

Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

$$\delta(n) = \begin{cases} 1, & \text{for } n = 0\\ 0, & \text{for } n \neq 0 \end{cases}$$

2. unit step signal:

$$u(n) = \begin{cases} 1, & \text{for } n \ge 0\\ 0, & \text{for } n < 0 \end{cases}$$

3. unit ramp signal:

$$u_r(n) = \left\{ egin{array}{cc} n, & ext{for } n \geq 0 \ 0, & ext{for } n < 0 \end{array}
ight.$$

Note:

$$\begin{aligned} \delta(n) &= u(n) - u(n-1) = u_r(n+1) - 2u_r(n) + u_r(n-1) \\ u(n) &= u_r(n+1) - u_r(n) \end{aligned}$$

Discrete-Time Signals and Systems

Reference:

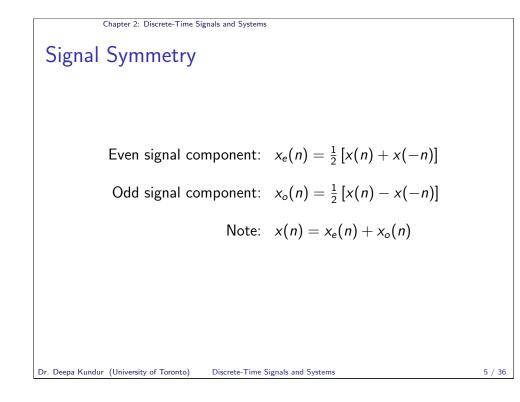
Sections 2.1 - 2.5 of

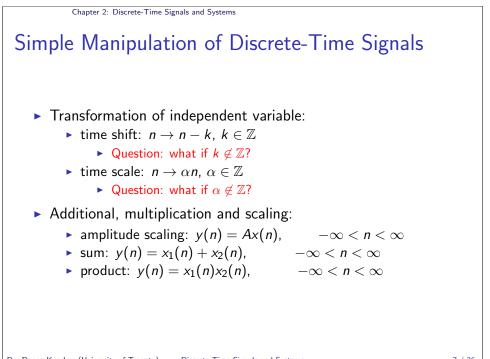
John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

Dr. Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

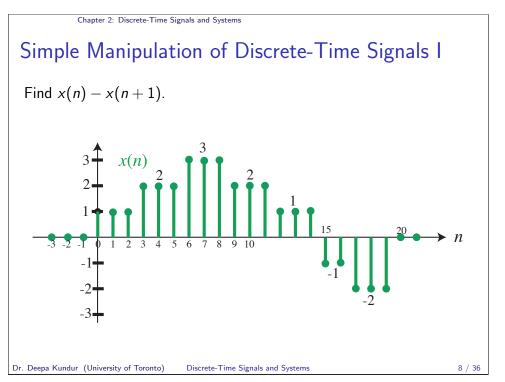
Chapter 2: Discrete-Time Signals and Systems Signal Symmetry Even signal: x(-n) = x(n)Odd signal: x(-n) = -x(n) $x_{n}^{(n)}$ $x_{n}^{(n)}$ Discret-Time Signals and Systems $x_{n}^{(n)}$ $x_{n}^{(n)}$

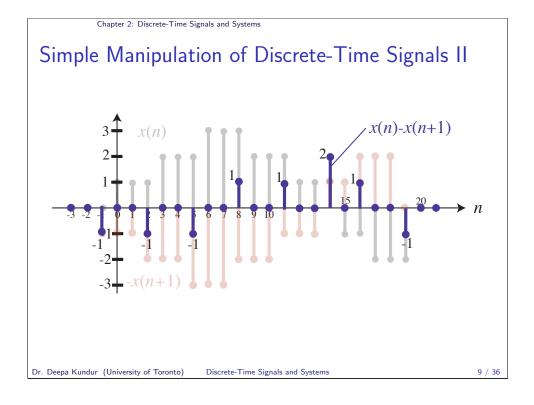
2 / 36

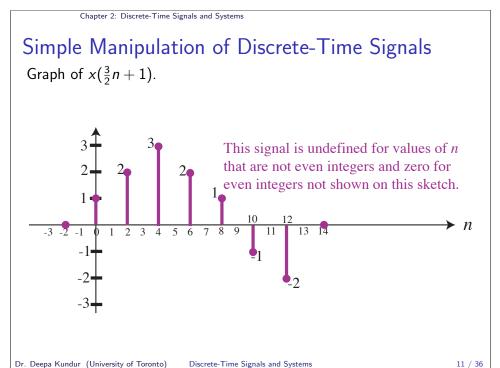










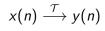


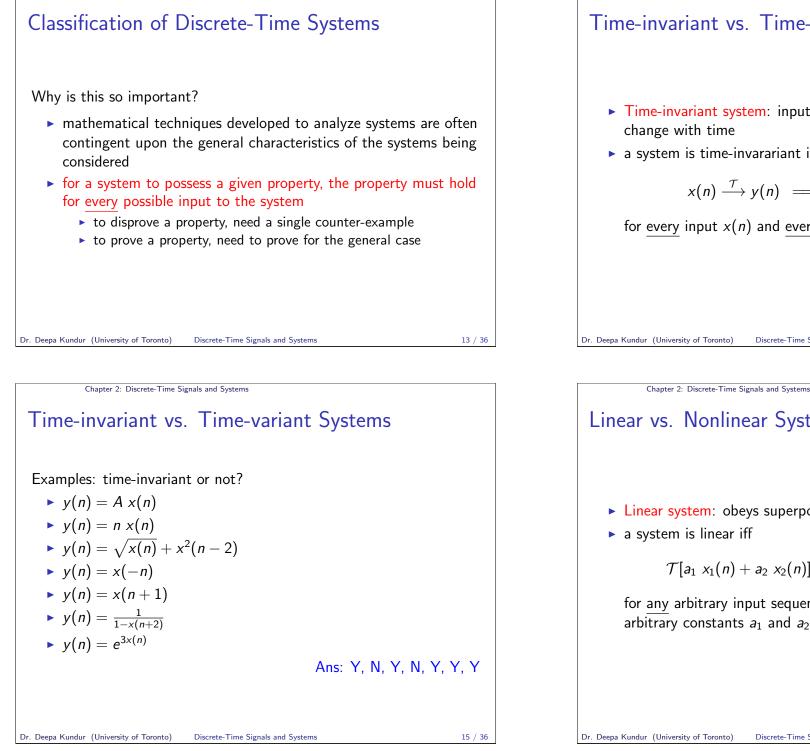
Dr.

Simple Manipulation of Discrete-Time Signals I Find $x(\frac{3}{2}n + 1)$.

_				
	n	$\frac{3n}{2} + 1$	$x(\frac{3n}{2}+1)$	
_	< -1	$< -\frac{1}{2}$	0 if $\frac{3n}{2} + 1$ is an integer; undefined otherwise	
	-1	$-\frac{1}{2}^{2}$	undefined	
	0	1	x(1) = 1	
	1	5	undefined	
	2	4	x(4) = 2	
	3	$-\frac{1}{2}$ 1 5 2 4 1 2 7 1 2 2 1 0 2 2 2 1 6 35 2 1 9	undefined	
	4	7	x(7) = 3	
	5	$\frac{17}{2}$	undefined	
	6	10	x(10) = 2	
	7	$\frac{23}{2}$	undefined	
	8	13	x(13) = 1	
	9	$\frac{29}{2}$	undefined	
	10	16	x(16) = -1	
	11	$\frac{35}{2}$	undefined	
	12	19	x(19) = -2	
	> 12	> 19	0 if $\frac{3n}{2} + 1$ is an integer; undefined otherwise	
			. –	
Deepa Kundur (University of Toronto) Discret			Discrete-Time Signals and Systems	10 / 26
Deepa Kundun (Oniversity of foronto) Discrete- Finne Signals and Systems				10 / 36

Chapter 2: Discrete-Time Signals and Systems Input-Output Description of Dst-Time Systems x(n)y(n)Discrete-time output/ input/ System excitation response Discrete-time Discrete-time signal signal Input-output description (exact structure of system is unknown or ignored): $y(n) = \mathcal{T}[x(n)]$ "black box" representation:





Time-invariant vs. Time-variant Systems

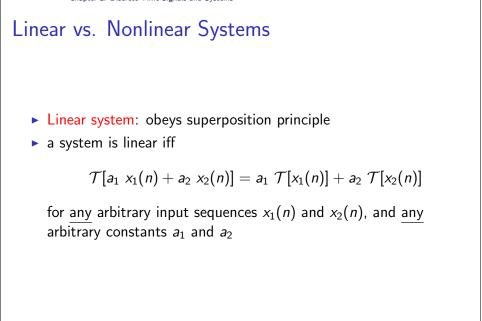
- Time-invariant system: input-output characteristics do not change with time
- ► a system is time-invarariant iff

$$x(n) \xrightarrow{\mathcal{T}} y(n) \implies x(n-k) \xrightarrow{\mathcal{T}} y(n-k)$$

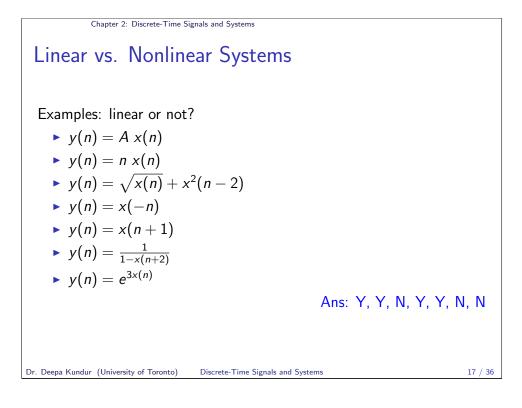
for every input x(n) and every time shift k.

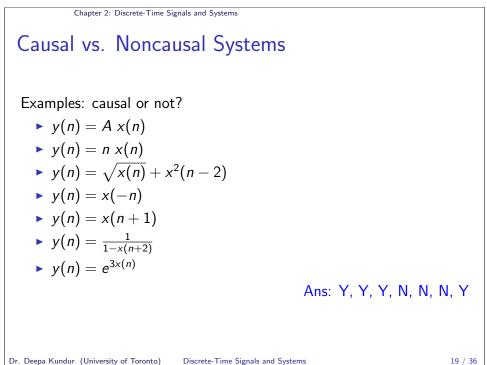
Discrete-Time Signals and Systems Dr. Deepa Kundur (University of Toronto)

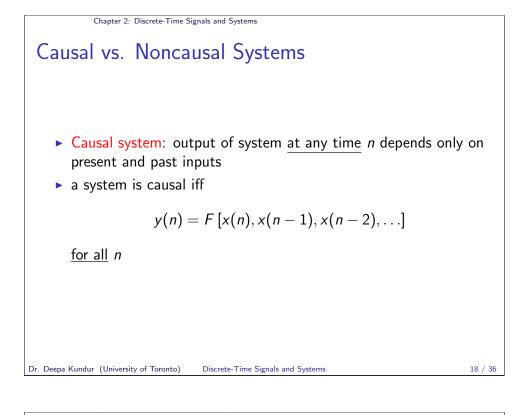
14 / 36

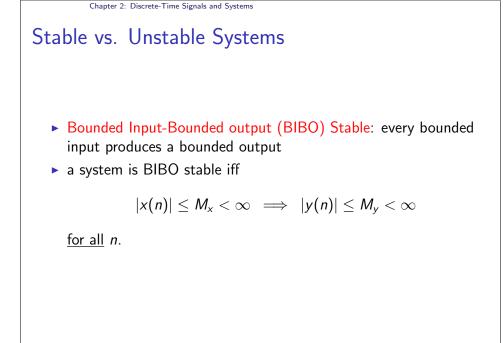


Discrete-Time Signals and Systems





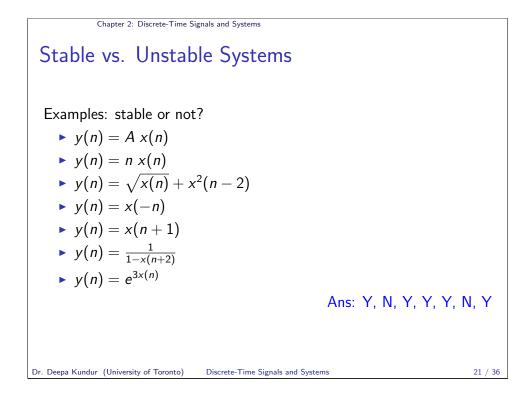




Discrete-Time Signals and Systems

Dr. Deepa Kundur (University of Toronto)

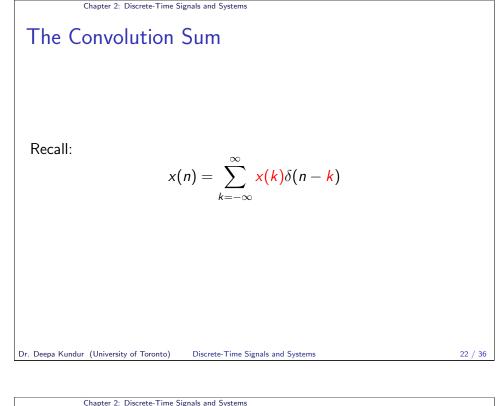
20 / 36



The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit sample input $\delta(n)$ be h(n).

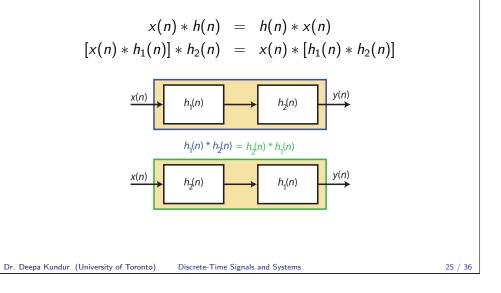
$$\begin{array}{rcl} \delta(n) & \stackrel{\mathcal{T}}{\longrightarrow} & h(n) \\ \delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} & h(n-k) \\ \alpha & \delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} & \alpha & h(n-k) \\ x(k) & \delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} & x(k) & h(n-k) \\ \sum_{k=-\infty}^{\infty} x(k)\delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} & \sum_{k=-\infty}^{\infty} x(k)h(n-k) \\ x(n) & \stackrel{\mathcal{T}}{\longrightarrow} & y(n) \end{array}$$



Therefore, $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = x(n) * h(n)$ for any LTI system.

Properties of Convolution

Associative and Commutative Laws:



Chapter 2: Discrete-Time Signals and Systems

Causality and Convolution

For a causal system, y(n) only depends on present and past inputs values. Therefore, for a causal system, we have:

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

=
$$\sum_{k=-\infty}^{-1} h(k)x(n-k) + \sum_{k=0}^{\infty} h(k)x(n-k)$$

=
$$\sum_{k=0}^{\infty} h(k)x(n-k)$$

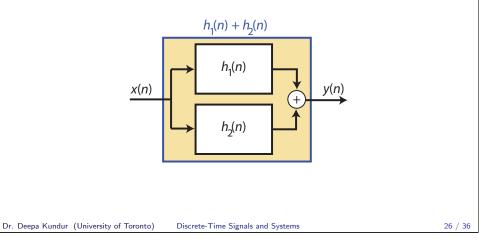
where h(n) = 0 for n < 0 to ensure causality.

