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7.1

x(n) is a real valued sequence. The first five points of its 8-point DFT are:
{0.25, 0.125 - j-0.3018, 0, 0.125 - j-0.0518, 0}

To compute the 3 remaining points, we can use the following property for real valued

sequences:
X(N-k)=X"(k)=X(-k) (page 468 in the book)

In our case N=8 and therefore we have the equations for X (5), X (6) and X (7):

X (5)=X(8-3)=X"(3)
=(0.125— j-0.0518)'
=0.125+ j-0.0518

X (7)=X(8-1)=X"(1)
=(0.125— j-0.3018)'
=0.125+ j-0.3018

Hence the complete 8-point DFT of x(n)is:

{0.25, 0.125 - :0.3018, 0, 0.125 - j-0.0518, 0, 0.125 + j:0.0518, 0, 0.125 + j-0.3018}.



7.3

X (k),0<k <N -1, is the N-point DFT of x(n), 0<n<N -1. We define the DFT
&(k) as:

From this definition, we can represent X (k) as the product of X (k) with the ideal

lowpass filter H (k) where:

b2 Jb 0<ksk, N-k <k<N-1
(k)= 0, k,<k<N-—k,

Hence this leads to the conclusion that x(n), the inverse N-point DFT of X (k). is a

lowpass version of x(n).



1.7

X (k) is the N-point DFT of the sequence x(n). We want to determine the N-point
DFTs of the two sequences derived from x(n):

X, (n)= x(n)-cos(znkonj, 0<n<N-1

N-1
X, ()= SEx(0)-cos[ 2260 ) exg - 22|

Developing the cosine in the previous equality we get:

o el o 5

)

From the properties of the DFT, this expression simply becomes:

mod N modN

Xc(k)=%~x(k—ko) +%-X(k+k0)

Operating the same way for the sequence x, (n) we get the corresponding DFT X, (k):

1 1
XS(k):_'X (k_ko)modN -5 X (k+k0)

2j 2j

mod N



7.13a)

X, (n) is a periodic sequence with fundamental period N. We have the N-point DFT
ofx, (n): x, (n)<«—=x— X, (k) and the 3N-point DFT of x,(n): x, (n)«—5y— X,(k).

We want to find an expression for X, (k) as a function of X, (k). Let’s first define Wy"

as W" = exp(—j ZﬂTknj . We can then write:

If we develop the previous expression for X, (k) we get:

N-1 2N-1 3N-1

X5 (k)= x( W;N“+z MW+ Y. x(n)Wye
n=0 n=2N
N-1 L N-1
= x(n)WN3 +zx k(n+N) ZX k(n+2N)
n=0 n=0
N-1 k, N4 N—
=D (MW + D x(n)Wy' \N3 +zx n)W. W3
n=0 n=0
N-1
= 2 x(n)[ 1+, + Wi Jw
n=0
N-1 K,
= [1+W +W32k ] X(n)WN3
n=0

Finally the desired expression is obtained:

X4 (k) =[1+W; +w32k]-x1(§j



7.23
We have to compute the N-point DFT of 4 signals:

a) x(n)=4(n)
b)x(n)=6(n-n,), 0<n, <N
c)x(n)=a", 0<n<N-1

1, n even

h)x(n):{ 0<n<N-1

0, n even

a) x(n)=4(n)
The N-point DFT of x(n)=4(n) is defined as:

X (k)= 5(n)exp(—j 27;]knj

n=0

- 5(O)exp(—j —ZEE(O))

=1

Therefore:

x(n)=6(n), 0<sn<N-1 «21— X(k)=1 0<k<N-1

b)x(n)=6(n-n,), 0<ny<N
The N-point DFT of x(n)=6(n-n,), 0<n, <N is defined as:

Therefore:



x(n)=6(n-ny), 0<ny<N «21— (k):exp(—jznl\ll(n"}, 0<k<N-1
c)x(n)=a", 0<n<N-1
The N-point DFT of x(n) =a", 0<n<N-1isdefined as:
N-1
X(k)=za”-exp(—12”knj
pry N
=0 N
1- a-exp(—jznkj N
B N
B 27k
l-a-exp|—]——
p( N j
B 1-a"
_1—aoexp(—'2ﬁkj
) N
Therefore:
n DFT 1-a"
x(n)=a", 0<sn<N-1 «=> X(k)= PTAY. 0<k<N-1
. LT
l-a-exp| —]——
o)
1, n even
h)x(n):{ 0<n<N-1
0, n even
1, n even . .
The N-point DFT of x(n) :{ 0<n< N -1 is defined as:
0, n even

N -

X(k)zZX(n)-exp(—jZETknj

n=

LN



If we assume N odd, then N-1 is even and we have:

X (k):1+exp(_jWJ+exp(_jWJ#.A-GXP(—jWJ

N-1
—— terms

N+1

o K

1—-exp(—j %j

Therefore:

x(n):{l' NN cnaN-1 «2 > X (k)= 0<k<N-1
0, n even



7.28

a, In|<L

where a=0.95 and L =10.
0, |n>L

We are given a discrete-time signal x(n) :{

(a) Here we need to compute and plot x(n) . Obviously from the given values of aand L,
we have:

«(n)= 0.95", |n[<10
1o, |n[>10

The corresponding plot can be found below.
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(b) We need to show that X (@)=x(0)+2->_x(n)-cos(wn). By definition, we have
n=1
X(w)= i x(n)-exp(—jwn) which in our case becomes:

N=—o0



w)= i al -exp(—jawn)

N=—o0

L
= > a"-exp(-jen)

n=-L

—Za -exp(—jon)+a’-exp(- jo(0)) Za -exp(—joon)

n=-L
L
:Za“-exp(jwn)+1+2a”-exp(—ja)n) when n—-n in 1st sum
n=1 n=1
L
=1+ a"-[exp( jon)+exp(-jon)]
n=1

=1+ia“ [ 2-cos(an)]
0)+2- Z -cos

The corresponding plot at @ :%, k=0,1,...,N =1, can be found below.

20
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(c) We need to compute ¢, for N =30 with c, defined as:

¢, :ix(z—”kj, k=01 N-1
NN



For N =30, c, becomes:

, :ix(z—”kj, k=0,1..,29
30" (30

Using (b), we can derive the desired expression for ¢, for N =30:

L

C, :S—lo{x(O)JrZ-ZX(n)-cos(i—gknﬂ, k=0,1..,29

n=1

1 L n 27
_%{1+2-Z(0.95) -cos(%knﬂ, k=0,1,..,29

n=1

The corresponding plot can be found below.

N=30
0.6 \

25 30

Replacing c, by its expanded expression in the previous equality we get:



:£-ZX(W)-exp(jwn)

k=0

Therefore x(n) is the inverse 30-point DFT of the DFT of x(n) . The corresponding
plot can be found below.
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(e) We need to compute Ql(n) for N =30 with Ql(n) defined as:

o0

x(n)=> x(n-IN), —L<n<L

|=—0

For N =30, X (n) becomes:

X (n)= i x(n—=30l), —L<n<L

|=—0



From the corresponding plot below, we can see that Ql(n) is a periodic/repeated version
of x(n).
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(F) Here we just have to replace N by 15 instead of 30 in the previously obtained equation.
This is trivial so just the new plots are being shown.
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8.1

To show that exp( j ZLNkj 0<k <N -1 is an Nth root of unity we just have to show

that X" =1 for X = exp( ZT 0<k —1. This is fairly obvious since:

o
{ (ZTH =exp( j27k)=1.

Hence, exp(jT], 0<k <N -1 isan Nth root of unity.

Now if we consider the sum used in the orthogonality property, we can rewrite that sum
as:

S ( 27zknj ( annj N ( (k—l)nJ

Zexp exp| |

n= n=0

If k =1, the terms in the sum represent the N equally spaced unity roots on the unit circle
which add to zero.

Mathematical proof if k #1:

Nlexp(j 2ﬁ(k|)nJl{exp(J‘2ﬂ(§I)HN

n=0




If k=1, the sum adds up to N:

n=0

A plot of the unitary roots for N=4 is shown below.




