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Number Formats

Number Formats

I In a DSP, signals are represented as discrete sets of numbers
from the input stage along through intermediate processing
stages to the output.

I Even DSP structures such as filters require numbers to specify
coefficients for operation.

I Two typical formats for these numbers:
I fixed-point format
I floating-point format
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Number Formats

Fixed-Point Format

I simplest scheme

I number is represented as an integer or fraction using a fixed
number of bits

I An n-bit fixed-point signed integer −2n−1 ≤ x ≤ 2n−1 − 1 is
represented as:

x = −s · 2n−1 + bn−2 · 2n−2 + bn−3 · 2n−3 + · · ·+ b1 · 21 + b0 · 20

where s represents the sign of the number (s = 0 for positive
and s = 1 for negative)
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Number Formats

Fixed-Point Integer Format
I What is the most negative value that can be represented?

x = −s · 2n−1 + bn−2 · 2n−2 + bn−3 · 2n−3 + · · ·+ b1 · 21 + b0 · 20

x = −1 · 2n−1 + 0 · 2n−2 + 0 · 2n−3 + · · ·+ 0 · 21 + 0 · 20

= −2n−1 represented with [1 0 0 · · · 0 0]

I What is the most positive value that can be represented?

x = −s · 2n−1 + bn−2 · 2n−2 + bn−3 · 2n−3 + · · ·+ b1 · 21 + b0 · 20

x = −0 · 2n−1 + 1 · 2n−2 + 1 · 2n−3 + · · ·+ 1 · 21 + 1 · 20

= 2n−1 − 1 represented with [0 1 1 · · · 1 1]

I Why are only integers represented in this range?

x = −s · 2n−1 + bn−2 · 2n−2 + bn−3 · 2n−3 + · · ·+ b1 · 21 + b0 · 20︸︷︷︸
=1
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Number Formats

Fixed-Point Integer Format

Example: n = 3

−2n−1 ≤ x ≤ 2n−1 − 1

−23−1 ≤ x ≤ 23−1 − 1

− 22 ≤ x ≤ 22 − 1

−4 ≤ x ≤ 3 =⇒ x ∈ {−4,−3, − 2,−1, 0, 1, 2, 3}

How do you represent the number x = −2?

Dr. Deepa Kundur (University of Toronto) Computational Accuracy in DSP Implementations 5 / 29

Number Formats

Fixed-Point Integer Format

How do you represent the number x = −2?

There is always a unique way of assigning values to
s, bn−2, bn−3, . . . , b1, b0.

x = −s · 22 + b1 · 21 + b0

x = −1 · 22 + 1 · 21 + 0 · 20

[ 1 1 0 ]
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Number Formats

Fixed-Point Fractional Format

I Similarly a n-bit fixed-point signed fraction
−1 ≤ x ≤ (1− 2−(n−1)) is represented as:

x = −s · 20 + b−1 · 2−1 + b−2 · 2−2 + · · ·
· · ·+ b−(n−2) · 2−(n−2) + b−(n−1) · 2−(n−1)

where s represents the sign of the number (s = 0 for positive
and s = 1 for negative)
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Number Formats

Fixed-Point Fractional Format
I What is the most negative value that can be represented?

x = −s · 20 + b−1 · 2−1 + · · ·+ b−(n−2) · 2−(n−2) + b−(n−1) · 2−(n−1)

= −1 · 20 + 0 · 2−1 + · · ·+ 0 · 2−(n−2) + 0 · 2−(n−1)

= −1 represented with [1 0 · · · 0 0]

I What is the most positive value that can be represented?

x = −s · 20 + b−1 · 2−1 + · · ·+ b−(n−2) · 2−(n−2) + b−(n−1) · 2−(n−1)

= −0 · 20 + 1 · 2−1 + · · ·+ 1 · 2−(n−2) + 1 · 2−(n−1)

= 1− 2−(n−1) represented with [0 1 · · · 1 1]

I What granularity of numbers can be represented in this range?

x = −s · 20 + b−1 · 2−1 + · · ·+ b−(n−2) · 2−(n−2) + b−(n−1) · 2−(n−1)︸ ︷︷ ︸
resolution
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Number Formats

Fixed-Point Fractional Format

Example: n = 3

−1 ≤ x ≤ (1− 2−(n−1))

−1 ≤ x ≤ (1− 2−(3−1))

