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Architectures for Programmable DSPs

Basic Architectural Features

I A digital signal processor is a specialized microprocessor for the
purpose of real-time DSP computing.

I DSP applications commonly share the following characteristics:
I Algorithms are mathematically intensive; common algorithms

require many multiply and accumulates.
I Algorithms must run in real-time; processing of a data block

must occur before next block arrives.
I Algorithms are under constant development; DSP systems

should be flexible to support changes and improvements in the
state-of-the-art.
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Architectures for Programmable DSPs

Basic Architectural Features

I Programmable DSPs should provide for instructions that one
would find in most general microprocessors.

I The basic instruction capabilities (provided with dedicated
high-speed hardware) should include:

I arithmetic operations: add, subtract and multiply
I logic operations: AND, OR, XOR, and NOT
I multiply and accumulate (MAC) operation
I signal scaling operations before and/or after digital signal

processing
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Architectures for Programmable DSPs

Basic Architectural Features

I Support architecture should include:
I RAM; i.e., on-chip memories for signal samples
I ROM; on-chip program memory for programs and algorithm

parameters such as filter coefficients
I on-chip registers for storage of intermediate results
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DSP Computational Building Blocks

I Multiplier

I Shifter

I Multiply and accumulate (MAC) unit

I Arithmetic logic unit
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Multiplier

I The following specifications are important when designing a
multiplier:

I speed −→ decided by architecture which trades off with circuit
complexity and power dissipation

I accuracy −→ decided by format representations (number of bits
and fixed/floating pt)

I dynamic range −→ decided by format representations
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Parallel Multiplier

I Advances in speed and size in VLSI technology have made
hardware implementation of parallel or array multipliers possible.

I Parallel multipliers implement a complete multiplication of two
binary numbers to generate the product within a single processor
cycle!
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Parallel Multiplier: Bit Expansion

Consider the multiplication of two unsigned fixed-point integer
numbers A and B where A is m-bits (Am−1,Am−2, . . . ,A0) and B is
n-bits (Bn−1,Bn−2, . . . ,B0):

A =
m−1∑
i=0

Ai2
i ; 0 ≤ A ≤ 2m − 1,Ai ∈ {0, 1}

B =
n−1∑
j=0

Bj2
j ; 0 ≤ B ≤ 2n − 1,Bi ∈ {0, 1}

Generally, we will require r-bits where r > max(m, n) to represent the
product P = A · B ; known as bit expansion.
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Parallel Multiplier: Bit Expansion

Q: How many bits are required to represent P = A · B?

I Let the minimum number of bits needed to represent the range
of P be given by r .

I An r -bit unsigned fixed-point integer number can represent
values between 0 and 2r − 1.

I Therefore, 0 ≤ P ≤ 2r − 1.
Pmin = Amin · Bmin = 0 · 0 = 0

Pmax = Amax · Bmax = (2m − 1) · (2n − 1)

= 2n+m − 2m − 2n + 1
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Parallel Multiplier: Bit Expansion

Rephrased Q: How many bits are required to represent Pmax?

Pmax = 2n+m−2m − 2n + 1︸ ︷︷ ︸
<−1

< 2n+m − 1 for positive n,m.

Pmax = 2n+m − 2m − 2n + 1 ≈ 2n+m for large n,m.

Therefore, Pmax < 2n+m is a tight bound.
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Parallel Multiplier: Bit Expansion

Rephrased Q: How many bits are required to represent Pmax?
Therefore,

r = dlog2 (Pmax)e = log2

(
2n+m

)
= m + n

for large n,m.
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Parallel Multiplier: n = m = 4

Example: m = n = 4; note: r = m + n = 4 + 4 = 8.

P = A · B =
4−1∑
i=0

Ai2
i ·

4−1∑
i=0

Bi2
i

=
(
A020 + A121 + A222 + A323

)
·
(
B020 + B121 + B222 + B323

)
= A0B020 + (A0B1 + A1B0)21 + (A0B2 + A1B1 + A2B0)22

+(A0B3 + A1B2 + A2B1 + A3B0)23 + (A1B3 + A2B2 + A3B1)24

+(A2B3 + A3B2)25 + (A3B3)26

= P020 + P121 + P222 + P323 + P424 + P525 + P626 + P727︸︷︷︸
???
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Parallel Multiplier: n = m = 4

Recall base 10 addition.
Example: (3785 + 6584)

CARRY-OVER 1 1 0 0
3 7 8 5

+ 6 5 8 4

1 0 3 6 9
↑

CARRY-OVER
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Parallel Multiplier: n = m = 4

Example: m = n = 4; note: r = m + n = 4 + 4 = 8.

P = A · B =
4−1∑
i=0

Ai2
i ·

4−1∑
i=0

Bi2
i

=
(
A020 + A121 + A222 + A323

)
·
(
B020 + B121 + B222 + B323

)
= A0B020 + (A0B1 + A1B0)21 + (A0B2 + A1B1 + A2B0)22

+(A0B3 + A1B2 + A2B1 + A3B0)23 + (A1B3 + A2B2 + A3B1)24

+(A2B3 + A3B2)25 + (A3B3)26

= P020 + P121 + P222 + P323 + P424 + P525 + P626 + P727

Need to compensate for carry-over bits!
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Parallel Multiplier: n = m = 4

Need to compensate for carry-over bits!

P0 = A0B0

P1 = A0B1 + A1B0 + 0

P2 = A0B2 + A1B1 + A2B0 + PREV CARRY OVER

...

P6 = A3B3 + PREV CARRY OVER

P7 = PREV CARRY OVER
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Parallel Multiplier: Braun Multiplier
Example:
I structure of a 4× 4 Braun multiplier; i.e., m = n = 4

+ + +

+ + +

+ + +

+ + ++

operand

operand

sum

carry-in

carry-out
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Parallel Multiplier: Braun Multiplier

I Speed: for parallel multiplier the multiplication time is only the
longest path delay time through the gates and adders (well
within one processor cycle)

I Note: additional hardware before and after the Braun multiplier
is required to deal with signed numbers represented in two’s
complement form.
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Parallel Multiplier

I Bus Widths: straightforward implementation requires two buses
of width n-bits and a third bus of width 2n-bits, which is
expensive to implement

Multiplier

I To avoid complex bus implementations:
I program bus can be reused after the multiplication instruction is

fetched
I bus for X can be used for Z by discarding the lower n bits of Z

or by saving Z at two successive memory locations
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Shifter

I required to scale down or scale up operands and results to avoid
errors resulting from overflows and underflows during
computations

I Note: When computing the sum of N numbers, each
represented by n-bits, the overall sum will have n + log2 N bits

I Q: Why?
I Each number is represented with n bits.
I For the sum of N numbers, Pmax = N × (2n − 1).
I Therefore,

r = log2 Pmax ≈ log2 (N × 2n) = log2 2n + log2N = n + log2N.
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Shifter
I Q: When is scaling useful?

I to avoid overflow can scale down each of the N numbers by
log2N bits before conducting the sum

I to obtain actual sum scale up the result by log2N bits when
required

I trade-off between overflow prevention and accuracy
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Shifter
I Example: Suppose n = 4 and we are summing N = 3 unsigned

fixed point integers as follows:

S = x1 + x2 + x3

x1 = 10 = [1 0 1 0]

x2 = 5 = [0 1 0 1]

x3 = 8 = [1 0 0 0]

S = 10 + 5 + 8 = 23 > 24 − 1 = 15

I Must scale numbers down by at least log2 N = log2 3 ≈ 1.584
< 2.

I Require scaling through a single right-shift.
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Shifter
I To scale numbers down by a factor of 2:

x1 = 10 = [1 0 1 0] x̂1 = [0 1 0 1] = 5
x2 = 5 = [0 1 0 1] x̂2 = [0 0 1 0] = 2 6= 5

2

x3 = 8 = [1 0 0 0] x̂3 = [0 1 0 0] = 4

I To add:

Ŝ = x̂1 + x̂2 + x̂3 = 5 + 2 + 4 = 11 = [1 0 1 1]

I To scale sum up by a factor of 2 (allow bit expansion here):

S̃ = [1 0 1 1 0] = 22 6= 23 = 10 + 5 + 8 = S
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Shifter
I Consider the following related example. To scale numbers down

by a factor of 2:

x1 = 11 = [1 0 1 1] x̂1 = [0 1 0 1] = 5 6= 11
2

x2 = 5 = [0 1 0 1] x̂2 = [0 0 1 0] = 2 6= 5
2

x3 = 9 = [1 0 0 1] x̂3 = [0 1 0 0] = 4 6= 9
2

I To add:

Ŝ = x̂1 + x̂2 + x̂3 = 5 + 2 + 4 = 11 = [1 0 1 1]

I To scale sum up by a factor of 2 (allow bit expansion here):

S̃ = [1 0 1 1 0] = 22 6= 25 = 11 + 5 + 9 = S
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Shifter
I Q: When is scaling useful?

I Conducting floating point additions, where each operand should
be normalized to the same exponent prior to addition

I one of the operands can be shifted to the required number of
bit positions to equalize the exponents
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Barrel Shifter

I Shifting in conventional microprocessors is implemented by an
operation similar to one in a shift register taking one clock cycle
for every single bit shift.

I Many shifts are often required creating a latency of multiple
clock cycles.

I Barrel shifters allow shifting of multiple bit positions within one
clock cycle reducing latency for real-time DSP computations.

Shifterinput

control inputs

left/right number of bit 
positions for shift

output
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Barrel Shifter

Implementation of a 4-bit shift-right barrel shifter:
Input
Bits

Output
Bits

switch closes when
control signal is ON

Note: only one 
control signal 
can be on at a time
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Barrel Shifter

Implementation of a 4-bit shift-right barrel shifter:

Input Shift (Switch) Output (B3B2B1B0)

A3A2A1A0 0 (S0) A3A2A1A0

A3A2A1A0 1 (S1) A3A3A2A1

A3A2A1A0 2 (S2) A3A3A3A2

A3A2A1A0 3 (S3) A3A3A3A3

I logic circuit takes a fraction of a clock cycle to execute

I majority of delay is in decoding the control lines and setting up
the path from the input lines to the output lines
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Barrel Shifter

Input
Bits

Output
Bits

switch closes when
control signal is ON

Note: only one 
control signal 
can be on at a time
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Multiply and Accumulate

I multiply and accumulate (MAC) unit performs the accumulation
of a series of successively generated products

I common operation in DSP applications such as filtering
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MAC Unit Configuration

Multiplier

ADD/SUB

Product
Register

Accumulator

I can implement A + BC operations

I clearing the accumulator at the right
time (e.g., as an initialization to zero)
provides appropriate sum of products
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MAC Unit Configuration

Multiplier

ADD/SUB

Product
Register

Accumulator

I multiplication and accumulation each
require a separate instruction execution
cycle

I however, they can work in parallel
I when multiplier is working on current

product, the accumulator works on
adding previous product
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MAC Unit Configuration

Multiplier

ADD/SUB

Product
Register

Accumulator

I if N products are to be accumulated,
N − 1 multiplies can overlap with the
accumulation

I during the first multiply, the
accumulator is idle

I during the last accumulate, the
multiplier is idle since all N products
have been computed

I to compute a MAC for N products,
N + 1 instruction execution cycles are
required

I for N � 1, works out to almost one
MAC operation per instruction cycle
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MAC Unit

Q: If a sum of 256 products is to be computed using a pipelined
MAC unit and if the MAC execution time of the unit is 100 ns, what
is the total time required to compute the operation?

A:
For 256 MAC operations, need 257 execution cycles.
Total time required = 257× 100× 10−9 sec = 25.7µs
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MAC Unit Overflow and Underflow

Multiplier

ADD/SUB

Product
Register

Accumulator

I Strategies to address overflow or
underflow:

I accumulator guard bits (i.e., extra
bits for the accumulator) added;
implication: size of ADD/SUB unit
will increase

I barrel shifters at the input and output
of MAC unit needed to normalize
values

I saturation logic used to assign largest
(smallest) values to accumulator
when overflow (underflow) occurs
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Arithmetic and Logic Unit

I arithmetic logic unit (ALU) carries out additional arithmetic and
logic operations required for a DSP:

I add, subtract, increment, decrement, negate
I AND, OR, NOT, XOR, compare
I shift, multiply (uncommon to general microprocessors)

I with additional features common to general microprocessors:
I status flags for sign, zero, carry and overflow
I overflow management via saturation logic
I register files for storing intermediate results
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Bus Architecture and Memory

I Bus architecture and memory play a significant role in dictating
cost, speed and size of DSPs.

I Common architectures include the von Neumann and Harvard
architectures.
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von Neumann Architecture

Address

Data
Processor Memory

I program and data reside in same memory

I single bus is used to access both

I Implications:
I slows down program execution since processor has to wait for

data even after instruction is made available

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 37 / 74

Architectures for Programmable DSPs Bus Architecture and Memory

Harvard Architecture

Address

Data

Address

Data
Processor

Data
Memory

Program
Memory

I program and data reside in separate memories with two
independent buses

I Implications:
I faster program execution because of simultaneous memory

access capability

I What if there are two operands?
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Another Possible DSP Bus Structure

Address

Data

Address

Data

Processor Data
Memory

Address

Data

Data
Memory

Program
Memory

I suited for operations with two operands (e.g., multiplication)

I Implications: requires hardware and interconnections increasing cost
hardware complexity-speed trade-off needed!
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On-Chip Memory

I on-chip = on-processor

I help in running the DSP algorithms faster than when memory is
off-chip

I dedicated addresses and data buses are available

I speed: on-chip memories should match the speeds of the ALU
operations

I size: the more area chip memory takes, the less area available for
other DSP functions
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On-Chip Memory

I Wish List:
I all memory should reside on-chip!
I separate on-chip program and data spaces
I on-chip data space partitioned further into areas for data

samples, coefficients and results

I Implication: area dedicated to memory will be so large that basic
DSP functions may not be implementable on-chip!
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Practical Organization of On-Chip Memory

I for DSP algorithms requiring repeated executions of a single
instruction (e.g., MAC):

I instructions can be placed in external memory and once fetched
can be placed in the instruction cache

I the result is normally saved at the end, so external memory can
be employed

I only two data memories for operands can be placed on-chip
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Practical Organization of On-Chip Memory

I using dual-access on-chip memories (can be accessed twice per
instruction cycle):

I can get away with only two on-chip memories for instructions
such as multiply

I instruction fetch + two operand fetches + memory access to
save result can all be done in one clock cycle

I can configure on-chip memory for different uses at different
times
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Data Addressing Capabilities

I efficient way of accessing data (signal sample and filter
coefficients) can significantly improve implementation
performance

I flexible ways to access data helps in writing efficient programs

I data addressing modes enhance DSP implementations
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DSP Addressing Modes

I immediate

I register

I direct

I indirect

I special addressing modes:
I circular
I bit-reversed
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Immediate Addressing Mode
I operand is explicitly known in value

I capability to include data as part of the instruction

Instruction Operation

ADD #imm #imm + A→ A

I #imm: value represented by imm (fixed number such as filter
coefficient is known ahead of time)

I A: accumulator register
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Register Addressing Mode
I operand is always in processor register reg

I capability to reference data through its register

Instruction Operation

ADD reg reg + A→ A

I reg : processor register provides operand

I A: accumulator register
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Direct Addressing Mode
I operand is always in memory location mem

I capability to reference data by giving its memory location directly

Instruction Operation

ADD mem mem + A→ A

I mem: specified memory location provides operand (e.g., memory
could hold input signal value)

I A: accumulator register

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 48 / 74



Architectures for Programmable DSPs Data Addressing

Indirect Addressing Mode
I operand memory location is variable

I operand address is given by the value of register addrreg

I operand accessed using pointer addrreg

Instruction Operation

ADD ∗addrreg ∗addrreg + A→ A

I addrreg : needs to be loaded with the register location before use

I A: accumulator register
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Special Addressing Modes

I Circular Addressing Mode: circular buffer allows one to handle a
continuous stream of incoming data samples; once the end of
the buffer is reached, samples are wrapped around and added to
the beginning again

I useful for implementing real-time digital signal processing where
the input stream is effectively continuous

I Bit-Reversed Addressing Mode: address generation unit can be
provided with the capability of providing bit-reversed indices

I useful for implementing radix-2 FFT (fast Fourier Transform)
algorithms where either the input or output is in bit-reversed
order
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Special Addressing Modes

Circular Addressing:

I Can avoid constantly testing for the need to wrap.

