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Chapter 13: Adaptive Filtering
Adaptive Filters
. . . APPLICATION-SPECIFIC
» filters with adjustable
coefficients
» incorporate algorithms
that allow the filter Filter with
- adjustable
coefficients to adapt to coefficients
signal statistics ﬁ
Adaptive
algorithm
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Discrete-Time Signals and Systems

Reference:
Sections 13.1 and 13.2 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Adaptive Filters

» used when statistical characteristics of the signal to be filtered
are either unknown a priori or are slowly time-variant

» two main aspects:
» form of filter (FIR vs. IR / direct-form vs. lattice-form);
determines what the filter coefficients represent.

» criterion for optimizing the adjustable filter parameters;
determines how the filter coefficients are adapted.

> criterion

» must provide meaningful measure of filter performance
» must result in a practically realizable algorithm
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System Identification or System Modeling

» Goal: identify an unknown (possibly time-varying) system called
a plant

» Model: the plant can be represented as a FIR filter with M
adjustable coefficients; see
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» The following signals are involved in the filter update process:

» x(n): input to the plant and FIR filter
» y(n): output from the plant
» §(n): output from the FIR filter

M—

§(n) =" h(k)x(n— k)

k=0

[y

» e(n) = y(n) — §(n): error sequence used for filter coefficient
update

See
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» Assume our signals are observed for n =0,1,2,... N.

» Consider the following minimization criterion:

Ew = Y &)= ly(n)—yn)

= 3 |y = X hkx(n — k)
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» Least squares criterion (set of linear equations for determining
filter coefficients):

<

-1

h(k)ro(l — k) = (1)

=
Il

0

for 1 =0,1,2,...,M—1.
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M—1
h(k)r(l — k) = rx(l) for 1 =0,1,2,... . M—1
k=0
» M unknowns: h(0), h(1), h(2),..., h(M — 1)
» M equations:
M—-1
h(k)re(0 = k) = nx(0) Eq. (1)
k=0
M—-1
h(k)re(1—k) = rx(1) Eq. (2)
k=0
M-1
h(k) (M —1—k) = rx(M-1) Eq. (M)
k=0
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Time-Average Autocorrelation/Cross-correlation

» rw(n): time-average autocorrelation sequence of x(n)

» r,(n): time-average crosscorrelation sequence between y(n) and

x(n)
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Eu = Z[y(n)— 3 h(k)x(n—k)]
ghi(“l”) = ;2 [y(n)— 3 h(k)x(n—k)] (=1)-x(n—1)
= —2Z[y(n)x(n—l)— - h(k)x(n—k)x(n—/)]
Y h(k) > x(n—k)x(n—=1) =23 y(n)x(n—1)
[T 7 S —
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ASIDE:

For an observation length of N samples, the time-average
crosscorrelation sequence between a(n) and b(n) is:

1
m Z a(n)b(n— 1)

%Za(n)b(n_ (I —k)) letn=n+k

I’ab(/)

rab(/ — k) =

1 / /
= N;a(n — k)b(n' = 1)
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0Em
o - 2 3 h(k) Zn:x(n — K)x(n—1)—=2 zn:y(n)x(n — )
=N r::(/—k) EN‘:}/X(/)
M-1
= 2N Y h(k)re(l = k) — 2Nr, (1)
k=0
To determine extrema, set g,f(";’) =0,
M-1
2 NS k)l — k) = 2 Niu(l) =0
k=0
M (K)ol — k) = (1) |
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Q: Is the resulting extrema, a minimum or maximum?
A: Let's look at the second derivative:

Em
o - 22 Z — K)x(n—1) —2Zy x(n—1)
= 22 Z —k)x(n— 1)+

Py

2h(l)z (n—Nx(n—1) —ZZy x(n—1)

325/\4 2
o) 0+2Zx (n—1) 0—22,1:x(n—/)>0

MINIMA DETERMINED!
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System Identification or System Modeling

Therefore, the solution to:

<

h(k)ro(l — k) = (1)

i

minimizes a least squares criterion.

» If the plant is time-varying, then the FIR filter must continue to
adapt such that is continues to model the time-varying system.

» This adaptation is governed by an algorithm . ..

See
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The LMS Algorithm: Background

» LMS = Least Mean Squares
» There is a common framework in all adaptive filtering
applications. The least squares criterion leads to:

M—1
h(k)ro(l — k) = rax(14+D)
k=0

for |=0,1,2,...,M—1.