− 1 ≤ x ≤ (1− 2−2) =⇒ −1 ≤ x ≤ 3

4

x ∈ {−1,−3

4
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,−1

4
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4
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2
,

3
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}

x = −s · 20 + b−1 · 2−1 + b−2 · 2−2

1
4

= 1
2n−1 is the smallest precision of measurement for n = 3.
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Number Formats

Fixed-Point Fractional Format

How do you represent the number x = 1
4
?

x = −s · 20 + b−1 · 2−1 + b−2 · 2−2

1

4
= 0 · 20 + 0 · 2−1 + 1 · 2−2

[ 0 0 1 ]

Dr. Deepa Kundur (University of Toronto) Computational Accuracy in DSP Implementations 10 / 29

Number Formats

Fixed-Point Format

...
implied
binary point

(a) Fixed-point format to represent signed integers

...
implied
binary point (b) Fixed-point format to represent signed fractions
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Number Formats

Fixed-Point Format

Q: Why would one use fractional representation instead of integer
representation of numbers?

I multiplication of integers in DSPs may result in overflow error
that will manifest as wrap-around bit error;

I for n = 3, −4 ≤ x < 3; consider 2× (−3) = −6 outside range!

I a fractional representation can be used instead along with proper
scaling

I proper fraction × proper fraction = proper fraction
I for n = 3, x ∈ {−1,−3

4 ,−
1
2 ,−

1
4 , 0, 1

4 ,
1
2 ,

3
4};

consider −3
4 ×

1
2 = −3

8 outside possible precision!
I the least significant bits (LSBs) will be discarded (i.e., will be

approx with −1
2 )

I trade-off overflow error for rounding error
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Number Formats

Fixed-Point Format and Size

Q: How would one increase the range of numbers that can be
represented in integer fixed-point format?

I increase its size (i.e., the number of bits n); doubling the size
substantially increases the range of numbers represented

I for n = 3, −4 ≤ x ≤ 3
I for n = 6, −26−1 ≤ x ≤ 26−1 − 1 =⇒ −32 ≤ x ≤ 31

I doubling the size has implications:
I need double the storage for the same data
I may need to double the number of accesses using the original

size of data bus

Dr. Deepa Kundur (University of Toronto) Computational Accuracy in DSP Implementations 13 / 29

Number Formats

Fixed-Point Format and Size

Q: Is there a number format with a different compromise between
overflow, precision and storage needs?

A: floating-point!
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Number Formats

Floating-Point Format

I suitable for computations where a large number of bits (in fixed
point format) would be required to store intermediate and final
results

I example: algorithm involves summation of a large number of
products (a.k.a multiply and accumulate)

I A floating point number x is represented as:

x = Mx2Ex

where Mx is called the mantissa and Ex is called the exponent.
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Number Formats

Floating-Point Format

I The product of two floating point numbers x = Mx2Ex and
y = My2Ey is given by

xy = MxMy2Ex+Ey

I A floating-point multiplier must contain a multiplier for the
mantissa and an adder for the exponent.

I A floating-point adder requires normalization of the numbers to
be added so that they have the same exponents.

x + y = Mx2Ex + My2Ey = (Mx2Ex−Es )2Es + (My2Ey−Es )2Es

= (Mx2Ex−Es + My2Ey−Es )2Es
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Number Formats

Floating-Point Format
I A commonly used single-precision floating-point representation is

the IEEE 754-1985 format given as:

x = (−1)S × 2(E−bias) × (1 + F )

I S , E and F are all in unsigned fixed-point format.

implied
binary point

Sign Exponent (biased) Signi�cand

-bits-bits
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Number Formats

Floating-Point Format
I A commonly used single-precision floating-point representation is

the IEEE 754-1985 format given as:

x = (−1)S × 2(E−bias) × (1 + F )

I F is the magnitude fraction of the mantissa
I Note: In determining the full mantissa value, a 1 is placed

immediately before the implied binary point
I E is the biased exponent

I Note: The bias makes sure that the exponent is signed to
represent both small and large numbers.

I The bias is set to 127 (largest positive number represented by
(8− 1)-bits).

I S gives the sign of the fractional part of the number
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Number Formats

Floating-Point Format

Example:
Find the decimal equivalent of the floating-point binary number with
bias = 23 − 1 = 7:

1011000011100
1︸︷︷︸

sign

0110︸︷︷︸
biased exponent

00011100︸ ︷︷ ︸
significand

F = 0 · 2−1 + 0 · 2−2 + 0 · 2−3 + 1 · 2−4 +

1 · 2−5 + 1 · 2−6 + 0 · 2−7 + 0 · 2−8 = 0.109375

E = 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 6

∴ x = −1× 1.109375× 26−7 = −0.5546875
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Number Formats

Floating-Point Format

Q: What is the main disadvantage of using floating-point over
fixed-point?

