

The image shown is "Dixie Queens" (two schoolgirls at lunch from Hadlevville Oregon, circa 1911), Roy C. Andrews collection, PH003-P954, Special Collections and University Archives, University of Oregon, Eugene, Oregon 97403-1299.

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Introduction to Image Processing

Dr. Deepa Kundur

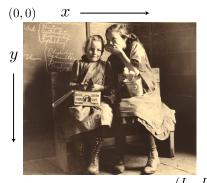
University of Toronto

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Introduction to Image Processing

Analog Intensity Images

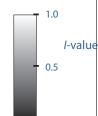


The image shown is "Dixie Queens" (two schoolgirls at lunch from Hadleyville, Oregon, circa 1911), Roy C. Andrews collection, PH003-P954, Special Collections and University Archives, University of Oregon, Eugene, Oregon 97403-1299.

Analog Intensity Images

Introduction to Image Processing

- ► continuous-space and continuous-amplitude image consisting of intensity (grayscale) values
- I(x, y) is a two-dimensional signal representing the grayscale value at location (x, y) where:
- ▶ $0 \le x \le L_x$ and $0 \le y \le L_y$
- I(x, y) = 0 represents black
- I(x, y) = 1 represents white
- ightharpoonup 0 < I(x,y) < 1 represents proportional gray-value



color

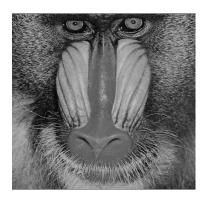
Dr. Deepa Kundur (University of Toronto)

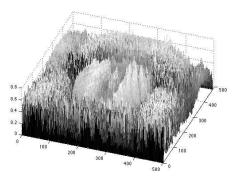
Introduction to Image Processing

3 / 51

Dr. Deepa Kundur (University of Toronto) Introduction to Image Processing

I(x, y) can be displayed as an intensity image or as a mesh graph





Dr. Deepa Kundur (University of Toronto)

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Introduction to Image Processing Images as Signals Discrete-Space Intensity Images Example: 4 × 4 Checkerboard 3

Introduction to Image Processing

Introduction to Image Processing Images as Signals

Discrete-Space Intensity Images

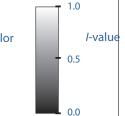
- ▶ discrete-space and continuous-amplitude image consisting of intensity (grayscale) values
- \triangleright I(m, n) is a two-dimensional signal representing the grayscale value at location (m, n) where:

$$\rightarrow m = 0, 1, ..., N_x - 1 \text{ and } n = 0, 1, ..., N_y - 1$$

▶ I(m, n) = 0 represents black

▶ I(m, n) = 1 represents white

ightharpoonup 0 < I(m, n) < 1 represents proportional gray-value

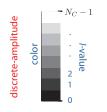


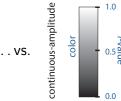
Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Digital Images

- ► discrete-space and discrete-amplitude
- $m = 0, 1, ..., N_x 1$ and $n = 0, 1, ..., N_y 1$
- \blacktriangleright image consisting of grayscale colors from a finite set $\mathcal C$ and indexed via the set: $\{0, 1, 2, \dots, N_C - 1\}$
- \triangleright Example: $N_C = 8$ and grayscale values linearly distributed in intensity between black (0) and white $(N_C - 1)$





Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Introduction to Image Processing Images as Signals

Digital Images: Common Format

- ▶ I(m, n) is a two-dimensional signal representing the grayscale value at location (m, n) where:
 - ▶ $I(m, n) \in \{0, 1, 2, ..., N_C 1\}$; $N_C = \text{no. of colors}$
 - ▶ I(m, n) = 0 represents black
 - ▶ $I(m, n) = N_C 1$ represents white
 - ▶ $I(m, n) \in \{1, 2, ..., N_C 2\}$ represents proportional gray-value

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

9 / 51

11 / 51

Introduction to Image Processing Images as Signals

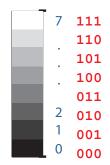
Digital Images: 8-Bit Grayscale Images

- ▶ Standard 8-bit images use color indices from 0 through 255 to cover shades of gray ranging from black to white (inclusive).
 - convenient for programming: color representation occupies a single byte
 - perceptually acceptable: barely sufficient precision to avoid visible banding

Introduction to Image Processing Images as Signa

Digital Images: Common Format

▶ N_C is usually of the form 2^N , so that the 2^N different colors are efficiently represented with N-bit binary notation; Example: N = 3



Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

10 / 51

12 / 51

Images as Signals

Digital Images: Color

Dr. Deepa Kundur (University of Toronto)

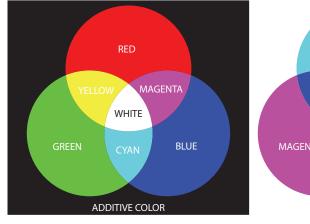
Introduction to Image Processing

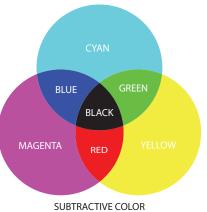
Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Introduction to Image Processing Images as Signals

Digital Images: Color





Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

13 / 51

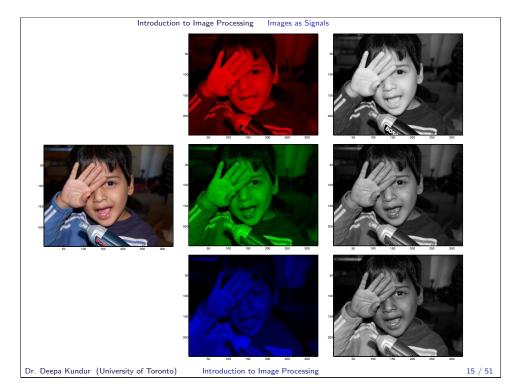
Color Spaces

- ▶ Color space: model describing a way to represent colors as mathematical vectors
- usually three or four numbers are needed to represent any color; common color spaces include:
 - ▶ red (R), green (G), blue (B) popular for LCD displays
 - cyan (C), magenta (M), yellow (Y), key (K) popular for print
 - ▶ YCbCr, HSV, ...

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

14 / 51



Introduction to Image Processing Images as Signals Digital Images: Additive Color Theory **RED** MAGENTA WHITE **BLUE ADDITIVE COLOR** Dr. Deepa Kundur (University of Toronto) 16 / 51 Introduction to Image Processing

Digital Images: Truecolor Images

- ► From Wiki (11/15/2009): method of representing and storing graphical image information (especially in computer processing) in an RGB color space such that a very large number of colors, shades, and hues can be displayed in an image, such as in high quality photographic images or complex graphics
- ▶ usually at least 256 shades of each <u>red</u>, <u>green</u> and <u>blue</u> are employed resulting in at least 256³ = 16,777, 216 (16 million) color variations
- human eye can discern as many as ten million colors, so representation should exceed human visual system (HVS) capabilities!

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

18 / 51

Introduction to Image Processing Images as Signals

The processing Image Processing Image Imag

Introduction to Image Processing Image

RGB versus Grayscale

▶ RGB to grayscale conversion:

$$I(m, n) = 0.299R(m, n) + 0.587G(m, n) + 0.114B(m, n)$$

19 / 51

Introduction to Image Processing Images as Sign

RGB versus Grayscale

▶ RGB to grayscale conversion:

$$I(m, n) = 0.299R(m, n) + 0.587G(m, n) + 0.114B(m, n)$$

- Note: 0.299 + 0.587 + 0.114 = 1.
- ► The luminance compensates for the eye's distinct sensitivity to different colors.
- ► The human eye is most sensitive to green, then red, and last blue.
 - ▶ There are evolutionary justifications for this difference.
 - ► A color with more green is brighter to the eye than a color with more blue.

Dr. Deepa Kundur (University of Toronto) Introduction to Image Processing

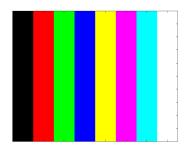
Dr. Deepa Kundur (University of Toronto)

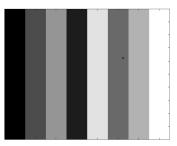
Introduction to Image Processing

RGB versus Grayscale

▶ RGB to grayscale conversion:

$$I(m, n) = 0.299R(m, n) + 0.587G(m, n) + 0.114B(m, n)$$





Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

21 / 51

23 / 51

Image Parameters

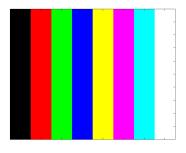
- ▶ The following parameters have an effect on the image quality:
 - sampling rate: spatial resolution or dimension of image
 - color depth: number of colors or number of bits to represent colors

Introduction to Image Processing Images as Signals

RGB versus Grayscale

▶ RGB to grayscale conversion:

$$I(m, n) = 0.299R(m, n) + 0.587G(m, n) + 0.114B(m, n)$$



 $= [0\ 0\ 0] = [R\ G\ B]$ $= [1 \ 0 \ 0]$ [0 1 0] $cyan = [0 \ 1 \ 1]$ white $= [1 \ 1 \ 1]$

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

22 / 51

Introduction to Image Processing

Sampling Rate and Subsampling

Introduction to Image Processing

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Dr. Deepa Kundur (University of Toronto)

Color Depth and Amplitude Quantization

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

25 / 51

Lowpass Filtering

$$I_H(m,n) = I(m,n) * H(m,n)$$

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

26 / 51

Lowpass Filtering

I(m, n) and $I_H(m, n)$:

Introduction to Image Processing

Highpass Filtering

$$H = \left[egin{array}{ccc} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \end{array}
ight]$$

$$I_H(m,n) = I(m,n) * H(m,n)$$

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

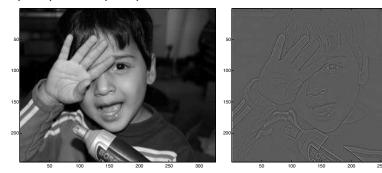
27 / 51

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Highpass Filtering

I(m, n) and $I_H(m, n)$:



Dr. Deepa Kundur (University of Toronto)

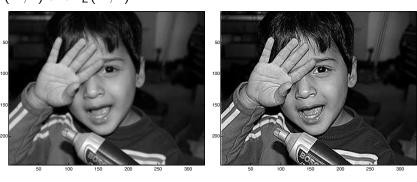
Introduction to Image Processing

29 / 51

Introduction to Image Processing Image Transformations

Edge Enhancement

I(m, n) and $I_E(m, n)$:



Edge Enhancement

$$H = \left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \end{array}
ight]$$

$$I_H(m,n) = I(m,n) * H(m,n)$$

$$I_{E}(m, n) = I_{H}(m, n) + I(m, n)$$

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

30 / 51

Introduction to Image Processing

Image Transformation

2-D Discrete Fourier Transform

$$\mathcal{I}_F(U,V) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} I(m,n) e^{-j2\pi(Um+Vn)}$$

I(m, n):

Dr. Deepa Kundur (University of Toronto)

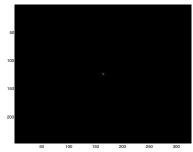
Introduction to Image Processing

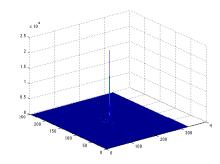
32 / 51

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

2-D Discrete Fourier Transform





Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

33 / 51

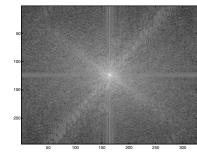
2-D Discrete Cosine Transform

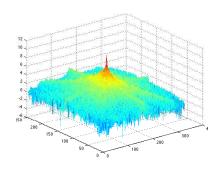
Consider an $N_x \times N_y$ -dimensional digital image I(m, n):

$$\mathcal{I}_{DCT}(k, l) = \sum_{m=0}^{N_x - 1} \sum_{n=0}^{N_y - 1} I(m, n) \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right] \cos \left[\frac{\pi}{M} \left(m + \frac{1}{2} \right) l \right]$$

2-D Discrete Fourier Transform

$\mathcal{I}_F(U,V)$ on log-scale:





Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

34 /

Introduction to Image Processing

Image Transformation

2-D Discrete Cosine Transform



Dr. Deepa Kundur (University of Toronto)

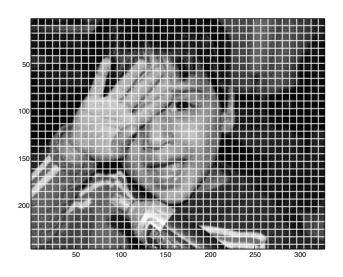
Introduction to Image Processing

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

35 / 51

2-D Discrete 8 × 8 Cosine Transform



Dr. Deepa Kundur (University of Toronto)

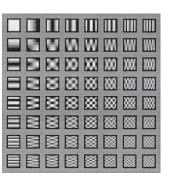
Introduction to Image Processing

37 / 51

2-D Discrete 8 × 8 Cosine Transform

For $k, l \in \{0, 1, 2, \dots, 7\}$,

$$\cos\left[\frac{\pi}{8}\left(n+\frac{1}{2}\right)k\right]\cos\left[\frac{\pi}{8}\left(m+\frac{1}{2}\right)l\right]:$$



2-D Discrete 8×8 Cosine Transform

$$\mathcal{I}_{DCT}^{B}(k,l) = \sum_{m=0}^{7} \sum_{n=0}^{7} I^{B}(m,n) \cos \left[\frac{\pi}{8} \left(n + \frac{1}{2} \right) k \right] \cos \left[\frac{\pi}{8} \left(m + \frac{1}{2} \right) l \right]$$

$$I^{B}(m,n) = \sum_{k=0}^{7} \sum_{l=0}^{7} \alpha(k)\alpha(l)\mathcal{I}_{DCT}^{B}(k,l) \cos\left[\frac{\pi}{8}\left(n+\frac{1}{2}\right)k\right] \cos\left[\frac{\pi}{8}\left(m+\frac{1}{2}\right)l\right]$$

where

$$\alpha(k) = \begin{cases} \sqrt{\frac{1}{8}} & \text{for } k = 0\\ \sqrt{\frac{2}{8}} & \text{for } k = 1, 2, \dots, 7 \end{cases}$$

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

38 / 51

2-D Discrete 8 × 8 Cosine Transform

Introduction to Image Processing

$$I^{B}(m,n) = \sum_{k=0}^{7} \sum_{l=0}^{7} \alpha(k)\alpha(l)\mathcal{I}_{DCT}^{B}(k,l) \cos\left[\frac{\pi}{8}\left(n+\frac{1}{2}\right)k\right] \cos\left[\frac{\pi}{8}\left(m+\frac{1}{2}\right)l\right]$$

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

39 / 51

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Lossy versus Non-lossy Compression for Digital **Images**

- ▶ Lossy compression: remove signal components to reduce storage requirements
 - often exploits perceptual irrelevancy to shape the signal in order to reduce storage size
 - process is not reversible
- ▶ Non-lossy compression: exploit statistical redundancy to employ efficient codes (on average) to reduce storage requirements
 - process is reversible

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

Introduction to Image Processing

Lossy Compression via the DCT

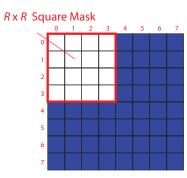
Step 1: Compute the 8 \times 8-block DCT on I(m, n).

$$\mathcal{I}_{DCT}^{\mathcal{B}}(k,l) = \sum_{m=0}^{7} \sum_{n=0}^{7} I^{\mathcal{B}}(m,n) \cos \left[\frac{\pi}{8} \left(n + \frac{1}{2} \right) k \right] \cos \left[\frac{\pi}{8} \left(m + \frac{1}{2} \right) l \right]$$

Introduction to Image Processing

Lossy Compression via the DCT

Consider removing (i.e., zeroing) signal components from 8×8 -DCT domain outside a pre-defined mask.



Note: this is only an instructive example and there are multitudes of other ways to achieve this.

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

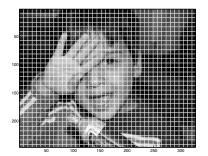
42 / 51

Introduction to Image Processing

Lossy Compression via the DCT

Step 1: Compute the 8 \times 8-block DCT on I(m, n).

I(m,n) and $I^{B}(m,n)$:



Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

43 / 51

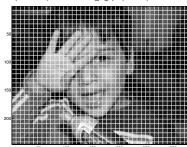
Dr. Deepa Kundur (University of Toronto)

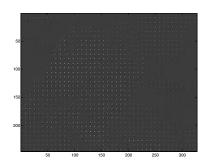
Introduction to Image Processing

Lossy Compression via the DCT

Step 1: Compute the 8 \times 8-block DCT on I(m, n).

 $I^{\mathbf{B}}(m, n)$ and $\mathcal{I}^{\mathbf{B}}_{DCT}(k, l)$:





Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

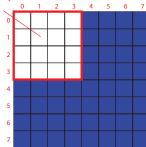
Lossy Compression via the DCT

Step 2: Remove high-frequency components via $R \times R$ mask.

Introduction to Image Processing

Step 3: Compute the 8×8 -block IDCT on compressed DCT

Lossy Compression via the DCT



Dr. Deepa Kundur (University of Toronto)

coefficients.

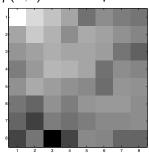
Introduction to Image Processing

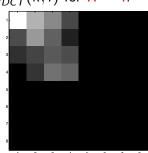
Introduction to Image Processing

Lossy Compression via the DCT

Step 2: Remove high-frequency components via $R \times R$ mask.

 $\mathcal{I}_{DCT}^{B}(k, l)$ and compressed version $\tilde{\mathcal{I}}_{DCT}^{B}(k, l)$ for R = 4:





Note:

images displayed on log-amplitude scale.

47 / 51

Introduction to Image Processing

 $\tilde{I}^{B}(m,n) = \sum_{k=0}^{7} \sum_{l=0}^{7} \alpha(k)\alpha(l)\tilde{\mathcal{I}}_{DCT}^{B}(k,l)\cos\left[\frac{\pi}{8}\left(n+\frac{1}{2}\right)k\right]\cos\left[\frac{\pi}{8}\left(m+\frac{1}{2}\right)l\right]$

Dr. Deepa Kundur (University of Toronto)

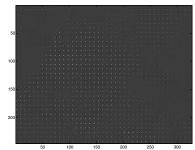
Introduction to Image Processing

Dr. Deepa Kundur (University of Toronto)

Lossy Compression via the DCT

Step 3: Compute the 8×8 -block IDCT on compressed DCT coefficients.

$$\tilde{\mathcal{I}}^{B}_{DCT}(k, l)$$
 and $\tilde{l}(m, n)$ for $R = 4$:



Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

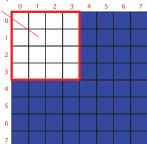
40 / 51

Introduction to Image Processing Compression

Further Compression Gains

► coefficients within the mask can be quantized with a factor determined by tests on human perception

RxR Square Mask



 compressed coefficients are passed through a non-lossy arithmetic coder for additional compression efficiency Introduction to Image Processing Compressi

Lossy Compression Results

Dr. Deepa Kundur (University of Toronto)

Introduction to Image Processing

50 / 51