» Depending on the application D may or may not be zero.
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The LMS Algorithm: Background

» Let us model x(n) (input) and d(n) (desired response) as
random sequences.

» Assuming x(n) and d(n) are stationary and ergodic (time
avarage = statistical average), r(n) and ry(n) represent
estimates of the:

» true statistical autocorrelation, vxx(n) & r(n)
» true statistical crosscorrelation, vygx(n) & rax(n)

» We consider the true FIR filter coefficients to fulfill:

M—-1
> h(k) sl = k) = Ya(1+D)
k=0
for | =0,1,2,...,M—1.
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The LMS Algorithm: Background

Zyzz)l h(k)rxx(/ - k) - rdx(/)

» The coefficients h(n) represent estimates of the true coefficients
h(n).
» Two challenges:
1. Quality of the FIR coefficient estimate depends on the length of
the data record N available.
> The estimate is statistically noisy.
» Larger N better.
2. The underlying random sequence x(n) is usually nonstationary,
so the statistical correlations may vary with time.
» The estimate is chasing a moving target.
» Smaller N better.
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» Let us assume x(n) is possibly complex-valued and consists of
samples from a stationary random process with autocorrelation
and crosscorrelation with d(n):

Yo (m) = E[x(n)x"(n = m)], 7a(m) = E[d(n)x"(n — m)]

» Analogous to our previous analysis,

d(n) = z_: h(k)x(n — k)
e(n) = d(n)—d(n)=d(n)— z_: h(k)x(n — k)
Ew = E[le(n)|’]  MEAN -SQGARE ERROR
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Ew = Elle(n)]

M—1 2

= E |:d(n) = > h(k)x(n— k) }
k=0
M—1 M—1 *

= E |:<d(n) = > h(k)x(n— k)> (d(n) = > h(x(n— /)) }
k=0 1=0
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ASIDE:

The magnitude squared for the difference of complex numbers can be
represented as follows for a, b, c € C where ¢ = a — b:

Chapter 13: Adaptive Filtering 13.2 Adaptive Direct-Form FIR Filters — The LMS Algorithm

Em = Elle(n)]
[ M 1
d(n) — }
= E <d(n) xn—k)>< (n) — Zh(l n—l):|

M—1

= E |d(n)22Re{d(n)< hl)x(nl)> }
=0
—1

= E

<

—1

i

+

(]

h*(Nh(k)x*(n— Nx(n— k):|

x>
Il
o

1=0

P

(]

—  E[ld(n)?]~2Re{ S h*(1) E[d(n)x*(n — 1)
— —

~124(0) ° (1)
M—-1M-1
+>° h*(1)h(k) E[x*(n — Ix(n — k)]
k=0 /=0
=7 (1—k)
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lc = c-c
= (a=b)-(a—-b)"=(a—b)-(a" - b")
= a-a"—(a"-b+a-b")+b-b"
= |al* = 2Re{a- b} + |bJ?
Note'
-b+a-b*=a"-b+(a"-b)* =d+ d* =2Re{d} = 2Re{a- b*}
=d
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M—1 M—-1M-1
Em = 744(0) — 2Re { > h*(/)wx(/)} + 0> (DKl = k)
/=0 k=0 /=0
M—1 M—-1M-1
= 0g—2Re { doh (/)vdx(/)} + h* (1) h(K) o (I = k)
1=0 k=0 =0

v = Y [d(n) —

" kT/IO—l M—-1M-1
= Nrgg(0) = 2N > h(Nrax(D) + N Y > h(1)h(k)re(l — k)
1=0 k=0 [=0
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Recall, the solution for the real and deterministic case is:
M-1

h(k)ro(I — k) = rax(l)
k=0

for/=0,1,...,M—1.
Similarly, for the more general case, we have:

M—

,_.

h ’Yxx /_ k) = ’de(/)
k=0

for [ =0,1,...,M—1.

» Latter equation is called the Wiener-Hopf equation.

> The filter coefficients h(k) that solve the Wiener-Hopf equation

represent the | Wiener filter |.
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M—-1

h(k)rxx(lfk) = rdx(/) (1)
k=0
M—-1

h(k)yxx(/_k) = deX(/) (2)
k=0

» Equation (2) makes use of the actual statistical autocorrelation and
crosscorrelation to determine the filter coefficients.

» yield optimum (Wiener) filter coefficients in the MSE sense

» Equation (1) makes use of estimates for the autocorrelation and
crosscorrelation to determine the filter coefficients.

» vyield estimates of optimum filter coefficients ]
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