
http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 1 of 1	

Lab 4: Static & Switched Audio Equalizer
Professor Deepa Kundur

Objectives of this Lab
The goals of this lab are:
• To introduce audio processing with the ultimate goal of real-time implementation.
• To develop intuition on frequency bands of audio signals and auditory perception, through a case

study of audio equalization
• To provide exposure to the application of filter design techniques for audio processing.

Prelab
Prior to beginning the lab, you must:

• Carefully read over this lab in order to plan how to implement the tasks assigned. Please
highlight all the parts you need to show or answer for the TA, so that you do not miss any graded
points during the in-lab component or for the report.

• Design your equalizer frequency bands as discussed in the Prelab section.
• Select an audio source you wish to bring for the lab to test out your equalizer. MP3 players with

your favorite music will work well.

Deliverables
• During the lab, you must show your TA the Simulink results discussed in the lab instructions; and
• After the lab, each group must submit a separate report answering the lab questions.

Grading and Due Date
The lab will be graded on correctness, comprehensiveness and the insight you are able to provide

when answering the questions. For full points, lab reports should be written in complete sentences with
correct grammar.

Please note STRICT DEADLINE for report on the course web site.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 2 of 2	

Lab 4: Static & Switched Audio Equalizer

Introduction and Background
You just got a set of new wheels (well pre-owned vehicle), and you’re cruising, when you come

to a stop at the lights. The car next to you is blasting out nothing but bass, shaking everything around it,
including your ride. You try to turn up your own stereo, but the car next to you has BOSETM while your
audio system just blows. Fortunately you have taken this DSP course before, and you quickly (and
embarrassingly) drive back home, and pull out your DSP kit, which has been gathering dust since last
year.

You’ve already implemented digital filters in the past labs. From your experience, it should not
be difficult to imagine how you might boost the bass of your audio system. Figure 1 presents an ideal
design for boosting the bass of continuous-time audio signals. Like in the past labs, you have to create a
practical digital filter that mimics Figure 1. You can do this in many ways. For example, you can design
the practical filters for continuous-time signals first, and then use the bilinear transform to obtain the
discrete-time filter.

Figure 1: Magnitude Response of Ideal Filter (for Continuous-time Signals) for Bass Boost (2-band Adjustable)

In Figure 1, cutoff frequency A (Hz) is used because the human auditory system has limited
dynamic range. That is, the human ear cannot pick out frequencies lower than A (Hz), unless you have
snake ears. Similarly cutoff frequency C (Hz) characterizes the highest pitch perceivable to humans –
again unless you have the ears of a dog or bat, you don’t need to pass higher frequencies. The lower
frequency band from A to B (Hz) characterizes the bass part of the audio signal. Note that the gain in this
region is greater than 1 (or greater than 0-dB), which means you are boosting this part of the band, i.e. the
bass. On the other hand, the band from B to C (Hz) has a gain of 1 (or 0-dB), which means you’re passing
the audio signal in this band as is. If you wish to turn down the non-bass part of the audio stream (like a
lot of people do when they are cruising), the gain would be less than 1 (or negative-dB) in this region.

Figure 1 can be interpreted as consisting of two bandpass filters. The first bandpass filter is the A
to B (Hz) band, while the second bandpass filter is the B to C (Hz) band. In practice, non-ideal bandpass
filters used in tandem may bleed into one another, which is all right for audio signals, as the human ear
may not perceive this. Since you are dealing with linear systems, you can use the principle of
superposition to process each of the regions separately, and then recombine them as show in Figure 2.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 3 of 3	

Figure 2: Implementation of Equalizer of Figure 1 using Superposition.

In Figure 2, the audio signal is filtered using two bandpass filters, and the gain on each filter is
then adjusted using g1 and g2. For example, in our previous bass boost example, we might have g1 = 3,
and g2 = 1, giving the bass 3 times more power, while keeping the rest of the frequencies the same. A
more advanced audio equalizer would have a number of bandpass filters focusing on disjoint frequency
bands, for example partitioning the band more finely (i.e., with higher “granularity”) to allow more
control to the user. For this lab, you will be controlling 5 bands.

