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2.13 

The input-output equation of a relaxed LTI system is known to be  
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To prove that this system is BIBO stable we must prove that a bounded input implies a 

bounded output. Supposing that ( ) kMkx x ∀∞<≤ , , we can write: 
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It is now obvious that the output ( )my is bounded if and only if the term ( )�
∞
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nh  is also 

bounded i.e., ( ) ∞<≤�
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2.23 

The z-transform of the step response ( )ns  is  
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The z-transform of the output ( )ny  of a LTI system with impulse response ( )nh  becomes: 
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Taking now the inverse z-transform leads to the final result: 

  ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )nxnsnxnsnxnsnsnxnhny *1**1* −−=−−==    

 

 

NB. Another way to solve this would be to express ( )nh  in terms of the unit step function: 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )11** −−=−−== nsnsnununhnnhnh δ  

And then we would directly get: 
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3.6 

The hint given is very useful here as ( ) ( ) ( ) ( ) ( )nxkxkxnyny
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3.18 

The z-transform of ( )nx  is defined as ( ){ } ( ) ( )�
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(d) The z-transform of the signal ( )nxk defined as ( )
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By injecting
k

n
m = , the z-transform becomes: 
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3.23 

The Taylor series of the exponential function is known to be: 
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Therefore we can write: 
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When taking the inverse z-transform the signal ( )nx  is obtained: 
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3.40 

The system is given by ( ) ( ) ( )1
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We also have: 
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(a) The system function ( )zH  of the desired system can be directly expressed as 
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We solve this equality with the following two equations: 
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And finally we obtain the system function desired: 
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The impulse response ( )nh  is directly found by computing the z-transform of the 

previous system function ( )zH : 
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(b) From (a) we have 
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Taking the inverse z-transform of the right-hand side of this equality leads to the desired 

characterizing difference equation: 
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(c) A realization of the desired system could be: 

 



 
 

 

(d) We know that if the poles of the system are inside the unit circle i.e., are less or 

equal to 1 in absolute value, then the system is stable. The poles for the developed system 

are 
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and are indeed inside the unit circle. Therefore the system is stable. 

 

 

 

   

 

 




