
http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 1 of 1	

Demo: Real-time Optical Flow-Based
Motion Tracking

Jianwei Zhou and Kefeng Lu, TAMU
Course Instructor: Professor Deepa Kundur

Introduction
The objective of this project is to identify and track a moving object within a

video sequence. The tracking of the object is based on optical flows among video frames
in contrast to image background-based detection. The proposed optical flow method is
straightforward and easier to implement and we assert has better performance. The
project consist of two parts, software simulation on Simulink and hardware
implementation on TI TMS320DM6437 DSP board. The idea of this project is derived
from the tracking section of the demos listed in MATLAB computer vision toolbox
website.

The Simulink model for this project mainly consists of three parts, which are
“Velocity Estimation”, “Velocity Threshold Calculation” and “Object Boundary Box
Determination”. For the velocity estimation, we use the optical flow block in the
Simulink built in library. The optical flow block reads image intensity value and estimate
the velocity of object motion using either the Horn-Schunck or the Lucas-Kanade. The
velocity estimation can be either between two images or between current frame and Nth
frame back. We set N to be one in our model.

 After we obtain the velocity from the Optical Flow block, we need to calculate the
velocity threshold in order to determine what is the minimum velocity magnitude
corresponding to a moving object. To obtain this velocity threshold, we first pass the
velocity through couple mean blocks and get the mean velocity value across frame and
across time. After that, we do a comparison of the input velocity with mean velocity
value. If the input velocity is greater than the mean value, it will be mapped to one and
zero otherwise. The output of this comparison becomes a threshold intensity matrix, and
we further pass this matrix to a median filter block and closing block to remove noise.

 After we segment the moving object from the background of the image, we pass it
to the blob analysis block in order to obtain the boundary box for the object and the
corresponding box area. The blob analysis block in Simulink is very similar to the
“regionprops” function in MATLAB. They both measure a set of properties for each
connected object in an image file. The properties include area, centroid, bounding box,
major and minor axis, orientation and so on. In this project, we utilize the area and bound
box measurement. In our model, we only display boundary box that is greater than a

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 2 of 2	

certain size, and the size is determined according to the object to be track. The rest of the
Simulink model should be self-explanatory and the details of the Simulink model will be
explained in the next section.

Design and Implementation
In this Simulink model, there are couple of major parameters that we need to

adjust depending what the tracking object is. The first parameter is the gain after the
mean blocks in the velocity threshold subsystem. If too much background noise besides
the moving objects is included in the output intensity matrix, the gain need to be adjust to
filter out background in the image. The second parameter is the constant that is used for
comparison with the boundary box. Any boundary boxes with area below this constant is
filter out. One of the disadvantages of optical flow based tracking is that a moving object
may have many small boundary boxes due to the optical detection on different part of the
moving object. In order to better keep track of the moving object, we need to filter out the
small boundary boxes and keep the large boundary box. The other minor parameters
such as the shape for the display of motion vector and tracking box are up for the users to
decide.

Building the Simulink Model
1. Add a source “From multimedia File” and a sink “To Video Display”. Connect these two

blocks to display the input video. The input videos that we used are “optic tracker plane
spotting.avi” and “leopard.avi”, and they are included in the submission material.

2. Convert the input video color image to grayscale using “Color Space Conversion”. Set
the conversion to “R’G’B’” to intensity”.

3. Pass the grayscale intensity to “Optical Flow” block. In the compute optical flow between
tab, select “Current frame and Nth frame back” and set N = 1. In velocity output tab,
select “in horizontal and vertical components in complex form”. We choose to output
velocity in complex form because we would like to display the motion vector on top of
the original image.

4. Pass the complex velocity vector to “Optical Flow Line” block. In the gain tap set the
gain to be 10. The optical flow line block generates the coordinate for the input velocity
vector.

5. Add a “Draw Shapes” block. In shape tap, select “line”. Connect the original video to the
image input of draw shapes block, and connect optical flow line block to Pts input of
draw shapes block. Connect the output of draw shapes block to a video display block.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 3 of 3	

Figure 1: Part of Simulink Model to be implemented

6. Create a subsystem to determine velocity threshold.
a. First set the input port of this subsystem to be the velocity output from the optical

flow block.
b. Pass the velocity to a “Math Function” block and set the function be

“magnitude^2”.
c. Pass the velocity magnitude square to two “Mean” blocks. For the first mean

block, select “Find the mean over Entire Input”. For the second mean block,
select “Running Mean”. The output of these two mean blocks returns the mean
velocity vector across frame and time. A gain block might be necessary after the
mean blocks in order to better determine the velocity threshold.

d. Add a “Operational Operator” block and select “ >=”. This operator map input
velocity to one if it is greater than the mean velocity and one otherwise.

e. Add a “Median Filter” block.
f. Add a “Closing” block.

The output of this subsystem is an intensity matrix that represents the moving object
that we want to track.

Figure 2: Subsystem that determines velocity threshold and segment the moving object

7. Create a subsystem to determine the boundary box of the moving object.
a. Set the intensity matrix from the previous subsystem as input port
b. Add a “Blob Analysis” block and select “Area” and “BBox” as block outputs.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 4 of 4	

c. Add a “Compare To Constant” block and set the constant to be 3000. The value
of this constant determines the minimum boundary box size to be displayed. The
value should be adjusted according to the object to be tracked.

d. Add a “Submatrix” block and use default bock setting.
e. Connect the intensity matrix to BW input port, Area output port to compare to

constant block, BBox output to submatrix block.
f. Add a “logcial operator” and set the operator to be “AND”. Connect the compare

to constant block and submatrix block to AND operator. The output of this AND
operator provides the index of boundary box that above the constant we set
previously.

g. Add a “Variable Selector” and choose “Column” in the select tap.
h. Pass the BBOX to In1 of variable selector block, and output of AND operator to

idx of variable selector block.