Chapter 2: Discrete-Time Signals and Systems

Properties of Convolution

Distributive Law:

$$x(n) * [h_1(n) + h_2(n)] = x(n) * h_1(n) + x(n) * h_2(n)$$



Chapter 2: Discrete-Time Signals and Systems

Finite-Impulse Reponse vs. Infinite Impulse Response

Finite impulse response (FIR):

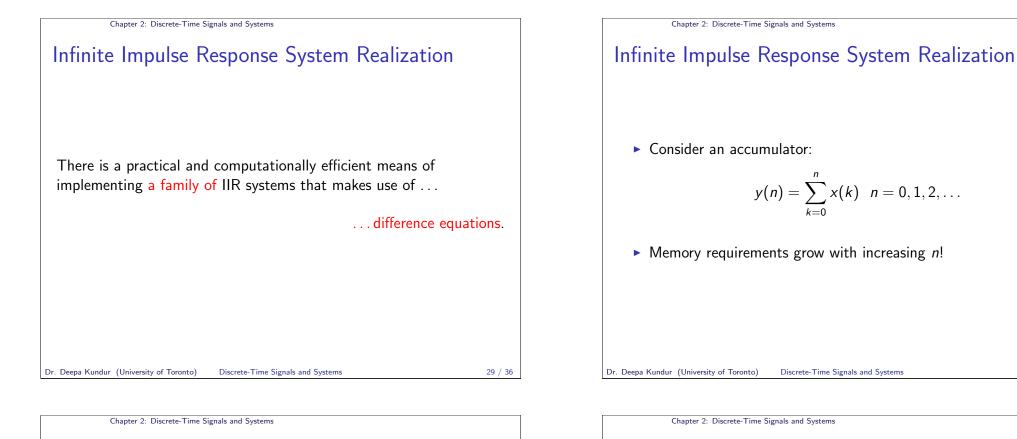
$$y(n) = \sum_{k=0}^{M-1} h(k) x(n-k)$$

Infinite impulse response (IIR):

$$y(n) = \sum_{k=0}^{\infty} h(k) x(n-k)$$

How would one realize these systems? Two classes: recursive and nonrecursive.

Dr. Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems



Linear Constant-Coefficient Difference Equations

Example for a linear constant-coefficient difference equation (LCCDE):

$$y(n) = y(n-1) + x(n)$$

Initial conditions: at rest for n < 0; i.e., y(-1) = 0

► General expression for *N*th-order LCCDE:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \qquad a_0 \triangleq 1$$

Initial conditions: $y(-1), y(-2), y(-3), \ldots, y(-N)$

 $y(n) = \sum_{k=0}^{n} x(k)$ $x(n) - \sum_{k=0}^{n-1} x(k) + x(n)$ y(n) = y(n-1) + x(n) $\frac{re}{2}$

Infinite Impulse Response System Realization

 $\rightarrow y(n)$

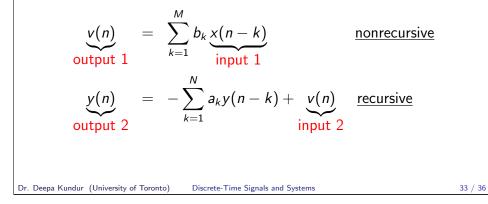
recursive implementation

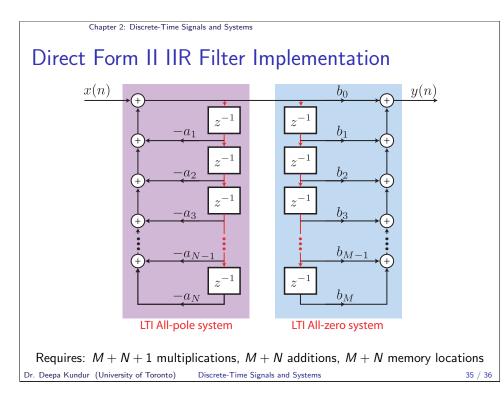
30 / 36

Direct Form I vs. Direct Form II Realizations

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

is equivalent to the cascade of the following systems:





Chapter 2: Discrete-Time Signals and Systems

Direct Form I IIR Filter Implementation