I speed reduction:
I floating point multiplication requires addition of exponents and

multiplication of mantissas
I floating point addition requires exponents to be normalized prior

to addition
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Dynamic Range and Precision

Dynamic Range

I ratio of the maximum value to the minimum non-zero value that
the signal can take in a given number representation scheme:

dynamic range =
max∀x{|x |}

min∀x 6=0{|x |}

where

x = −s · 2n−1 + bn−2 · 2n−2 + bn−3 · 2n−3 + · · ·+ b1 · 21 + b0 · 20,

s, bk ∈ {0, 1}, k = 0, 1, . . . , n − 2 and x 6= 0.

I dynamic range is proportional to the number of bits n used to
represent it
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Dynamic Range and Precision

Dynamic Range

Example: n = 24 (fixed-point format)

−2n−1 ≤ x ≤ 2n−1 − 1

−224−1 ≤ x ≤ 224−1 − 1

− 8, 388, 608 ≤ x ≤ 8, 388, 607

x ∈ {−8, 388, 608,−8, 388, 607, . . . ,−1, 0, 1, . . . 8, 388, 607}
xmax = 8, 388, 608 and xmin = 1

dynamic range =
8, 388, 608

1
= 8, 388, 608

= 20 log10(8, 388, 608) = 138 dB
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Dynamic Range and Precision

Dynamic Range

Example: n = 24 (floating-point format)

x = (−1)S × 2(E−bias) × (1 + F )

with

I 15-bit significand F (fractional representation);

I 8-bit exponent E (unsigned integer);

I one-bit for S ; and

I bias = 128.

dynamic range =
max∀x{|x |}

min∀x 6=0{|x |}
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Dynamic Range and Precision

Dynamic Range
I In the computation of dynamic range, F is conventionally set to

zero and the sign bit S is irrelevant (set to 0) due to absolute
values.

x = (−1)S × 2(E−bias) × (1 + F )

= (−1)0 × 2(E−bias) × (1 + 0)

xmax = 1 · 228−1−bias · 1 xmin = 1 · 20−bias · 1

dynamic range = 20 log10

(
228−1−bias

2−bias

)
= 20 log10(228−1)

= 20 · (28 − 1) · log10(2) = 20 · 255 · 0.30102

= 1535 dB
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Dynamic Range and Precision

Resolution

I general definition: smallest non-zero value that can be
represented using a number representation format

I Q: What is the resolution if k-bits (signed fractional fixed-point)
are used to represent a number between 0 and 1?

x = −s · 20 + b−1 · 2−1 + · · ·+ b−(k−2) · 2−(k−2) + b−(k−1) · 2−(k−1)

Resolution =
1

2k−1
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Dynamic Range and Precision

Precision

I computed as percentage resolution:

Precision = Resolution× 100% =
1

2k−1
× 100%

I relates to accuracy of computations

I usually, the greater the precision, the slower the speed or the
more complex the support hardware such as bus architectures
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Dynamic Range and Precision

Precision

Example: n = 24 (signed fractional fixed-point format)

Precision =
1

2n−1
× 100 = 2−23 × 100 = 1.2× 10−5 %

Example: n = 24 (floating-point format),

x = (−1)S × 2(E−bias) × (1 + F )

with 15-bit significand, 8-bit exponent (unsigned integer representation),

bias = 128; convention is to neglect E and S .

Precision =
1

215
× 100 = 3.0× 10−3 %
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Dynamic Range and Precision

Fixed-Point vs. Floating Point

Example: n = 24

Fixed-Point Floating-Point
Dynamic Range 138 dB 1535 dB
Precision 1.2× 10−5 % 3.0× 10−3 %
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Dynamic Range and Precision

Fixed-Point vs. Floating Point

I Dynamic Range:
I determined by exponent of floating-point number
I since floating-point representations involve exponents, they are

superior to fixed-point format schemes in terms of dynamic
range

I Resolution/Precision:
I determined by mantissa of floating-point number
I mantissa typically uses fewer bits than a fixed point

representation, the precision of floating-point is smaller than
compared to a fixed point representation

�
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