Figure 3: Subsystem that determines the boundary box of the moving object

8. Add a “Draw Shapes” Block. Select the shape to be rectangle. Connect the original video
and the boundary box to the draw shape block.

Figure 4: Complete Optical Flow Based Motion Tracking Simulink Model

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 5 of 5	

Digital Video Hardware Implementation
1. Go to the Simulation → Configuration Parameters, change the solver options type back to

“Fixed step”, solver to “discrete (no continuous states).”
2. Start with your Simulink Model for Optical Flow Based Motion Tracking and delete all

the input and output blocks. Besides, to release the burden of the hardware, we only
retain blocks related to the final tracking video and delete all other unnecessary blocks.

3. Under Target Support Package → Supported Processors → TI C6000→Board
Support→DM6437EVM, found “Video Capture” block. Set Sample Time to -1.

4. Add a “Video Display” block, and set Video Window to “Video 0”.
5. Add a “Deinterleave” block and an “Interleave” block from DM6437 EVM Board

Support. Link the “Video Capture” block to the “Deinterleave” block. And Link the
“Interleave” block with a Video Display.

6. Add an “Image Data Type Conversion” block from the Video and Image Processing
Blockset → Conversions. Set the output data type to “uint 8”, and link its input with the
output of the “Draw Rectangles” Block. Add another two “Data Type Conversion”
blocks from the Video and Image Processing Blockset → Conversions. Set the output
data type to “single”. Link one block between the “Deinterleave” block and the “Optical
Flow” block, and link another block between the “Deinterleave” block and the “Image”
input of the “Draw Rectangles” Block.	

7. Link Cb and Cr channels between “Deinterleave” block and both of the “Interleave”
blocks, as shown in Figure 5.

8. Adding a DM6437EVM Block under Target Support Package TI C6000→Target
Preferences.

9. Connect the video output (the yellow port) of the camera with the video input of the
board, and the output of the board with the monitor.

10. Go to Tools->Real Time Workshop -> Build the model.

	

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 6 of 6	

Figure 5: Complete Optical Flow Based Motion Tracking Hardware model.	

Results
Simulink Simulation

Input video file: optic tracker plane spotting.avi

Figure 6: Original input video

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 7 of 7	

Figure 7: Video with motion vector

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 8 of 8	

Figure 8: Video of the moving object after segmentation

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 9 of 9	

Figure 9: Video of moving object tracking by a box

Input video file: leopard.avi

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 10 of 10	

Figure 10: Original input video

Figure 11: Video with motion vector

Figure 12: Video of the moving object after segmentation

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 11 of 11	

Figure 13: Video of moving object tracking by a box

We run our Simulink model with two different videos, one for a flying airplane and one
for a running leopard. Therefore, the tracking objects are airplane and leopard respectively. From
our simulation observation, we notice that our Simulink Model can track moving object with
approximately same speed in a constant direction very well. It might take a short time before the
model can identify the moving object. The tracking box might not be able to cover the whole
object, but the tacking ability of this model can still be met. If the background of the moving
object is very complicated, it might affect the tracking performance. Depending on the
background, the model may lose track of the object and re-track the object again. As explain in
section two, the gain in the velocity threshold subsystem and the constant in the boundary box
subsystem need to be adjusted according case by case. In our airplane and leopard examples, we
set the gain to be 1 and the constant to be 2000. These parameters are the same because both the
airplane and the leopard in the videos exhibit similar kind of motion.

Hardware Implementation Result

 We implement the model on TI TMS320DM6437 DSP board. And the results are as
follows:

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 12 of 12	

Figure 14-1: Video of moving object tracking by a box

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 13 of 13	

Figure 14-2: Video of moving object tracking by a box

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 14 of 14	

Figure 14-3: Video of moving object tracking by a box

 As we can see the pictures above, we use a black rectangle to tracking the moving mark
pen. Since the DSP board only supports two output video windows at the same time, we delete
all the unnecessary outputs except the final tracking output. The reason that we remove the
original window is that we can only add a black rectangle on it, so we can see the original video
at the final video. There are two major parameters that we need to adjust depending what the
tracking object is. The first parameter is the gain after the mean blocks in the velocity threshold
subsystem. The second parameter is the constant that is used for comparison with the boundary
box. Any boundary boxes with area below this constant is filter out. In order to better keep track
of the moving object, we need to filter out the small boundary boxes and keep the large boundary
box. We adjust the gain parameter to a small amount 0.5, since the background is stay still
during the experiment and there is little change in the video except the moving object. Besides,
we set the area parameter to a medium amount 1500, because the size of mark pen is in a
medium size. If we set this parameter to a relative small amount such as 200, we will see many
small rectangles in the video which is not desired. We want to track the integrated object in the
video, not separate the object into many small pieces.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

	

Page 15 of 15	

 The main difficulty that we ran into in the testing time is the slow processing speed of TI
TMS320DM6437 DSP board. The board needs a few seconds to process the image data in a
single frame, so we can only see the separate images with a several seconds interval. Fortunately,
we can still see the tracking effect of the moving object in the video. If we want to do this
tracking to a real time level, we need a more powerful DSP board to implement the model.

References
“Computer Vision System Toolbox –Demos and Seminar Tracking Section”,
mathwork.com, n.p., n.d, Mon. 30 Nov. 2011

