
http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 1 of 11	

Demo: Real-‐time	 Aggie	 Color	 Correction
Aneesh Rai and Sophie Wang, TAMU

Course Instructor: Professor Deepa Kundur
Introduction
In this lab, we will celebrate school rivalries with a “Color Correction” scheme by converting burnt
orange into maroon. First, we will take a look at color spaces and how color works in video:

The color that we see on a screen can be broken down into different components. For example, we can
specify the red, green, or blue components. The color can also be represented in terms of its hue,
saturation, and brightness. These different components can me mapped on to a graphical system. For
example, hue, saturation, and brightness are three different components of a color, so they can be mapped
onto a 3-dimensional space. The RGB color space can also be visualized in three dimensions. Below are
visualizations of the RGB and HSV color spaces:

The output of our camera will be the YCbCr color space. YCbCr has been used to represent images
because it produces a high quality image using less data. This is because most of the “information” that
humans see in a picture is seen in its brightness. The color information can be at a lower information
degrading the quality of the image. This is the idea behind YCbCr – Y represents the brightness of an
image while Cb and Cr contain the color information. Since Cb and Cr can be at a lower resolution than
Y, they can be sampled at half the rate. This is known as YCbCr 4:2:2 format.

But based on our common RGB understanding of colors, we have to wonder: Where is the green
information encoded?! In turns out that green has a strong correlation to brightness – in fact, 60-70% of
the brightness we see is due to brightness of the green component of a color. Although this is a slight
simplification, since Y stores the brightness information, we can also think of Y as specifying the green
component of a color. Below is a visualization YCbCr color space:

Figure i-1: RGB Color Space – from UC Berkeley

Figure i-2: HSV (Hue, Saturation, and Brightness)
Color Space – from Color Tutorial

	

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 2 of 11	

Figure i-3: YCbCr (Luminance = Y, Chrominance blue = Cb, Chrominance red = Cr)
Color Space - from Wikipedia

Notice in the above image, there are some components that are in the bounds of the individual Y,Cb, and
Cr values that don’t correspond to any colors (corresponds to the white space in the visual). This makes
the YCbCr color space difficult to visualize. Most of us find it easier to manipulate colors in terms of
their RGB components. That’s why several office software products (document editing, slideshow
creators) allow users to select colors in terms of their RGB values.

Design and Implementation
In this lab we, will convert Y,Cb, & Cr values to RGB values. Below is a visualization of the relationship
between the RGB to YCbCr color spaces.

Figure i-4: Relationship between RGB and YCbCr color spaces - from Xilinx

But before we can convert YCbCr to RGB, we have to manipulate the data slightly. Since RGB requires
an equal amount of data for each of the three components and YCbCr less data for Cb and Cr, we will use
matrix concatenation to make the data matrices the right size for processing. After that, we will convert
YCbCr to RGB and then manipulate the RGB values with our own MATLAB function. This function
defines a range for orange, compares each pixel in the image to this predefined range, and then converts
the pixel to maroon if it is orange.

The parameters that we use to define orange in the matlab function were determined from
experimentation.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 3 of 11	

Buildling the Simulink Model

Picture:

1. Find any image with shades of orange and save it as a JPEG file.
2. To use the image for the software, use the Image to File block. Video and image Processing Blockset

Sources Image From File. Use the “Browse…” button to find correct JPEG file and set the Sample
time to inf. The Image signal should be changed to “Separate color signals” and Output port labels as
“R|G|B.” It should look like the following:

Figure 1: Image to File Parameters

3. The next block to add is the Embedded MATLAB Function block. Add the following code to it:

function [red_out,green_out,blue_out]= fcn(red_in,green_in,blue_in)
red_out = red_in;
green_out = green_in;
blue_out = blue_in;
[m,n] = size(red_in);
for i = 1:m
 for j = 1:n
 if red_out(i,j) < 255
 if (green_out(i,j) < red_out(i,j)*0.75)
 red_out(i,j) = 128;
 green_out(i,j) = 0.25*green_out(i,j);
 end
 end
 end
end

After the code is put into the function, the block should allow for three inputs and three outputs.