So, when you are playing with the equalizer on your stereo, twiddling the slider up and down for
different bands, you are simply controlling the gain on each of the bands, which can be filtered out and
identified using bandpass filters. When you program your DSP in this lab, you will hardcode the gains
first to make sure your filters are working. In the next lab, you will use the switches on the DM6437
board to control your equalizer.

Prelab: Equalizer Band Design
 The following should be completed prior to the lab, but it should be presented with the lab report
(submitted after the lab by the deadline). The first phase in the equalizer design process is to decide how
to split up the audio frequency range into bands. This can be done in two simple steps:

Step 1: Determine the processing band of your audio signal.

The perceptible audio range is roughly 20 Hz to 20 kHz. Assuming the DSP employed works at a
sampling frequency of Fs Hz, an anti-aliasing filter with cutoff frequency 0.5Fs Hz would be applied to
the analog audio signal prior to sampling. Thus, no frequencies above 0.5Fs Hz would be present.
Therefore, the processing band ranges from 20 Hz to min(0.5Fs, 20,000) Hz. For example, for Fs = 16,000
Hz, the processing band is shown in the following figure:

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 4 of 4	

The sampling frequency Fs to be used with the DM6437 for audio processing is 8 kHz.

Step 2: Determine the equalizer bands (i.e., the non-overlapping frequency bands to independently control
via the equalizer).

There are an endless number of ways that you can divide the processing band. Assuming we are dividing
the processing band into L bands, one approach is to equally partition them into L non-overlaping bands
of width (min(0.5Fs, 20,000) – 20)/L Hz each. Another more popular approach suited to the human
auditory system is to have bands that increase in width by approximately a factor of two. For example,
following the example of Step 1, if we choose to partition into L = 3 bands, one possible division is
shown below:

In this lab, we let L = 5. Please specify 5 non-overlapping equalizer frequency ranges to be used in
this lab.

Now, we are ready to use MATLAB’s Filter Design & Analysis Tool during the lab.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 5 of 5	

Design and Implementation

Static Equalizer
 In this section you will design an equalizer model in Simulink that has non-adjustable gains for
each audio band. You will run this model on the DM6437 board to make sure your basic design is sound.

1. The first step in the design process is to decide how to split up the audio frequency range into
bands. Use your prelab results in which you divided the processing band into five reasonable
passband frequency ranges for the audio equalizer.

2. Type fdatool into the MATLAB command window to bring up MATLAB’s Filter Design &
Analysis Tool. Design five passband filters for each one of your chosen frequency bands.
You may choose any filter style you desire. Note that you can store multiple filters in
fdatool. To store a filter, click on the Store Filter button and type in a name for the filter. To
view previously stored filters, click on the Filter Manager button and choose the desired
filter. Here are some hints on how to proceed with your filters:

a. Using a minimum order filter (rather than specifying the order of the filter) will give
you more control over the frequency characteristics of the filter.

b. You probably want to make the transition between passband and stopband sharp in
order to more closely mimic the rectangular bands of an ideal equalizer.

c. The total filter order should be no more than 120 to prevent latency (delay) in the
audio output. Playing around with filter types, stop band attenuation, and pass/stop
band sharpness will allow you to build an equalizer with a total order less than 120.

d. Making the Fpass frequencies of adjacent bands equal will ensure that all frequencies
are contained within one of the five passbands (i.e. no frequencies near the juncture
of two bands will be left in an attenuated transition region).

3. Open a new Simulink model and export your filters from fdatool to the model.
4. As usual, add the input and output 6437 blocks (ADC/DAC and data conversion blocks) and

the Target block. In the block parameters for the ADC block, change the ADC source to Line
In and the sample rate to 8 kHz.