8.3

x(n) is a real valued N-point sequence with N =2". The N-point DFT of x(n) is

N-1

X (k)= Zx(n)-exp(—jZETknj which , N being even, can be rewritten as:

n=0

¢ n & - n . 27rkn
X (k)= x(mWwg" + > x(n)wy", where W" =exp v
N
=2

n

2 ) 2 k(n+N)
=D XMW+ x(n+—jWN 2
n=0 n=0

X' (k) corresponds to the odd harmonics of X (k), i.e., X (k)= X(2k+1) and
therefore:

N
X‘(k): X(n)Whﬁzm)”jLX(nJr%jW(Zk l)( 2)}

N

>
I
o

N
=> I x(n)-Wy W + x(n+%)-W£ W W2 }

L 2 2

z
LR

>
Il
o

becauseW,>" =W,".
2

N
We can simplify further this expression using the fact that W2 =-1.:
: N-1 N
X (k)=>_| x(n)-Wy -W" - x(n+?j-wg WY
2 2
Finally we get the odd harmonics of X (k) using the following formulae:

X (k)= X (2k+1)= f{x(n)—x(n +%H-WN” Wy

n=0 2



8.4

We want to develop a method to compute a 24-point DFT from three 8-point DFTSs.

Let Y (k) denote the 24-point DFT and Y, (k), Y, (k), Y, (k) denote the three 8-point
DFTs. We then have:

N-1

— y Wkn _Zy Wkn

n=0

We can rewrite this sum as three sums that would take values n among the sets {0, 3,
6,...,21} {1,4,7,...,22}and {2, 5, 8, ..., 23} respectively.

Y(K)= D y(mWE+ Y y(mwem+ > y(n)wy

7
:Zy (3n) Wk“+2y 3n+1)Wk” W+ y 3n+2)Wkn W2

3 n=0. 3 n=0. 3

7 7 7
=>y(3n) wM[Zy (3n+1) wk”} Wk+[2y(3n+2)wﬁ”]wﬁk
n=0. 3

n=0 3 3

8-pt DFT 8-pt DFT 8-pt DFT

=Y, (K)+Y, (k)-Wy +Yy(k)-W,*

With three 8-point DFTs, Y, (k), Y,(k), Y;(k), we can create a 24-point DFT Y (k)
using the following formulae:

Y (K) =Y, (k)+Y, (k)-Wy +Yy(k)-W,*



8.7

We want to derive the radix-2 decimation in time using the steps 8.1.16 to 8.1.18 in the
book.

Page 519 in the book already gives some guidelines on how to proceed such as selecting

M =% and L=2.

1) The first step to follow (8.1.16) makes us compute the M-point DFTs F (I,q) defined
as:

<
N

F(l,g)=) x(I,m)wy?, 0<I<L-1 0<q<M-1

0

3
I

Therefore we have two %-point DFTs to compute for | =0 and | =1.

L}
M-1
F(0.q)= Y x(0,mW = 3 x(0,m)wW,™
m=0 m=0 2

2) The second step (8.1.17) consists in computing a new rectangular array G (I,q)
defined as:

G(1,q)=W2-F(l,q), 0<I<L-L 0<q<M-1

Therefore we have two rectangular arrays to compute for | =0 and | =1.

G(0,9)=W.\""-F(0,q)=F(0,q)

Na

G(Lq)=W - F(1q)=w" Zz X (L, m)W

m=0 2



3) The third and last step (8.1.18) consists in computing the L-point DFT X ( p,q)
defined as:

X(p.d)=)G(l,q)-WP", 0<p<L-1 0<q<M-1

-
LN

1l
o

Therefore we have two L-point DFTs to compute for p=0 and p=1.

L-1 L-1

X (0,9)=>.G(1,q)- W =

1= 1=0

G(l.a)

=G(0,9)+G(Lq)

=F(0,9)+W,-F(Lq)

-1 L-1

X(L9)=>G(l,q)-W® =

-

G(l,q)-w/

1=0

Il
o

=G(0,9)-W, +G(1,q)-W,
=G(0,0)-G(Lq) as W, =-1
=F(0,q)-W{-F(Lq)

F(0,q) and F(L,q) here are the same as F, (k) and F, (k) in equation 8.1.26 of the
book and therefore we get the desired radix-2 decimation in time:

X (O’q): X (k): Fl(k)""WNk : Fz(k)

X(Lq)=X [k +%}= F (k) -Wy - F, (k)