Figure 2: Embedded MATLAB Function block before and after the entry of code, respectively

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 4 of 11	

4. Find the Matrix Concatenate in the Simulink Library set the number of inputs to 3 and check if the
parameters look like the screenshot on the following page:

Figure 3: Matrix Concatenate Parameters

5. The last block to get is the Video Viewer and connect all the blocks like below:

Figure 4: Simulink Model for Picture to be implemented

6. Now add another Matrix Concatenate and Video Viewer to the Image From File to output the original

file. The model should look like the following:

Figure 5: Final Simulink Model with two outputs

7. Run the model and see how your original image has changed.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 5 of 11	

Video:
8. Take the same software model for picture and replace the Image from File with From Multimedia File

(Video and image Processing Blockset).
9. Click on the Embedded MATLAB Function and change the code to the following:

function [R_out,G_out,B_out]= fcn(R_in,G_in,B_in)

[m,n] = size(R_in);

R_out = R_in;
G_out = G_in;
B_out = B_in;

for i = 1:m
 for j = 1:n
 if (R_out(i,j) > 0.1) && (R_out(i,j) < 1)
 if (G_out(i,j) > 0.3) && (G_out(i,j) < 0.9)
 if (B_out(i,j) > 0) && (B_out(i,j) < 0.3)
 R_out(i,j) = 0.3;
 G_out(i,j) = 0;
 B_out(i,j) = 0;
 end
 end
 end
 end
end

10. Add another Matrix Concatenate and Video Viewer set into the RGB output from the From Multimedia
File. Make sure the model looks like the following:

Figure 6: Simulink Model for Video to be implemented

	

Digital Video Hardware Implementation
1. First find the Video Capture block in Simulink: Target Support Package Supported Processors

Board Support DM6437 EVM Video Capture
2. In the same DM6437 EVM folder, also get the Deinterleave block, Interleave block, and Video Display

block for the model.
3. Connect the Deinterleave block after the Video Capture block and two sets of the Interleave and Video

Display blocks together like the following:

Figure 7: Part of the Simulink model

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 6 of 11	

4. In User-Defined Functions, find the Embedded MATLAB Function block and type the following function
in:

function [R_out,G_out,B_out]= fcn(R_in,G_in,B_in)
%Change these parameters to change the range identified as orange--------
Red_upper = 255;
Red_lower = 150;
Blue_upper = 200;
Blue_lower = 50;
Green_upper = 200;
Green_lower = 50;
%--
R_out = R_in;
G_out = G_in;
B_out = B_in;

for i = 1:720
 for j = 1:480

 if (R_in(i,j) > Red_lower) && (R_in(i,j) < Red_upper)&& (G_in(i,j) > Green_lower) &&
(G_in(i,j) < Green_upper)&& (B_in(i,j) > Blue_lower) && (B_in(i,j) < Blue_upper)
 R_out(i,j) = 50;
 G_out(i,j) = 0;
 B_out(i,j) = 0;

 end
 end
end

This should create three inputs and outputs onto the MATLAB block.

5. Find the Color Space Conversion from the Video and Image Processing Blockset and put two into the
model. Set the first block’s conversion parameter to Y’CbCr to R’G’B’ and the Image signal to Separate
color signals. The second block will have the same Image signal parameter of Sparate color signals but
with the opposite conversion parameter (R’G’B’ to Y’CbCr)

Figure 8: Parameters of the first and second Color Space Conversion respectively

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 7 of 11	

6. Connect the Embedded MATLAB Function block in between the two Color Space Conversion blocks in
the following order:

Figure 9: Color Space and MATLAB connection

7. Under Math Operations, get two Matrix Concatenate blocks. For the first Matrix Concatenate, connect the

output of Cb of Deinterleave to both of the inputs. Do the same with the Cr of Deinterleave.

Figure 10: Connecting Matrix Concatenate

8. Now connect the output of Y to the Y’ of the ‘Y’CbCr to R’G’B’’ Color Space Conversion block. The

output of the Matrix Concatenate of Cb should go to Cb of the Conversion block and the same thing for
Cr. Now the left side of the model should look like this.

