
Architectures for Programmable DSPs

Dr. Deepa Kundur

University of Toronto

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 1 / 74

Architectures for Programmable DSPs

Basic Architectural Features

I A digital signal processor is a specialized microprocessor for the
purpose of real-time DSP computing.

I DSP applications commonly share the following characteristics:
I Algorithms are mathematically intensive; common algorithms

require many multiply and accumulates.
I Algorithms must run in real-time; processing of a data block

must occur before next block arrives.
I Algorithms are under constant development; DSP systems

should be flexible to support changes and improvements in the
state-of-the-art.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 2 / 74

Architectures for Programmable DSPs

Basic Architectural Features

I Programmable DSPs should provide for instructions that one
would find in most general microprocessors.

I The basic instruction capabilities (provided with dedicated
high-speed hardware) should include:

I arithmetic operations: add, subtract and multiply
I logic operations: AND, OR, XOR, and NOT
I multiply and accumulate (MAC) operation
I signal scaling operations before and/or after digital signal

processing

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 3 / 74

Architectures for Programmable DSPs

Basic Architectural Features

I Support architecture should include:
I RAM; i.e., on-chip memories for signal samples
I ROM; on-chip program memory for programs and algorithm

parameters such as filter coefficients
I on-chip registers for storage of intermediate results

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 4 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

DSP Computational Building Blocks

I Multiplier

I Shifter

I Multiply and accumulate (MAC) unit

I Arithmetic logic unit

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 5 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Multiplier

I The following specifications are important when designing a
multiplier:

I speed −→ decided by architecture which trades off with circuit
complexity and power dissipation

I accuracy −→ decided by format representations (number of bits
and fixed/floating pt)

I dynamic range −→ decided by format representations

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 6 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier

I Advances in speed and size in VLSI technology have made
hardware implementation of parallel or array multipliers possible.

I Parallel multipliers implement a complete multiplication of two
binary numbers to generate the product within a single processor
cycle!

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 7 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: Bit Expansion

Consider the multiplication of two unsigned fixed-point integer
numbers A and B where A is m-bits (Am−1,Am−2, . . . ,A0) and B is
n-bits (Bn−1,Bn−2, . . . ,B0):

A =
m−1∑
i=0

Ai2
i ; 0 ≤ A ≤ 2m − 1,Ai ∈ {0, 1}

B =
n−1∑
j=0

Bj2
j ; 0 ≤ B ≤ 2n − 1,Bi ∈ {0, 1}

Generally, we will require r-bits where r > max(m, n) to represent the
product P = A · B ; known as bit expansion.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 8 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: Bit Expansion

Q: How many bits are required to represent P = A · B?

I Let the minimum number of bits needed to represent the range
of P be given by r .

I An r -bit unsigned fixed-point integer number can represent
values between 0 and 2r − 1.

I Therefore, 0 ≤ P ≤ 2r − 1.
Pmin = Amin · Bmin = 0 · 0 = 0

Pmax = Amax · Bmax = (2m − 1) · (2n − 1)

= 2n+m − 2m − 2n + 1

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 9 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: Bit Expansion

Rephrased Q: How many bits are required to represent Pmax?

Pmax = 2n+m−2m − 2n + 1︸ ︷︷ ︸
<−1

< 2n+m − 1 for positive n,m.

Pmax = 2n+m − 2m − 2n + 1 ≈ 2n+m for large n,m.

Therefore, Pmax < 2n+m is a tight bound.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 10 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: Bit Expansion

Rephrased Q: How many bits are required to represent Pmax?
Therefore,

r = dlog2 (Pmax)e = log2

(
2n+m

)
= m + n

for large n,m.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 11 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: n = m = 4

Example: m = n = 4; note: r = m + n = 4 + 4 = 8.

P = A · B =
4−1∑
i=0

Ai2
i ·

4−1∑
i=0

Bi2
i

=
(
A020 + A121 + A222 + A323

)
·
(
B020 + B121 + B222 + B323

)
= A0B020 + (A0B1 + A1B0)21 + (A0B2 + A1B1 + A2B0)22

+(A0B3 + A1B2 + A2B1 + A3B0)23 + (A1B3 + A2B2 + A3B1)24

+(A2B3 + A3B2)25 + (A3B3)26

= P020 + P121 + P222 + P323 + P424 + P525 + P626 + P727︸︷︷︸
???

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 12 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: n = m = 4

Recall base 10 addition.
Example: (3785 + 6584)

CARRY-OVER 1 1 0 0
3 7 8 5

+ 6 5 8 4

1 0 3 6 9
↑

CARRY-OVER

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 13 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: n = m = 4

Example: m = n = 4; note: r = m + n = 4 + 4 = 8.

P = A · B =
4−1∑
i=0

Ai2
i ·

4−1∑
i=0

Bi2
i

=
(
A020 + A121 + A222 + A323

)
·
(
B020 + B121 + B222 + B323

)
= A0B020 + (A0B1 + A1B0)21 + (A0B2 + A1B1 + A2B0)22

+(A0B3 + A1B2 + A2B1 + A3B0)23 + (A1B3 + A2B2 + A3B1)24

+(A2B3 + A3B2)25 + (A3B3)26

= P020 + P121 + P222 + P323 + P424 + P525 + P626 + P727

Need to compensate for carry-over bits!

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 14 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: n = m = 4

Need to compensate for carry-over bits!

P0 = A0B0

P1 = A0B1 + A1B0 + 0

P2 = A0B2 + A1B1 + A2B0 + PREV CARRY OVER

...

P6 = A3B3 + PREV CARRY OVER

P7 = PREV CARRY OVER

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 15 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: Braun Multiplier
Example:
I structure of a 4× 4 Braun multiplier; i.e., m = n = 4

+ + +

+ + +

+ + +

+ + ++

operand

operand

sum

carry-in

carry-out

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 16 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier: Braun Multiplier

I Speed: for parallel multiplier the multiplication time is only the
longest path delay time through the gates and adders (well
within one processor cycle)

I Note: additional hardware before and after the Braun multiplier
is required to deal with signed numbers represented in two’s
complement form.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 17 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Parallel Multiplier

I Bus Widths: straightforward implementation requires two buses
of width n-bits and a third bus of width 2n-bits, which is
expensive to implement

Multiplier

I To avoid complex bus implementations:
I program bus can be reused after the multiplication instruction is

fetched
I bus for X can be used for Z by discarding the lower n bits of Z

or by saving Z at two successive memory locations

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 18 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Shifter

I required to scale down or scale up operands and results to avoid
errors resulting from overflows and underflows during
computations

I Note: When computing the sum of N numbers, each
represented by n-bits, the overall sum will have n + log2 N bits

I Q: Why?
I Each number is represented with n bits.
I For the sum of N numbers, Pmax = N × (2n − 1).
I Therefore,

r = log2 Pmax ≈ log2 (N × 2n) = log2 2n + log2N = n + log2N.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 19 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Shifter
I Q: When is scaling useful?

I to avoid overflow can scale down each of the N numbers by
log2N bits before conducting the sum

I to obtain actual sum scale up the result by log2N bits when
required

I trade-off between overflow prevention and accuracy

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 20 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

Shifter
I Example: Suppose n = 4 and we are summing N = 3 unsigned

fixed point integers as follows:

S = x1 + x2 + x3

x1 = 10 = [1 0 1 0]

x2 = 5 = [0 1 0 1]

x3 = 8 = [1 0 0 0]

S = 10 + 5 + 8 = 23 > 24 − 1 = 15

I Must scale numbers down by at least log2 N = log2 3 ≈ 1.584
< 2.

I Require scaling through a single right-shift.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 21 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Shifter
I To scale numbers down by a factor of 2:

x1 = 10 = [1 0 1 0] x̂1 = [0 1 0 1] = 5
x2 = 5 = [0 1 0 1] x̂2 = [0 0 1 0] = 2 6= 5

2

x3 = 8 = [1 0 0 0] x̂3 = [0 1 0 0] = 4

I To add:

Ŝ = x̂1 + x̂2 + x̂3 = 5 + 2 + 4 = 11 = [1 0 1 1]

I To scale sum up by a factor of 2 (allow bit expansion here):

S̃ = [1 0 1 1 0] = 22 6= 23 = 10 + 5 + 8 = S

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 22 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Shifter
I Consider the following related example. To scale numbers down

by a factor of 2:

x1 = 11 = [1 0 1 1] x̂1 = [0 1 0 1] = 5 6= 11
2

x2 = 5 = [0 1 0 1] x̂2 = [0 0 1 0] = 2 6= 5
2

x3 = 9 = [1 0 0 1] x̂3 = [0 1 0 0] = 4 6= 9
2

I To add:

Ŝ = x̂1 + x̂2 + x̂3 = 5 + 2 + 4 = 11 = [1 0 1 1]

I To scale sum up by a factor of 2 (allow bit expansion here):

S̃ = [1 0 1 1 0] = 22 6= 25 = 11 + 5 + 9 = S

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 23 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Shifter
I Q: When is scaling useful?

I Conducting floating point additions, where each operand should
be normalized to the same exponent prior to addition

I one of the operands can be shifted to the required number of
bit positions to equalize the exponents

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 24 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

Barrel Shifter

I Shifting in conventional microprocessors is implemented by an
operation similar to one in a shift register taking one clock cycle
for every single bit shift.

I Many shifts are often required creating a latency of multiple
clock cycles.

I Barrel shifters allow shifting of multiple bit positions within one
clock cycle reducing latency for real-time DSP computations.

Shifterinput

control inputs

left/right number of bit 
positions for shift

output

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 25 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Barrel Shifter

Implementation of a 4-bit shift-right barrel shifter:
Input
Bits

Output
Bits

switch closes when
control signal is ON

Note: only one 
control signal 
can be on at a time

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 26 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Barrel Shifter

Implementation of a 4-bit shift-right barrel shifter:

Input Shift (Switch) Output (B3B2B1B0)

A3A2A1A0 0 (S0) A3A2A1A0

A3A2A1A0 1 (S1) A3A3A2A1

A3A2A1A0 2 (S2) A3A3A3A2

A3A2A1A0 3 (S3) A3A3A3A3

I logic circuit takes a fraction of a clock cycle to execute

I majority of delay is in decoding the control lines and setting up
the path from the input lines to the output lines

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 27 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Barrel Shifter

Input
Bits

Output
Bits

switch closes when
control signal is ON

Note: only one 
control signal 
can be on at a time

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 28 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

Multiply and Accumulate

I multiply and accumulate (MAC) unit performs the accumulation
of a series of successively generated products

I common operation in DSP applications such as filtering

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 29 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

MAC Unit Configuration

Multiplier

ADD/SUB

Product
Register

Accumulator

I can implement A + BC operations

I clearing the accumulator at the right
time (e.g., as an initialization to zero)
provides appropriate sum of products

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 30 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

MAC Unit Configuration

Multiplier

ADD/SUB

Product
Register

Accumulator

I multiplication and accumulation each
require a separate instruction execution
cycle

I however, they can work in parallel
I when multiplier is working on current

product, the accumulator works on
adding previous product

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 31 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

MAC Unit Configuration

Multiplier

ADD/SUB

Product
Register

Accumulator

I if N products are to be accumulated,
N − 1 multiplies can overlap with the
accumulation

I during the first multiply, the
accumulator is idle

I during the last accumulate, the
multiplier is idle since all N products
have been computed

I to compute a MAC for N products,
N + 1 instruction execution cycles are
required

I for N � 1, works out to almost one
MAC operation per instruction cycle

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 32 / 74



Architectures for Programmable DSPs DSP Computational Building Blocks

MAC Unit

Q: If a sum of 256 products is to be computed using a pipelined
MAC unit and if the MAC execution time of the unit is 100 ns, what
is the total time required to compute the operation?

A:
For 256 MAC operations, need 257 execution cycles.
Total time required = 257× 100× 10−9 sec = 25.7µs

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 33 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

MAC Unit Overflow and Underflow

Multiplier

ADD/SUB

Product
Register

Accumulator

I Strategies to address overflow or
underflow:

I accumulator guard bits (i.e., extra
bits for the accumulator) added;
implication: size of ADD/SUB unit
will increase

I barrel shifters at the input and output
of MAC unit needed to normalize
values

I saturation logic used to assign largest
(smallest) values to accumulator
when overflow (underflow) occurs

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 34 / 74

Architectures for Programmable DSPs DSP Computational Building Blocks

Arithmetic and Logic Unit

I arithmetic logic unit (ALU) carries out additional arithmetic and
logic operations required for a DSP:

I add, subtract, increment, decrement, negate
I AND, OR, NOT, XOR, compare
I shift, multiply (uncommon to general microprocessors)

I with additional features common to general microprocessors:
I status flags for sign, zero, carry and overflow
I overflow management via saturation logic
I register files for storing intermediate results

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 35 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

Bus Architecture and Memory

I Bus architecture and memory play a significant role in dictating
cost, speed and size of DSPs.

I Common architectures include the von Neumann and Harvard
architectures.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 36 / 74



Architectures for Programmable DSPs Bus Architecture and Memory

von Neumann Architecture

Address

Data
Processor Memory

I program and data reside in same memory

I single bus is used to access both

I Implications:
I slows down program execution since processor has to wait for

data even after instruction is made available

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 37 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

Harvard Architecture

Address

Data

Address

Data
Processor

Data
Memory

Program
Memory

I program and data reside in separate memories with two
independent buses

I Implications:
I faster program execution because of simultaneous memory

access capability

I What if there are two operands?

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 38 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

Another Possible DSP Bus Structure

Address

Data

Address

Data

Processor Data
Memory

Address

Data

Data
Memory

Program
Memory

I suited for operations with two operands (e.g., multiplication)

I Implications: requires hardware and interconnections increasing cost
hardware complexity-speed trade-off needed!

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 39 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

On-Chip Memory

I on-chip = on-processor

I help in running the DSP algorithms faster than when memory is
off-chip

I dedicated addresses and data buses are available

I speed: on-chip memories should match the speeds of the ALU
operations

I size: the more area chip memory takes, the less area available for
other DSP functions

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 40 / 74



Architectures for Programmable DSPs Bus Architecture and Memory

On-Chip Memory

I Wish List:
I all memory should reside on-chip!
I separate on-chip program and data spaces
I on-chip data space partitioned further into areas for data

samples, coefficients and results

I Implication: area dedicated to memory will be so large that basic
DSP functions may not be implementable on-chip!

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 41 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

Practical Organization of On-Chip Memory

I for DSP algorithms requiring repeated executions of a single
instruction (e.g., MAC):

I instructions can be placed in external memory and once fetched
can be placed in the instruction cache

I the result is normally saved at the end, so external memory can
be employed

I only two data memories for operands can be placed on-chip

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 42 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

Practical Organization of On-Chip Memory

I using dual-access on-chip memories (can be accessed twice per
instruction cycle):

I can get away with only two on-chip memories for instructions
such as multiply

I instruction fetch + two operand fetches + memory access to
save result can all be done in one clock cycle

I can configure on-chip memory for different uses at different
times

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 43 / 74

Architectures for Programmable DSPs Data Addressing

Data Addressing Capabilities

I efficient way of accessing data (signal sample and filter
coefficients) can significantly improve implementation
performance

I flexible ways to access data helps in writing efficient programs

I data addressing modes enhance DSP implementations

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 44 / 74



Architectures for Programmable DSPs Data Addressing

DSP Addressing Modes

I immediate

I register

I direct

I indirect

I special addressing modes:
I circular
I bit-reversed

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 45 / 74

Architectures for Programmable DSPs Data Addressing

Immediate Addressing Mode
I operand is explicitly known in value

I capability to include data as part of the instruction

Instruction Operation

ADD #imm #imm + A→ A

I #imm: value represented by imm (fixed number such as filter
coefficient is known ahead of time)

I A: accumulator register

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 46 / 74

Architectures for Programmable DSPs Data Addressing

Register Addressing Mode
I operand is always in processor register reg

I capability to reference data through its register

Instruction Operation

ADD reg reg + A→ A

I reg : processor register provides operand

I A: accumulator register

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 47 / 74

Architectures for Programmable DSPs Data Addressing

Direct Addressing Mode
I operand is always in memory location mem

I capability to reference data by giving its memory location directly

Instruction Operation

ADD mem mem + A→ A

I mem: specified memory location provides operand (e.g., memory
could hold input signal value)

I A: accumulator register

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 48 / 74



Architectures for Programmable DSPs Data Addressing

Indirect Addressing Mode
I operand memory location is variable

I operand address is given by the value of register addrreg

I operand accessed using pointer addrreg

Instruction Operation

ADD ∗addrreg ∗addrreg + A→ A

I addrreg : needs to be loaded with the register location before use

I A: accumulator register

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 49 / 74

Architectures for Programmable DSPs Data Addressing

Special Addressing Modes

I Circular Addressing Mode: circular buffer allows one to handle a
continuous stream of incoming data samples; once the end of
the buffer is reached, samples are wrapped around and added to
the beginning again

I useful for implementing real-time digital signal processing where
the input stream is effectively continuous

I Bit-Reversed Addressing Mode: address generation unit can be
provided with the capability of providing bit-reversed indices

I useful for implementing radix-2 FFT (fast Fourier Transform)
algorithms where either the input or output is in bit-reversed
order

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 50 / 74

Architectures for Programmable DSPs Data Addressing

Special Addressing Modes

Circular Addressing:

I Can avoid constantly testing for the need to wrap.

I Suppose we consider eight registers to store an incoming data stream.

Reference Index Address
0 = 0 mod 8 = 8 mod 8 = 16 mod 8 · · · 000 = 0
1 = 1 mod 8 = 9 mod 8 = 17 mod 8 · · · 001 = 1
2 = 2 mod 8 = 10 mod 8 = 18 mod 8 · · · 010 = 2
3 = 3 mod 8 = 11 mod 8 = 19 mod 8 · · · 011 = 3
4 = 4 mod 8 = 12 mod 8 = 20 mod 8 · · · 100 = 4
5 = 5 mod 8 = 13 mod 8 = 21 mod 8 · · · 101 = 5
6 = 6 mod 8 = 14 mod 8 = 22 mod 8 · · · 110 = 6
7 = 7 mod 8 = 15 mod 8 = 23 mod 8 · · · 111 = 7

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 51 / 74

Architectures for Programmable DSPs Data Addressing

Special Addressing Modes

Bit-Reversed Addressing:

Input Index Output Index
000 = 0 000 = 0

001 = 1 100 = 4

010 = 2 010 = 2

011 = 3 110 = 6

100 = 4 001 = 1

101 = 5 101 = 5

110 = 6 011 = 3

111 = 7 111 = 7

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 52 / 74



Architectures for Programmable DSPs Data Addressing

Special Addressing Modes

Bit-Reversed Addressing: Why?

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

Stage 1 Stage 2 Stage 3

-1

-1

-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

0W 8

0W 8

0W 8

0W 8

0W 8

0W 8

1W 8

2W 8

2W 8

0W 8

2W 8
3W 8

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 53 / 74

Architectures for Programmable DSPs Speed Issues

Speed Issues

I fast execution of algorithms is the most important requirement
of a DSP architecture

I high speed instruction operation
I large throughputs

I facilitated by advances in VLSI technology and design
innovations

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 54 / 74

Architectures for Programmable DSPs Speed Issues

Hardware Architecture

I dedicated hardware support for multiplications, scaling, loops
and repeats, and special addressing modes are essential for fast
DSP implementations

I Harvard architecture significantly improves program execution
time compared to von Neumann

I on-chip memories aid speed of program execution considerably

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 55 / 74

Architectures for Programmable DSPs Speed Issues

Parallelism

Parallelism means:

I provision of multiple function units, which may operate in
parallel to increase throughput

I multiple memories
I different ALUs for data and address computations

I advantage: algorithms can perform more than one operation at
a time increasing speed

I disadvantage: complex hardware required to control units and
make sure instructions and data can be fetched simultaneously

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 56 / 74



Architectures for Programmable DSPs Speed Issues

Pipelining

I architectural feature in which an instruction is broken into a
number of steps

I a separate unit performs each step at the same time usually
working on different stage of data

I advantage: if repeated use of the instruction is required, then
after an initial latency the output throughput becomes one
instruction per unit time

I disadvantages: pipeline latency, having to break instructions up
into equally-timed units

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 57 / 74

Architectures for Programmable DSPs Speed Issues

Pipelining Example

Five steps:
Step 1: instruction fetch

Step 2: instruction decode

Step 3: operand fetch

Step 4: execute
Step 5: save

Time Slot Step 1 Step 2 Step 3 Step 4 Step 5 Result
t0 Inst 1
t1 Inst 2 Inst 1
t2 Inst 3 Inst 2 Inst 1
t3 Inst 4 Inst 3 Inst 2 Inst 1
t4 Inst 5 Inst 4 Inst 3 Inst 2 Inst 1 complete
t5 Inst 6 Inst 5 Inst 4 Inst 3 Inst 2 complete
...

...
...

...
...

...
...

Simplifying assumption: all steps take equal time

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 58 / 74

Architectures for Programmable DSPs Speed Issues

System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

y(n) =
7∑

k=0

h(k)x(n − k)

= h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + · · ·
· · ·+ h(6)x(n − 6) + h(7)x(n − 7)

I can be implemented in many ways depending on number of multipliers and
accumulators available

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 59 / 74

Architectures for Programmable DSPs Speed Issues

System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

I input needed in registers is
[x(n) x(n − 1) x(n − 2) · · · x(n − 7)]

I time to produce y(n) = time to process the input block
[x(n) x(n − 1) x(n − 2) · · · x(n − 7)]

y(n) = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + · · ·+ h(6)x(n − 6) + h(7)x(n − 7)

I new input x(n + 1) can be processed after y(n) is produced

I corresponding input needed in registers is
[x(n + 1) x(n) x(n − 1) · · · x(n − 6)]

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 60 / 74



Architectures for Programmable DSPs Speed Issues

System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

I If it takes TB time units to process the register block, then for a continuous
input stream the throughput is one output sample per TB time units.

I A new input sample is placed into the register block every TB time units.

Time Register Block
0 [x(n) x(n − 1) x(n − 2) · · · x(n − 7)]
TB [x(n + 1) x(n) x(n − 1) · · · x(n − 6)]
2TB [x(n + 2) x(n + 1) x(n) · · · x(n − 5)]
3TB [x(n + 3) x(n + 2) x(n + 1) · · · x(n − 4)]
...

...

I A shift in the register block every TB time units is needed to accommodate
a new input sample.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 61 / 74

Architectures for Programmable DSPs Speed Issues

System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

I If the sampling period TS is larger than TB , then buffering is needed.

I If the sampling period TS is less than TB , then the processor may be idle.

I TB can be reduced with appropriate parallelism and pipelining.

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 62 / 74

Architectures for Programmable DSPs Speed Issues

Implementation Using a Single MAC Unit

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I T : time taken to compute one product term and add it to accumulator
I new input sample can be processed every 8T time units; i.e., TB = 8T

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 63 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 0, initialization occurs.

I Accumulator = 0

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 64 / 74



Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = T

I Accumulator = 0+ h(0)x(n)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 65 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 2T

I Accumulator = h(0)x(n) + h(1)x(n − 1)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 66 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 3T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 67 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 4T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 68 / 74



Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 5T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3) + h(4)x(n − 4)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 69 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 6T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3) + h(4)x(n − 4)
+ h(5)x(n − 5)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 70 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 7T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3)+
h(4)x(n − 4) + h(5)x(n − 5) + h(6)x(n − 6)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 71 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 8T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3)+
h(4)x(n − 4) + h(5)x(n − 5) + h(6)x(n − 6) + h(7)x(n − 7)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 72 / 74



Architectures for Programmable DSPs Speed Issues

Pipelined Implementation: 8 Multipliers and 8 Accumulators

T T T T T T T

y(n)

h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

0

MAC MAC MAC MAC MAC MAC MAC MAC

I T : time taken to compute one product term and add it to accumulator

I new input sample can be processed every T time units;
i.e., TB = T (8 times faster!)

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 73 / 74

Architectures for Programmable DSPs Speed Issues

Parallel Implementation: Two MAC Units

MAC
Unit

Multiplexer

Multiplexer

y(n)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)

MAC
Unit

Multiplexer

Multiplexer

4T 4T 4T 4T4T 4T 4T

+

I T : time taken to compute one product term and add it to accumulator
I new input sample can be processed every 4T time units;

i.e., TB = 4T �

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 74 / 74


	Architectures for Programmable DSPs
	DSP Computational Building Blocks
	Bus Architecture and Memory
	Data Addressing
	Speed Issues


