)
Rectangular 4π/M -13
Bartlett 8π/M -25
Hanning 8π/M -31
Hamming 8π/M -41
Blackman 12π/M -57

Note:

I the larger the main lobe, the larger the filter transition region

I the larger the peak sidelobe, the higher the degree of ringing in
the pass/stopbands
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Effects of Windowing in Frequency Domain

Transition
band increases
as the main lobe
grows wider

Magnitude of ripples
increases as the height
of the sidelobes increases
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Design of Linear-Phase FIR Filters using Windows

1. Begin with a desired frequency response Hd(ω) that is linear
phase with a delay of (M − 1)/2 units in anticipation of forcing
the filter to be length M .

Example:

Hd(ω) =

{
1 · e−jω(M−1)/2 0 ≤ |ω| ≤ ωc

0 otherwise
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Design of Linear-Phase FIR Filters using Windows

2. The corresponding impulse response is given by:

hd(n) =
1

2π

∫ ωc

−ωc

Hd(ω)e jωndω

Example:

hd(n) =
1

2π

∫ ωc

−ωc

e jω(n−(M−1)/2)dω

=


sinωc(n−M−1

2 )
π(n−M−1

2 )
n 6= M−1

2

ωc

π
n = M−1

2

(if M is odd)

sinωc(n−M−1
2 )

π(n−M−1
2 )

(if M is even)
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Design of Linear-Phase FIR Filters using Windows

3. Multiply hd(n) with a window of length M .

h(n) = hd(n) · w(n)

Example: rectangular window

w(n) =

{
1 n = 0, 1, . . . ,M − 1
0 otherwise

h(n) = hd(n) · w(n)

=


sinωc(n−M−1

2 )
π(n−M−1

2 )
0 ≤ n ≤ M − 1, n 6= M−1

2

ωc

π
n = M−1

2
and M is odd

0 otherwise
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Can we get better filter performance?

I Yes. Use IIR filters.

I IIR digital filters can be designed by converting a well-known
analog filter into a digital one.

I For the same number of parameters, better compromises
between ringing and transition band width can be found.
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IIR Filter Design via Bilinear Transformation
I bilinear transformation: mapping from the s-plane to the z-plane

I conformal mapping (mapping that preserves local angles among
curves) that transforms the vertical axis of the s-plane into the
unit circle in the z-plane
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IIR Filter Design via Bilinear Transformation
I bilinear transformation: mapping from the s-plane to the z-plane

I conformal mapping (mapping that preserves local angles among
curves) that transforms the vertical axis of the s-plane into the
unit circle in the z-plane

I all points in the left half plane (LHP) of s are mapped into
corresponding points inside the unit circle in the z-plane

I all points in the right half plane (RHP) of s are mapped into
corresponding points outside the unit circle in the z-plane
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IIR Filter Design via Bilinear Transformation
I bilinear transformation: mapping from the s-plane to the z-plane
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Bilinear Transformation: Example

Ha(s) =
Y (s)

X (s)
=

b

s + a

Y (s)(s + a) = bX (s)

sY (s) + aY (s) = bX (s)

dy(t)

dt
+ ay(t) = bx(t)

Note: we will use dy(t)
dt

and y ′(t) interchangeably.
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Bilinear Transformation: Example

Consider:

y(t) =

∫ t

t0

y ′(τ)dτ︸ ︷︷ ︸
≡I

+y(t0)

Let t = nT and t0 = nT − T and using the trapezoidal
approximation of the integral:

y(nT ) =
T

2
[y ′(nT ) + y ′(nT − T )]︸ ︷︷ ︸

we will show this ≈ I

+y(nT − T )
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t

Area under curve = I =

∫ nT

nT−T
y ′(τ)dτ

Professor Deepa Kundur (University of Toronto)Practical Frequency-Selective Digital Filter Design 57 / 64

Practical Frequency-Selective Digital Filter Design Design of IIR Filters from Analog Filters using Bilinear Transf

t

area under curve 
area of triangle + area of rectangle

I =

∫ nT

nT−T
y ′(τ)dτ ≈ brect × hrect +

btri × htri
2

= T · y ′(nT ) +
T · (y ′(nT − T )− y ′(nT ))

2

=
T

2

[
y ′(nT ) + y ′(nT − T )

]
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Bilinear Transformation: Example

Therefore we indeed have:

y(nT ) =
T

2
[y ′(nT ) + y ′(nT − T )] + y(nT − T ).

Plugging t = nT , nT − T into y ′(t) + ay(t) = bx(t) gives:

y(nT ) =
T

2

 y ′(nT )︸ ︷︷ ︸
−ay(nT )+bx(nT )

+ y ′(nT − T )︸ ︷︷ ︸
−ay(nT−T )+bx(nT−T )

+ y(nT − T )

and letting x(n) ≡ x(nT ) and y(n) ≡ y(nT ), we obtain . . .
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Bilinear Transformation: Example

y(n) =
T

2
[−ay(n) + bx(n)− ay(n − 1) + b(n − 1)] + y(n − 1)

(
1 +

aT

2

)
y(n)−

(
1− aT

2

)
y(n − 1) =

bT

2
[x(n) + x(n − 1)](

1 +
aT

2

)
Y (z)−

(
1− aT

2

)
z−1Y (z) =

bT

2

[
X (z) + z−1X (z)

]

∴ H(z) =
Y (z)

X (z)
=

b

2
T

(
1−z−1

1+z−1

)
+ a

Professor Deepa Kundur (University of Toronto)Practical Frequency-Selective Digital Filter Design 60 / 64



Practical Frequency-Selective Digital Filter Design Design of IIR Filters from Analog Filters using Bilinear Transf

Bilinear Transformation: Example

Compare:

H(z) =
b

2
T

(
1−z−1

1+z−1

)
+ a

to:

Ha(s) =
b

s + a

Therefore, the bilinear transformation mapping is:

s =
2

T

(
1− z−1

1 + z−1

)
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Bilinear Transformation

The mapping s = 2
T

(
1−z−1

1+z−1

)
will work for any order of differential

equation to convert Ha(s) to H(z).

General Methodology:

1. Start with Ha(s) expression.

2. Determine T through the problem specifications.

3. H(z) = Ha

(
2
T

(
1−z−1

1+z−1

))
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Bilinear Transformation

For s = jΩ and z = e jω:

5 10 15-5-10-15

The entire −∞ < Ω <∞ axis is mapped to −π < ω < π. There is a
huge compression of the frequency response at large Ω-values.
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Bilinear Transformation

For s = jΩ and z = e jω:

�
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