Figure 11: adding the matrices

9. Look for the Submatrix blocks in the Simulink Library. Signal Processing Blockset Math Functions

Matrices and Linear Algebra Matrix Operations. Get two copies of it and place them next to the
‘R’G’B’ to Y’CbCr’ Color Conversion block. Connect one to the output of Cb and one to the output of
Cr.

10. Also connect the output of Deinterleave block to the Interleave and Video Display set created earlier.

Figure 12: Intermediate step

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 8 of 11	

11. Now find the set of Interleave and Video Display blocks from earlier and connect the circuit in the
following fashion.

Figure 13: connecting the end

12. Lastly, find the DM6437EVM block and place it in the model. Texas Target Support Package

Supported Processors Texas instruments C6000 Target Preferences. This is what the completed
model should look like.

Figure 14: Put a caption here to explain what your demo implementation is about.

13. Now go the top toolbar and under Simulation, click on Configuration Parameters, and check these points:

a. Under solver
i. Start time: 0

ii. Stop time: inf
iii. Type: Fixed-step
iv. Solver: discrete (no continuous states)

b. Real-Time Workshop Embedded IDE Link, make sure the System stack size (MAUs)
is 8192

14. For the DSP board, make sure the power source is plugged in as well as the connection to the computer is
sound. Connect the video camera to the to the rightmost input of the board and connect the tv connection
into the 2nd input.

15. Tools Real-Time Workshop Build model, or click Ctrl-B to start the build.
16. Now test with various colors to make sure the code works and edit the Matlab code to better comprehend

the parameters.

	

	

	

	

	

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 9 of 11	

Results

Picture Software:

We started off with applying our algorithm to the software for pictures. We were able to change
all the orange into maroon for the picture very easily and below is our results:

Figure 15: the Before and After output of the software

One of the things that could be worked on in the future is to better match the shade of maroon for

a smoother transition.

Video Software:
 The next step was to trying color processing on a video with orange material, the results are
shown below:

Figure 16: The Before and After output of the video software

This was harder to implement because of the continuous motion of the video and we were pretty

successful in getting the orange out of the video.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 10 of 11	

Hardware Implementation:

The following screenshots are of the various orange objects turned into maroon. The bottom
screen is the unfiltered image and the top will be after filtering.

Figure 14-16: orange to maroon real time conversion

The hardware was much tougher to implement due to different sizes in the matrices. Through a great deal
of experimenting with colors, we were able to find suitable number ranges for orange and block it out in
real-time.

References

Kundur, Deepa, ECEN 448: Real-Time DSP Course Notes,

http://www.ece.tamu.edu/~deepa/ecen448/handouts.html
Hawkes, Gregg. "Digital Component Video Conversion 4:2:2 to 4:4:4." Introductory Digital Systems

Laboratory. Xilinx, 19 Dec. 2001. Web. 13 Dec. 2011. <http://www-
mtl.mit.edu/Courses/6.111/labkit/appnotes/xapp294_04.pdf>.

Fig. i-2:
Jewett, Tom. "Color Tutorial - HSB." TomJewett.com - Home Page. Color Tutorial. Web. 13 Dec. 2011.

<http://www.tomjewett.com/colors/hsb.html>.
Nave,R.“Color Space,”Hyperphysics.Web.13Dec.2011.<http://hyperphysics.phy-

astr.gsu.edu/hbase/vision/colspa.html>.
Fig. i-4:
Payette, Benoit. "Color Space Converter: R’G’B’ to Y’CbCr." Product Support and Documentation.

Xlinx,12 Sept. 2002.Web13Dec.2011.
<http://www.xilinx.com/support/documentation/application_notes/xapp637.pdf>.

Fig. i-1:
Sequin, Carlo. "CS 184 Global_Illumination." Foundations of Computer Graphics. UC Berkeley. Web.

13 Dec. 2011.
<http://www.cs.berkeley.edu/~sequin/CS184/TOPICS/ColorSpaces/Color_0.html>.

Fig. i-3:

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 11 of 11	

"Talk:YCbCr."Wikipedia. Web. 13 Dec. 2011. <http://en.wikipedia.org/wiki/Talk:YCbCr>.

