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Chapter 13: Adaptive Filtering

Discrete-Time Signals and Systems

Reference:

Sections 13.1 and 13.2 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Chapter 13: Adaptive Filtering

Adaptive Filters

I filters with adjustable
coefficients

I incorporate algorithms
that allow the filter
coefficients to adapt to
signal statistics

Filter with
adjustable
coe�cients

Adaptive
algorithm

APPLICATION-SPECIFIC
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Chapter 13: Adaptive Filtering

Adaptive Filters

I used when statistical characteristics of the signal to be filtered
are either unknown a priori or are slowly time-variant

I two main aspects:

I form of filter (FIR vs. IIR / direct-form vs. lattice-form);
determines what the filter coefficients represent.

I criterion for optimizing the adjustable filter parameters;
determines how the filter coefficients are adapted.

I criterion
I must provide meaningful measure of filter performance
I must result in a practically realizable algorithm
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System Identification or System Modeling

I Goal: identify an unknown (possibly time-varying) system called
a plant

I Model: the plant can be represented as a FIR filter with M
adjustable coefficients; see Figure 13.1.1 of text .
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I The following signals are involved in the filter update process:

I x(n): input to the plant and FIR filter
I y(n): output from the plant
I ŷ(n): output from the FIR filter

ŷ(n) =
M−1∑
k=0

h(k)x(n − k)

I e(n) = y(n)− ŷ(n): error sequence used for filter coefficient
update

See Figure 13.1.2 of text .
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I Assume our signals are observed for n = 0, 1, 2, . . . ,N .

I Consider the following minimization criterion:

EM =
N∑

n=0

e2(n) =
N∑

n=0

[y(n)− ŷ(n)]2

=
N∑

n=0

[
y(n)−

M−1∑
k=0

h(k)x(n − k)

]2
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I Least squares criterion (set of linear equations for determining
filter coefficients):

M−1∑
k=0

h(k)rxx(l − k) = ryx(l)

for l = 0, 1, 2, . . . ,M − 1.
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M−1∑
k=0

h(k)rxx(l − k) = ryx(l) for l = 0, 1, 2, . . . ,M − 1

I M unknowns: h(0), h(1), h(2), . . . , h(M − 1)
I M equations:

M−1∑
k=0

h(k)rxx(0− k) = ryx(0) Eq. (1)

M−1∑
k=0

h(k)rxx(1− k) = ryx(1) Eq. (2)

...
M−1∑
k=0

h(k)rxx(M − 1− k) = ryx(M − 1) Eq. (M)
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Time-Average Autocorrelation/Cross-correlation

I rxx(n): time-average autocorrelation sequence of x(n)

I ryx(n): time-average crosscorrelation sequence between y(n) and
x(n)
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EM =
N∑

n=0

[
y(n)−

M−1∑
k=0

h(k)x(n − k)

]2

∂EM
∂h(l)

=
N∑

n=0

2

[
y(n)−

M−1∑
k=0

h(k)x(n − k)

]
· (−1) · x(n − l)

= −2
N∑

n=0

[
y(n)x(n − l)−

M−1∑
k=0

h(k)x(n − k)x(n − l)

]

= 2
M−1∑
k=0

h(k)
∑
n

x(n − k)x(n − l)︸ ︷︷ ︸
≡N rxx (l−k)

−2
∑
n

y(n)x(n − l)︸ ︷︷ ︸
≡N ryx (l)
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ASIDE:

For an observation length of N samples, the time-average
crosscorrelation sequence between a(n) and b(n) is:

rab(l) ≡ 1

N

∑
n

a(n)b(n − l)

rab(l − k) =
1

N

∑
n

a(n)b(n − (l − k)) let n′ = n + k

=
1

N

∑
n′

a(n′ − k)b(n′ − l)
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∂EM
∂h(l)

= 2
M−1∑
k=0

h(k)
∑
n

x(n − k)x(n − l)︸ ︷︷ ︸
≡N rxx (l−k)

−2
∑
n

y(n)x(n − l)︸ ︷︷ ︸
≡N ryx (l)

= 2N
M−1∑
k=0

h(k)rxx(l − k)− 2Nryx(l)

To determine extrema, set ∂EM
∂h(l)

= 0,

6 2 6 N
M−1∑
k=0

h(k)rxx(l − k)− 6 2 6 Nryx(l) = 0

∑M−1
k=0 h(k)rxx(l − k) = ryx(l)
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Q: Is the resulting extrema, a minimum or maximum?
A: Let’s look at the second derivative:

∂EM
∂h(l)

= 2
M−1∑
k=0

h(k)
∑
n

x(n − k)x(n − l)− 2
∑
n

y(n)x(n − l)

= 2
∑
k 6=l

h(k)
∑
n

x(n − k)x(n − l) +

2h(l)
∑
n

x(n − l)x(n − l)− 2
∑
n

y(n)x(n − l)

∂2EM
∂h2(l)

= 0 + 2
∑
n

x2(n − l)− 0 = 2
∑
n

x2(n − l) > 0

MINIMA DETERMINED!
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System Identification or System Modeling

Therefore, the solution to:

M−1∑
k=0

h(k)rxx(l − k) = ryx(l)

minimizes a least squares criterion.

I If the plant is time-varying, then the FIR filter must continue to
adapt such that is continues to model the time-varying system.

I This adaptation is governed by an algorithm . . .

