

Discrete-Time Signals and Systems

Reference:

Sections 11.5 and 11.9 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

$$H(z) = \sum_{i=0}^{M-1} z^{-i} P_i(z^M)$$

M-component polyphase decomposition

$$\underbrace{P_i(z^M) = \sum_{n=-\infty}^{\infty} h(nM+i) z^{-nM} = \sum_{n=-\infty}^{\infty} p_i(n) z^{-nM}}_{nM}$$

Polyphase components of H(z)

Observe:

$$p_i(n) = h(nM + i), \quad i = 0, 1, 2, \dots, M - 1$$

which is a downsampled and delayed ("phase shifted") version of the original impulse response.

2 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Recall, for a downsampler:

$$v(n) = u(nD) \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad V(z) = \frac{1}{D} \sum_{i=0}^{D-1} U(z^{1/D} W_D^i)$$

where $W_D = e^{-j2\pi/D}$.

$$v(n) = u(nD) \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad V(z) = \frac{1}{D} \sum_{i=0}^{D-1} U\left(\frac{\omega - 2\pi i}{D}\right)$$

11.5 Implementation of Sampling Rate Conversion
Noble Identities

$$Rate F_x = \frac{1}{T_x}$$

$$Rate F_x = \frac{1}{T_x}$$

$$Rate F_y = \frac{1}{T_x}$$

11 / 34

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III

Noble Identities

It is possible to interchange the operation of LTI filtering and downsampling or upsampling if we properly modify the system function of the filter.

Polyphase Structures of Decimation Filters

Consider

Consider a polyphase implementation with M = 3. See \bullet Figure 11.5.9 of text. Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Decimation Filters

- Use of the Noble identity allows <u>reduction</u> of number of multiplications and additions, since filtering is performed at a lower rate.
- It is more convenient to implement the polyphase decimator using a <u>commutator model</u>.
 See • Figure 11.5.10 of text.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III

17 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Interpolation Filters

- Use of the Noble identity allows <u>reduction</u> of number of multiplications and additions, since filtering is performed at a lower rate.
- It is more convenient to implement the polyphase decimator using a <u>commutator model</u>.
 See • Figure 11.5.13 of text .

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Interpolation Filters

Consider

Consider a transpose polyphase implementation with M = 3. See Figure 11.5.12 of text.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III

18 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Phase Shifter

- Phase shifter: system that delays a signal x(n) by a fraction of a sample.
- Consider a delay that is a rational fraction of a sampling interval.
- Example: $\frac{2}{5}T_{\chi}$ delay

Dr. Deepa Kundur (University of Toronto). Multirate Digital Signal Processing: 11.9 Applications of Multirate Signal Processing

Subband Coding of Speech Signals Goal: efficiently represent speech signals in digital form. Characteristic: most speech energy is contained in lower frequencies. Idea: encode higher-frequency bands with fewer bits/sample than lower-frequency bands. bits/sample is related to the amplitude quantization level lower number of bits/sample implies greater degree of amplitude quantization

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing $x_a |n|$ Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 28 / 34

26 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Coding

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Coding

▶ larger Δ results in $x_q(n)$ that requires fewer bits/sample to represent.

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing Multirate Implementation of Subband Coder Recall, for a downsampler and upsampler:

