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Chapter 6: Sampling and Reconstruction of Signals

Discrete-Time Signals and Systems

Reference:

Sections 6.1, 6.2, 6.4, 6.5 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Chapter 6: Sampling and Reconstruction of Signals 6.1 Ideal Sampling and Reconstruction of Cts-Time Signals

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Sampling:

I conversion from cts-time to dst-time by taking “samples” at
discrete time instants

I E.g., uniform sampling: x(n) = xa(nT ) where T is the sampling
period
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Chapter 6: Sampling and Reconstruction of Signals 6.1 Ideal Sampling and Reconstruction of Cts-Time Signals

Sampling Process
I To effectively reconstruct an analog signal from its samples, the

sampling frequency Fs = 1
T

must be selected to be “large
enough”.

I Sampling in the time-domain:

x(n) = xa(nT ), −∞ < n <∞

n

x(n)

-1 10-2-3 2 3

1 x(t)
with interpretation
conversion

Return
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Chapter 6: Sampling and Reconstruction of Signals 6.1 Ideal Sampling and Reconstruction of Cts-Time Signals

Sampling Process

I Time-Domain Sampling: frequency-domain perspective

I The sampling frequency Fs = 1
T must be selected to be large

enough such that the sampling processing does not cause any
loss of spectral information (i.e., no aliasing).

I Recall CTFT and DTFT for aperiodic xa(t) and x(n):

xa(t) =

∫ ∞
−∞

Xa(F )e j2πFtdF

Xa(F ) =

∫ ∞
−∞

xa(t)e−j2πFtdt

x(n) =

∫ 1
2

− 1
2

X (f )e j2πfndf

X (f ) =
∞∑

n=−∞
x(n)e−j2πfn
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Sampling Process

x(n) ≡ xa(nT ) = xa

(
n

Fs

)
∫ 1

2

− 1
2

X (f )e j2πfndf︸ ︷︷ ︸
LHS

=

∫ ∞
−∞

Xa(F )e j2πF
n
Fs dF︸ ︷︷ ︸

RHS

I We can use the following relationship that comes about from the
“reinterpretation stage”.

t = nT or
1

F
=

T

f

f = T · F =
F

Fs
=⇒ f = F

Fs
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Sampling Process

LHS =

∫ 1
2

− 1
2

X (f )e j2πfndf let f = F
Fs

=

∫ Fs
2

− Fs
2

X

(
F

Fs

)
e j2π

F
Fs

n dF

Fs

=
1

Fs

∫ Fs
2

− Fs
2

X

(
F

Fs

)
e j2π

F
Fs

ndF
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Sampling Process

RHS =

∫ ∞
−∞

Xa(F )e j2π
F
Fs

ndF

=
∞∑

k=−∞

∫ + Fs
2
−kFs

− Fs
2
−kFs

Xa(F )e j2π
F
Fs

ndF let F ′ = F + kFs

=
∞∑

k=−∞

∫ Fs
2

− Fs
2

Xa(F ′ − kFs) e
j2π F ′−kFs

Fs
n︸ ︷︷ ︸

=e
j2π F ′

Fs
n

dF ′

=

∫ Fs
2

− Fs
2

[
∞∑

k=−∞

Xa (F − kFs)

]
e j2π

F
Fs

ndF
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Sampling Process
Since,

LHS = RHS

1

Fs

∫ Fs
2

− Fs
2

X

(
F

Fs

)
e j2π

F
Fs

ndF =

∫ Fs
2

− Fs
2

[ ∞∑
k=−∞

Xa (F − kFs)

]
e j2π

F
Fs

ndF

By inspection,

X

(
F

Fs

)
= Fs

∞∑
k=−∞

Xa (F − kFs)

or letting f = F
Fs

,

X (f ) = Fs

∞∑
k=−∞

Xa (f · Fs − kFs) = Fs

∞∑
k=−∞

Xa ((f − k)Fs)
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Chapter 6: Sampling and Reconstruction of Signals 6.1 Ideal Sampling and Reconstruction of Cts-Time Signals

Sampling Process

I The spectrum of the sampled signal x(n) is a scaled periodic
repetition of spectrum of the original analog signal xa(t).

I The form of the periodic repetition guarantees that the signal
X (f ) is periodic with fundamental period 1 or X (ω) is periodic
with fundamental period 2π.

See Figure 6.1.1 of text .
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Chapter 6: Sampling and Reconstruction of Signals 6.1 Ideal Sampling and Reconstruction of Cts-Time Signals

Sampling Theorem

A bandlimited continuous-time signal, with highest frequency
(bandwidth) B Hz, can be uniquely recovered from its samples
provided that the sampling rate Fs ≥ 2B samples per second.

I Perfect reconstruction is possible via the
ideal interpolation formula:

xa(t) =
∞∑

n=−∞

xa(nT )︸ ︷︷ ︸
=x(n)

sin( π
T

(t − nT ))
π
T

(t − nT )

See Figure 6.1.2 of text .
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Aliasing

I Sampling and reconstruction of nonbandlimited signals results in
aliasing.

I The degree of aliasing/quality of the reconstruction depends on
the sampling rate in relation to the decay of the analog signal
spectrum.

I Example:

xa(t) = e−A|t|
F←→ Xa(F ) =

2A

A2 + (2πF )2
, A > 0

See Figure 6.1.8 of text .
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Chapter 6: Sampling and Reconstruction of Signals 6.2 Dst-Time Processing of Cts-Time Signals

Overview

x(n) y(n)x (t)a

F sF s

y (t)a
Analog
signal

Pre�lter Ideal
A/D

Ideal
D/A

Dst System

I system set up when discrete-time processing of continuous-time
signals is required

I the application often defines how each block is designed
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Chapter 6: Sampling and Reconstruction of Signals 6.2 Dst-Time Processing of Cts-Time Signals

Prefilter

x(n) y(n)x (t)a

F sF s

y (t)a
Analog
signal

Pre�lter Ideal
A/D

Ideal
D/A

Dst System

I ensures that bandwidth is limited to avoid aliasing or reduce
subsequent computational requirements

I rejects additive noise in higher frequency ranges
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A/D and D/A

x(n) y(n)x (t)a

F sF s

y (t)a
Analog
signal

Pre�lter Ideal
A/D

Ideal
D/A

Dst System

I ideal sampling and interpolation assumed:

x(n) = x(t)t=nT = xa(nT )
F←→ X (F ) =

1

T

∞∑
k=−∞

Xa(F − kFs)

ya(t) =
∞∑

n=−∞
y(n)

sin( π
T (t − nT ))

π
T (t − nT )

F←→ Ya(F ) =

{
TY (F ) |F | ≤ Fs

2
0 otherwise

See Figure 6.2.2 of text and Figure 6.2.3 of text .
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Discrete-Time System Design

x(n) y(n)x (t)a

F sF s

y (t)a
Analog
signal

Pre�lter Ideal
A/D

Ideal
D/A

Dst System

I Q: Is there a discrete-time system such that the overall system
above is equivalent to a continuous-time LTI system?

I A: Yes if xa(t) is bandlimited and Fs > 2B .
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Discrete-Time System Design

I Consider a desired continuous-time LTI system:

ya(t) = ha(t) ∗ xa(t) =

∫ ∞
−∞

ha(τ)xa(t − τ)dt

Ya(F ) = Ha(F )Xa(F )

I If xa(t) is bandlimited and Fs > 2B (no overlap), then

X (F ) =
1

T
Xa(F ) for |F | ≤ Fs

2

See Figure 6.2.2 of text
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Chapter 6: Sampling and Reconstruction of Signals 6.2 Dst-Time Processing of Cts-Time Signals

Discrete-Time System Design

I Recall, from ideal interpolation and assuming dst-time system
H(F ):

Ya(F ) =

{
TY (F ) |F | ≤ Fs

2

0 otherwise

=

{
TH(F )X (F ) |F | ≤ Fs

2

0 otherwise

=

{
TH(F ) 1

T
Xa(F ) |F | ≤ Fs

2

0 otherwise

=

{
H(F )Xa(F ) |F | ≤ Fs

2

0 otherwise
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Chapter 6: Sampling and Reconstruction of Signals 6.2 Dst-Time Processing of Cts-Time Signals

Discrete-Time System Design

I The desired equivalent cts-time system is:

Ya(F ) = Ha(F )Xa(F )

I The actual overall response assuming a dst-time filter H(F ) is:

Ya(F ) =

{
H(F )Xa(F ) |F | ≤ Fs

2

0 otherwise
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Chapter 6: Sampling and Reconstruction of Signals 6.2 Dst-Time Processing of Cts-Time Signals

Discrete-Time System Design

I Therefore,

Ha(F ) =

{
H(F ) |F | ≤ Fs

2

0 |F | > Fs

2

I Naturally,

H(F ) = Ha(F ) for |F | ≤ Fs

2

H(F ) =
∞∑

k=−∞

Ha(F − kFs)

h(n) = T ha(nT )
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Discrete-Time System Design

x(n) y(n)x (t)a

F sF s

y (t)a
Analog
signal

Pre�lter Ideal
A/D

Ideal
D/A

Dst LTI
System

linear time-varying
CT LTI 
System

I Under the conditions discussed, the cascade of a linear
time-varying system (A/D converter), an LTI system, and a
linear time-varying system (D/A converter) is equivalent to a
continuous-time LTI system.
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Example: Ideal bandlimited differentiator

Goal: to design a discrete-time filter such that the overall system
(including A/D and D/A conversion) is defined by

ya(t) =
dxa(t)

dt

The frequency response of the overall system is given by:

Ha(F ) =
Ya(F )

Xa(F )
= j2πF

=

{
j2πF |F | ≤ Fc

0 |F | > Fc
for bandlimited signals
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Chapter 6: Sampling and Reconstruction of Signals 6.2 Dst-Time Processing of Cts-Time Signals

Example: Ideal bandlimited differentiator

Choosing Fs = 2Fc , we define the ideal discrete-time differentiator as:

H(F ) = Ha(F ) = j2πF , |F | ≤ Fs

2

and

H(F ) =
∞∑

k=−∞

Ha(F − kFs)

See Figure 6.2.5 of text .
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Bandlimited Signal

I A continuous-time bandpass signal with bandwidth B and center
frequency Fc has its frequency content in two frequency bands
defined by 0 < FL < |F | < FH

1st 2nd 3rd 4th

1st 2nd 3rd

Note: Fc = FL+FH

2
, B = FH − FL
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Uniform First-Order Sampling

x(n) = xa(nT )
F←→ X (F ) =

1

T

∞∑
k=−∞

Xa(F − kFs)

I Fs = 2FH guarantees perfect reconstruction, but wastes
bandwidth for bandpass signals

wasted
bandwidth
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Integer Band Positioning

I Consider FH = mB where B = FH − FL

I Let Fs = 2B results in no aliasing

I perfect reconstruction is possible with appropriate interpolation
stage
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Integer Band Positioning, Fs = 2B , FH = 4B

1st 2nd 3rd 4th

1st 2nd 3rd
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Integer Band Positioning, Fs = 2B , FH = 3B

1st 2nd 3rd 4th

1st 2nd 3rd
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Integer Band Positioning

I Perfect reconstruction via:

xa(t) =
∞∑

n=−∞

xa(nT )ga(t − nT )

ga(t) =
sin(πBt)

πBt
cos(2πFct)

for Fs = 2B .
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Arbitrary Band Positioning

I For Fs ≥ B , aliasing is due to overlap of “positive” spectral
band with “negative” or vice versa.
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Arbitrary Band Positioning

(k − 1)Fs ≤ 2FL

2FH ≤ kFs
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Arbitrary Band Positioning

(k − 1)Fs ≤ 2FL =⇒ Fs ≤
2FL

k − 1

2FH ≤ kFs =⇒ Fs ≥
2FH

k

2FH

k
≤ Fs ≤

2FL

k − 1

I If Fs obeys the above for integer k ≥ 1, aliasing can be avoided.

I The k = 1 case corresponds to the Nyquist sampling criterion.

I i.e., Fs ≥ 2FH

I The case k > 1 corresponds to sampling below Nyquist.

I i.e., Fs ≤ 2FL/(k − 1) < 2FH for all k > 1.

Dr. Deepa Kundur (University of Toronto) Efficient Computation of the DFT: FFT Algorithms 32 / 46



Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Arbitrary Band Positioning

I The maximum value of k shows the number of bands that we
can fit in the range from 0 and FH .

(k − 1)Fs ≤ 2FL =⇒ (k − 1)Fs ≤ 2FH − 2B

2FH ≤ kFs =⇒ 1

Fs
≤ k

2FH

mult. both sides =⇒ k − 1 ≤ k − kB

FH

k ≤ FH

B

kmax =

⌊
FH

B

⌋
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Arbitrary Band Positioning: Minimum Sampling

Rate

I Recall to avoid aliasing,

2FH

k
≤ Fs ≤

2FL

k − 1

I Therefore, the minimum sampling rate to avoid aliasing is given
by

Fs,min =
2FH

kmax
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Chapter 6: Sampling and Reconstruction of Signals 6.4 Sampling & Reconstruction of Cts-Time Bandlimited Signals

Arbitrary Band Positioning

I Therefore to avoid aliasing, the range of acceptable uniform
sampling rates is given by

2FH

k
≤ Fs ≤

2FL

k − 1

where k ∈ Z+ and 1 ≤ k ≤
⌊
FH

B

⌋
See Figure 6.4.3 of text .

Dr. Deepa Kundur (University of Toronto) Efficient Computation of the DFT: FFT Algorithms 35 / 46

Chapter 6: Sampling and Reconstruction of Signals 6.5 Sampling of Dst-Time Signals

Sampling of Dst-Time Signals

xd(n) = x(nD)

for all n.
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Chapter 6: Sampling and Reconstruction of Signals 6.5 Sampling of Dst-Time Signals

Sampling of Dst-Time Signals
Consider xd(n) = x(nD) for all n

I x(n) can be interpreted as the samples of a continuous-time
signal xa(t) with rate Fs = 1

T
:

X (F ) =
1

T

∞∑
k=−∞

Xa(F − kFs)

I xd(n) can be interpreted as the samples of xa(t) with sampling
rate Fs

D
= 1

DT
,

Xd(F ) =
1

DT

∞∑
k=−∞

Xa(F − k
Fs

D
)

See Figure 6.5.1 of text .
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Chapter 6: Sampling and Reconstruction of Signals 6.5 Sampling of Dst-Time Signals

Sampling of Dst-Time Signals

I Therefore,

Xd(F ) =
1

D

D−1∑
k=0

X

(
F − k

Fs

D

)

I Assuming Xa(F ) = 0, |F | > B , to avoid aliasing for the dst-time
sampling, we need:

Fs

D
≥ 2B or B ≤ Fs

2D

fmax ,
B

Fs
≤ 1

2D
=

fs
2

or ωmax = 2πfmax ≤
π

D
=
ωs

2
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Sampling of Dst-Time Signals

I In cts-time sampling x(n) = xa(nT ),
I the aperiodic spectrum Xa(F ) is repeated an infinite number of

times to create a periodic spectrum covering the infinite
frequency range.

I In dst-time sampling xd(n) = x(nD),
I the periodic spectrum X (F ) is repeated D times covering one

period of the periodic frequency domain.

Dr. Deepa Kundur (University of Toronto) Efficient Computation of the DFT: FFT Algorithms 39 / 46

Chapter 6: Sampling and Reconstruction of Signals 6.5 Sampling of Dst-Time Signals

Ideal Interpolation

I Recall, the general interpolation formula is:

xa(t) =
∞∑

n=−∞

x(n)
sin( π

T
(t − nT ))

π
T

(t − nT )

I For dst-time sampling, it is given by:

xa(t) =
∞∑

m=−∞

xd(m)
sin( π

DT
(t −mDT ))

π
DT

(t −mDT )
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Chapter 6: Sampling and Reconstruction of Signals 6.5 Sampling of Dst-Time Signals

Ideal Interpolation

I Using

xa(t) =
∞∑

m=−∞

xd(m)
sin( π

DT
(t −mDT ))

π
DT

(t −mDT )

I and the fact that x(n) = xa(nT )

x(n) = xa(nT ) =
∞∑

m=−∞

xd(m)
sin( π

DT
(nT −mDT ))

π
DT

(nT −mDT )

=
∞∑

m=−∞

xd(m)
sin( π

D
(n −mD))

π
D

(n −mD)

=
∞∑

m=−∞

xd(m)gBL(n −mD)
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Ideal Interpolation

I Therefore,

x(n) =
∞∑

m=−∞

xd(m)gBL(n −mD)

gBL(n) = D
sin
(
π
D
n
)

πn
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Ideal Interpolation

I where

gBL(n) = D
sin
(
π
D
n
)

πn
F←→ GBL(ω) =

{
D |ω| ≤ π

D

0 π
D
< |ω| ≤ π

See Figure 6.5.1 of text .
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Linear Interpolation

See Figure 6.5.2 of text .

xlin(t) = x(m − 1) +
x(m)− x(m − 1)

DT
(t − (m − 1)DT )

for (m − 1)DT ≤ t ≤ mDT
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Chapter 6: Sampling and Reconstruction of Signals 6.5 Sampling of Dst-Time Signals

Linear Interpolation

I Therefore,

xlin(n) =
∞∑

m=−∞

x(m)glin(n −mD)

glin(n) =

{
1− |n|

D
|n| ≤ D

0 |n| > D

See Figure 6.5.2 of text .
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Ideal Interpolation

I where

glin(n) =

{
1− |n|

D
|n| ≤ D

0 |n| > D
F←→ Glin(ω) =

1

D

[
sin(ωD

2

sin(ω
2

)

]2

See Figure 6.5.3 of text .

�
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