See Figure 13.1.2 of text .
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Chapter 13: Adaptive Filtering 13.2 Adaptive Direct-Form FIR Filters – The LMS Algorithm

The LMS Algorithm: Background

I LMS = Least Mean Squares

I There is a common framework in all adaptive filtering
applications. The least squares criterion leads to:

M−1∑
k=0

h(k)rxx(l − k) = rdx(l+D)

for l = 0, 1, 2, . . . ,M − 1.

I Depending on the application D may or may not be zero.
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The LMS Algorithm: Background
I Let us model x(n) (input) and d(n) (desired response) as

random sequences.

I Assuming x(n) and d(n) are stationary and ergodic (time
avarage = statistical average), rxx(n) and rdx(n) represent
estimates of the:

I true statistical autocorrelation, γxx(n) ≈ rxx(n)
I true statistical crosscorrelation, γdx(n) ≈ rdx(n)

I We consider the true FIR filter coefficients to fulfill:

M−1∑
k=0

h̃(k)γxx(l − k) = γdx(l+D)

for l = 0, 1, 2, . . . ,M − 1.
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The LMS Algorithm: Background

∑M−1
k=0 h(k)rxx(l − k) = rdx(l)

I The coefficients h(n) represent estimates of the true coefficients
h̃(n).

I Two challenges:

1. Quality of the FIR coefficient estimate depends on the length of
the data record N available.

I The estimate is statistically noisy.
I Larger N better.

2. The underlying random sequence x(n) is usually nonstationary,
so the statistical correlations may vary with time.

I The estimate is chasing a moving target.
I Smaller N better.
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I Let us assume x(n) is possibly complex-valued and consists of
samples from a stationary random process with autocorrelation
and crosscorrelation with d(n):

γxx(m) = E [x(n)x∗(n −m)], γdx(m) = E [d(n)x∗(n −m)]

I Analogous to our previous analysis,

d̂(n) =
M−1∑
k=0

h(k)x(n − k)

e(n) = d(n)− d̂(n) = d(n)−
M−1∑
k=0

h(k)x(n − k)

EM = E [|e(n)|2] MEAN -SQUARE ERROR
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EM = E [|e(n)|2]

= E

∣∣∣∣∣d(n)−
M−1∑
k=0

h(k)x(n − k)

∣∣∣∣∣
2


= E

(d(n)−
M−1∑
k=0

h(k)x(n − k)

)(
d(n)−

M−1∑
l=0

h(l)x(n − l)

)∗
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ASIDE:

The magnitude squared for the difference of complex numbers can be
represented as follows for a, b, c ∈ C where c = a − b:

|c |2 = c · c∗

= (a − b) · (a − b)∗ = (a − b) · (a∗ − b∗)

= a · a∗ − (a∗ · b + a · b∗) + b · b∗

= |a|2 − 2Re{a · b∗}+ |b|2

Note:
a∗ · b + a · b∗ = a∗ · b︸ ︷︷ ︸

≡d

+(a∗ · b)∗ = d + d∗ = 2Re{d} = 2Re{a · b∗}
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EM = E [|e(n)|2]

= E

∣∣∣∣∣d(n)−
M−1∑
k=0

h(k)x(n − k)

∣∣∣∣∣
2


= E

(d(n)−
M−1∑
k=0

h(k)x(n − k)

)(
d(n)−

M−1∑
l=0

h(l)x(n − l)

)∗
= E

|d(n)|2 − 2Re

d(n)

(
M−1∑
l=0

h(l)x(n − l)

)∗
+

M−1∑
k=0

M−1∑
l=0

h∗(l)h(k)x∗(n − l)x(n − k)

]

= E [|d(n)|2]︸ ︷︷ ︸
=γdd (0)

−2Re


M−1∑
l=0

h∗(l)E [d(n)x∗(n − l)]︸ ︷︷ ︸
=γdx (l)


+

M−1∑
k=0

M−1∑
l=0

h∗(l)h(k)E [x∗(n − l)x(n − k)]︸ ︷︷ ︸
=γxx (l−k)
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EM = γdd(0)− 2Re

{
M−1∑
l=0

h∗(l)γdx(l)

}
+

M−1∑
k=0

M−1∑
l=0

h∗(l)h(k)γxx(l − k)

= σ2
d − 2Re

{
M−1∑
l=0

h∗(l)γdx(l)

}
+

M−1∑
k=0

M−1∑
l=0

h∗(l)h(k)γxx(l − k)

Recall for the real and deterministic case, we considered:

EM =
N∑

n=0

[
d(n)−

M−1∑
k=0

h(k)x(n − k)

]2

= Nrdd(0)− 2N
M−1∑
l=0

h(l)rdx(l) + N
M−1∑
k=0

M−1∑
l=0

h(l)h(k)rxx(l − k)
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Recall, the solution for the real and deterministic case is:

M−1∑
k=0

h(k)rxx(l − k) = rdx(l)

for l = 0, 1, . . . ,M − 1.
Similarly, for the more general case, we have:

M−1∑
k=0

h(k)γxx(l − k) = γdx(l)

for l = 0, 1, . . . ,M − 1.

I Latter equation is called the Wiener-Hopf equation.

I The filter coefficients h(k) that solve the Wiener-Hopf equation

represent the Wiener filter .
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M−1∑
k=0

h(k)rxx(l − k) = rdx(l) (1)

M−1∑
k=0

h(k)γxx(l − k) = γdx(l) (2)

I Equation (2) makes use of the actual statistical autocorrelation and
crosscorrelation to determine the filter coefficients.

I yield optimum (Wiener) filter coefficients in the MSE sense

I Equation (1) makes use of estimates for the autocorrelation and
crosscorrelation to determine the filter coefficients.

I yield estimates of optimum filter coefficients �
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