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7.1

 x n  is a real valued sequence. The first five points of its 8-point DFT are:

 {0.25, 0.125 - j·0.3018, 0, 0.125 - j·0.0518, 0}

To compute the 3 remaining points, we can use the following property for real valued 
sequences:

     *X N k X k X k     (page 468 in the book)

In our case N=8 and therefore we have the equations for    5 , 6X X  and  7X :
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Hence the complete 8-point DFT of  x n is:

       {0.25, 0.125 - j·0.3018, 0, 0.125 - j·0.0518, 0, 0.125 + j·0.0518, 0, 0.125 + j·0.3018}.



7.3

  ,0 1,X k k N    is the N-point DFT of  x n , 0 1n N   . We define the DFT 

�  X k  as:
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From this definition, we can represent �  X k  as the product of  X k  with the ideal 

lowpass filter  H k  where:
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Hence this leads to the conclusion that   x n , the inverse N-point DFT of �  X k , is a 

lowpass version of  x n .



7.7

 X k  is the N-point DFT of the sequence  x n . We want to determine the N-point 

DFTs of the two sequences derived from  x n :
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The DFT of   cx n ,  cX k , is given by:
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Developing the cosine in the previous equality we get:
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From the properties of the DFT, this expression simply becomes:

     0 0mod mod
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Operating the same way for the sequence  sx n  we get the corresponding DFT  sX k :
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7.13 a)

 px n  is a periodic sequence with fundamental period N.  We have the N-point DFT 

of  px n :    1
DFT

p Nx n X k   and the 3N-point DFT of  px n :    33
DFT

p Nx n X k .

We want to find an expression for  3X k  as a function of  1X k . Let’s first define kn
NW
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. We can then write:
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If we develop the previous expression for  3X k  we get:
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Finally the desired expression is obtained:
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7.23
We have to compute the N-point DFT of 4 signals:

a)    x n n

b)    0 0, 0x n n n n N   

c)   , 0 1nx n a n N   

h)   1,
0 1

0,

n even
x n n N

n even


   


a)    x n n

The N-point DFT of    x n n is defined as:
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Therefore:

     , 0 1 1, 0 1DFT
Nx n n n N X k k N        

b)    0 0, 0x n n n n N   

The N-point DFT of    0 0, 0x n n n n N     is defined as:

   

 

1

0
0

0
0

0

2
exp

2 ( )
exp

2 ( )
exp

N

n

kn
X k n n j

N

k n
n j

N

k n
j

N












    
 

   
 

   
 



 Therefore:
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c)   , 0 1nx n a n N   

The N-point DFT of   , 0 1nx n a n N     is defined as:
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 Therefore:
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 is defined as:
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If we assume N odd, then N-1 is even and we have:
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i.e.,
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 Therefore:
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7.28

We are given a discrete-time signal   ,

0,

na n L
x n

n L

  


  where 0.95a   and 10L  . 

(a) Here we need to compute and plot  x n . Obviously from the given values of a and L , 

we have:
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The corresponding plot can be found below.
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    which in our case becomes:
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The corresponding plot at , 0,1,..., 1,
100

k
k N

     can be found below.
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(c) We need to compute kc  for 30N    with kc  defined as:

1 2
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For 30N  , kc  becomes:

1 2
, 0,1,..., 29

30 30kc X k k
   

 

Using (b), we can derive the desired expression for kc  for 30N  :
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The corresponding plot can be found below.
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Replacing kc  by its expanded expression in the previous equality we get:
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Therefore   x n is the inverse 30-point DFT of the DFT of  x n  . The corresponding

plot can be found below.
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For 30N  , �  1x n  becomes:
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From the corresponding plot below, we can see that �  1x n  is a periodic/repeated version 

of   x n .
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(f) Here we just have to replace N by 15 instead of 30 in the previously obtained equation. 
This is trivial so just the new plots are being shown.
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8.1

To show that 
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 is an Nth root of unity we just have to show 
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. This is fairly obvious since:
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  is an Nth root of unity.

Now if we consider the sum used in the orthogonality property, we can rewrite that sum 
as:
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If k l , the terms in the sum represent the N equally spaced unity roots on the unit circle 
which add to zero.

Mathematical proof if k l :
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If  k l , the sum adds up to N: 

A plot of the unitary roots for N=4 is shown below.
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8.3

 x n  is a real valued N-point sequence with 2 .N   The N-point DFT of  x n  is 
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  which , N being even, can be rewritten as:
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 'X k  corresponds to the odd harmonics of  X k , i.e.,    ' 2 1X k X k   and 

therefore:
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We can simplify further this expression using the fact that 2 1
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Finally we get the odd harmonics of  X k  using the following formulae:
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8.4

We want to develop a method to compute a 24-point DFT from three 8-point DFTs.

Let  Y k  denote the 24-point DFT and      1 2 3, ,Y k Y k Y k  denote the three 8-point 

DFTs. We then have:
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We can rewrite this sum as three sums that would take values n among the sets {0, 3, 
6, …, 21}, {1, 4, 7, …, 22} and {2, 5, 8, …, 23} respectively.

       

     

   

21 22 23

0,3,6,... 1,4,7,... 2,5,8,...

7 7 7
2

0. 0. 0.3 3 3

7 7

0. 0.3 3

8 8

3 3 1 3 2

3 3 1 3

kn kn kn
N N N

n n n

kn kn k kn k
N N N N N

n n n

kn kn k
N N N

n n

pt DFT pt DFT

Y k y n W y n W y n W

y n W y n W W y n W W

y n W y n W W y n

  

  

 

 

  

      

 
      

 

  

  

 
 

 

     

7
2

0. 3

8

2
1 2 3

2 kn k
N N

n

pt DFT

k k
N N

W W

Y k Y k W Y k W





 
 

 

    




With three 8-point DFTs,      1 2 3, ,Y k Y k Y k , we can create a 24-point DFT  Y k

using the following formulae:
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8.7

We want to derive the radix-2 decimation in time using the steps 8.1.16 to 8.1.18 in the 
book.

Page 519 in the book already gives some guidelines on how to proceed such as selecting 

2

N
M   and 2L  .

1) The first step to follow (8.1.16) makes us compute the M-point DFTs  ,F l q  defined 

as:
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Therefore we have two 
2

N
-point DFTs to compute for 0l   and 1l  .
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2) The second step (8.1.17) consists in computing a new rectangular array  ,G l q

defined as:

   , , , 0 1; 0 1lq
NG l q W F l q l L q M       

Therefore we have two rectangular arrays to compute for 0l   and 1l  .
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3) The third and last step (8.1.18) consists in computing the L-point DFT  ,X p q

defined as:
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Therefore we have two L-point DFTs to compute for 0p   and 1p  .
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 0,F q  and  1,F q  here are the same as  1F k  and  2F k  in equation 8.1.26 of the 

book and therefore we get the desired radix-2 decimation in time:
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