5. Using the basic superposition structure shown in Figure 2, implement your equalizer in the
Simulink model. Nominally, you should use either gain blocks from Simulink → Math
Operations or dB Gain blocks from Signal Processing Blockset → Math Functions → Math
Operations as the multiplication factor for each band. For now, set the gain of your block so
that it is equivalent to a unity gain.

6. Modify the Configuration Parameters if necessary to implement your model on the board
(See Lab 3 if you don’t remember these settings).

7. Set up CCStudio and build, load and run your model as usual.
8. Use any audio source you wish and input it to the board. Connect the output to speakers and

make sure you can hear the audio source. The output should sound “normal” in that all
frequencies are passed equally.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 6 of 6	

9. Halt your program and go back to your Simulink model. Adjust some of the gains to cut out
or amplify a couple of the frequency bands. Rebuild the model, reset the board, and load and
run the new program. Verify that the audio source sounds different with the new set of gains.
Depending on your audio source and how well you chose your gains, you may have to go
back and change the gains several times to hear any significant difference. Note that you’ll
have to rebuild, reset, load, and run each time.

Variable Equalizer
	
 In this section you will use multiple gains attached to switches to vary the filtered output of the
DM6437 DAC without having to rebuild and load each time. This will be done using the four grey
switches located on the edge of the 6437.

1. Insert into your static equalizer block diagram four DIP switches located under Target Support
Package  Supported Processors  Texas Instruments C6000  Board Support  DM6437.

2. Set the sample time for each DIP block to -1 and change the switch that each block controls to
whatever you would like for it to be (the switch numbers are designated on the board).

3. Place four multi-port switches into the block diagram and change the input of each to 2.
4. The top pin of each multi-port switch is the control pin. Connect the output of each DIP switch

to the control pin on each multi-port switch.
5. Connect a gain block to the input of each multi-port switch and connect the output of each

filter to the gain blocks feeding into the switches. This is an example of what each switched
filter will look like:

Figure 5: Switched filter example

6. There are five filters but only four switches. Attaching two filters to a switch or leaving a filter
un-switched will fix this problem. Play around with this and find an audio equalizer you prefer.

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/

Page 7 of 7	

Questions
1. Earlier, we mentioned that due to the non-ideal nature of the filters (i.e. they are not perfectly

rectangular in the frequency domain), the side-lobes of the filter in the frequency domain would
cause frequencies in the stop-band to be passed, albeit attenuated. We mentioned that for audio
applications, this is ok, since the human audio system, to a certain degree, cannot perceive that
the non-ideal filters let some frequencies through, when they shouldn’t be. In this question we
will investigate how much of the frequencies in the stop-band are passed when window-type
filters are used. We shall look at two very similar window filters: Hanning and Hamming. The
Hanning window is given as wn = 0.5 – 0.5 cos(2πn/M) for n = 0, …, M. The Hamming window
is given by wn = 0.54 – 0.46 cos(2πn/M) for n = 0, …, M. Note that these filters are all discrete-
time filters. Thus when we speak of cutoff frequencies, we shall give them as normalized
frequencies between 0 and 2π. Notice that the only design parameter is M. For our purposes, we
will assume that the passband is encompassed by the main-lobe, while side-lobes represent the
stop-band.

a) Design a Hanning window whose cut-off (normalized) frequency is π/4.
b) What fraction of energy is passed in the stop-band for the Hanning window design in part

a)?
c) Design a Hamming window whose cut-off (normalized) frequency is π/4.
d) What fraction of energy is passed in the stop-band for the Hamming window designed in

c)?
e) What is the ratio of the peaks of the main side-lobes (first side-lobes) of the magnitude

responses for the two windows above?
f) Which of the above two windows would you prefer to use?

Please provide your MATLAB code (or any other means) used to generate the results as well as
the reasoning for your results. Good luck!

