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11.1

(a)
Let’s assume that the original spectrum  aX F  has a triangular shape with amplitude L (see figure). 

 X F , being a sampled version of  aX F  for 2500SF Hz , it becomes a repetition of that triangular 

signal every Fs Hz and its amplitude is changed to SA L F  (see figure).
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We change the spectrum from  X F  to  X   with the relation 
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     (see figure).

The convolution with the signal  cos 0.8  gives us the spectrum for  W  :
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The ideal lowpass filter spectrum is given by:
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Therefore  V   consists of only one triangular iteration (the one centered at 0  ) after filtering  W 
(see figure).

Finally,  V   is decimated by a factor D=10 to obtain  'Y  . The spectrum of  'Y   is still centered at  

0   but the decimation makes its bandwidth 10 times larger and its amplitude 10 times smaller than 
that of  V   (see figure).
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The figures below show each spectrum. It is to be noted that  X   and  W   are both 2π-periodic.





(b) If we sample  ax t  with period 4T ms  which correspond to sampling at the rate 

1
250

0.004SF Hz  , we obtain the spectrum of the sampled signal  X F :
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But we have to consider the scaling of the frequency axis defined by 
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After comparison with the result obtain for  'Y   in question (a), we can see that except for a scaling 

factor of 2,  'Y   and  'X   , obtained after sampling  ax t  with period 4T ms ,  are the same:
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11.2

We are given the signal     , 1nx n a u n a  .

(a) The spectrum of the given signal is by definition      exp
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Therefore the answer :
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(b) After using a decimator that reduces the rate by a factor 2 on  x n , we generate  y n .  y n ’s 

spectrum,  Y  , can be obtained using the relation 11.2.15 in the textbook which states that after a 

decimation of factor D we would have:
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Applied to our case for D=2, this equation gives:
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And therefore:
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(c) Lets define the signal  v n  as    2v n x n . The Fourier transform of  v n  is given by:
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NB. The book solution manual has the following solution (which somehow seems wrong to me):
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11.3

a) From the expression given for  y n  we can write the even and odd samples of  y n  as:
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A suitable DSP implementation would therefore be the following:

b) Lets compute the spectrum of  y n ,  yY  , from  xX   where 2y x  :
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We are given the signal with spectrum   1, 0 0.2
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. In order to get the corresponding 

output spectrum  yY  , lets first change the variable x  into 2 y  to get  2 yX  :

  1, 0 2 0.2
2

0,

y
yX

otherwise

 


   


  1, 0 0.1
2

0,

y
yX

otherwise

 


    


And finally we obtain the output spectrum by multiply the obtained spectrum above by  1 cos y :
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c) Applying the same method as before to the signal with spectrum   1, 0.7 0.9
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11.4

We are given the signal  x n  with Fourier transform   1
0,
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a) Let  'x n  be the downsampled sequence, then we have: (see figure)
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As long as '
mD  ,   X   (hence  x n ) can be recovered from  ' 'X    using an interpolator with a 

factor D :
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b) Let  x a  be the real analog signal from which samples  x n  were taken at rate xF .  There exists a 

signal, say  ' 'ax t , such that  ' 'a a
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From sampling theory, we know that  ' 'x t  can be reconstructed from its samples  ''x n as long as it is 
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Actually the bandwidth of the reconstruction filter may be made as small as '
m , or as large as '2
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So  x n can be reconstructed using a 2-step process made of a decimator followed by a lowpass filter:



11.5

From relation 11.4.11 in the book we get for D=2 and 
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Yes, we can retrieve the original signal x(n) from its sampled version simply by using first an upsampler 
with factor I=2 followed by an ideal lowpass filter defined as:
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(b) By definition we have:      expd d
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There is no information loss in that case because the decimated sample rate is more than twice the 
bandlimit of the original signal.