I Suppose we consider eight registers to store an incoming data stream.

Reference Index Address
0 = 0 mod 8 = 8 mod 8 = 16 mod 8 · · · 000 = 0
1 = 1 mod 8 = 9 mod 8 = 17 mod 8 · · · 001 = 1
2 = 2 mod 8 = 10 mod 8 = 18 mod 8 · · · 010 = 2
3 = 3 mod 8 = 11 mod 8 = 19 mod 8 · · · 011 = 3
4 = 4 mod 8 = 12 mod 8 = 20 mod 8 · · · 100 = 4
5 = 5 mod 8 = 13 mod 8 = 21 mod 8 · · · 101 = 5
6 = 6 mod 8 = 14 mod 8 = 22 mod 8 · · · 110 = 6
7 = 7 mod 8 = 15 mod 8 = 23 mod 8 · · · 111 = 7
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Special Addressing Modes

Bit-Reversed Addressing:

Input Index Output Index
000 = 0 000 = 0

001 = 1 100 = 4

010 = 2 010 = 2

011 = 3 110 = 6

100 = 4 001 = 1

101 = 5 101 = 5

110 = 6 011 = 3

111 = 7 111 = 7
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Special Addressing Modes

Bit-Reversed Addressing: Why?

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

Stage 1 Stage 2 Stage 3

-1

-1

-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

0W 8

0W 8

0W 8

0W 8

0W 8

0W 8

1W 8

2W 8

2W 8

0W 8

2W 8
3W 8
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Speed Issues

I fast execution of algorithms is the most important requirement
of a DSP architecture

I high speed instruction operation
I large throughputs

I facilitated by advances in VLSI technology and design
innovations

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 54 / 74

Architectures for Programmable DSPs Speed Issues

Hardware Architecture

I dedicated hardware support for multiplications, scaling, loops
and repeats, and special addressing modes are essential for fast
DSP implementations

I Harvard architecture significantly improves program execution
time compared to von Neumann

I on-chip memories aid speed of program execution considerably
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Parallelism

Parallelism means:

I provision of multiple function units, which may operate in
parallel to increase throughput

I multiple memories
I different ALUs for data and address computations

I advantage: algorithms can perform more than one operation at
a time increasing speed

I disadvantage: complex hardware required to control units and
make sure instructions and data can be fetched simultaneously
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Pipelining

I architectural feature in which an instruction is broken into a
number of steps

I a separate unit performs each step at the same time usually
working on different stage of data

I advantage: if repeated use of the instruction is required, then
after an initial latency the output throughput becomes one
instruction per unit time

I disadvantages: pipeline latency, having to break instructions up
into equally-timed units
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Pipelining Example

Five steps:
Step 1: instruction fetch

Step 2: instruction decode

Step 3: operand fetch

Step 4: execute
Step 5: save

Time Slot Step 1 Step 2 Step 3 Step 4 Step 5 Result
t0 Inst 1
t1 Inst 2 Inst 1
t2 Inst 3 Inst 2 Inst 1
t3 Inst 4 Inst 3 Inst 2 Inst 1
t4 Inst 5 Inst 4 Inst 3 Inst 2 Inst 1 complete
t5 Inst 6 Inst 5 Inst 4 Inst 3 Inst 2 complete
...

...
...

...
...

...
...

Simplifying assumption: all steps take equal time
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System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

y(n) =
7∑

k=0

h(k)x(n − k)

= h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + · · ·
· · ·+ h(6)x(n − 6) + h(7)x(n − 7)

I can be implemented in many ways depending on number of multipliers and
accumulators available

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 59 / 74

Architectures for Programmable DSPs Speed Issues

System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

I input needed in registers is
[x(n) x(n − 1) x(n − 2) · · · x(n − 7)]

I time to produce y(n) = time to process the input block
[x(n) x(n − 1) x(n − 2) · · · x(n − 7)]

y(n) = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + · · ·+ h(6)x(n − 6) + h(7)x(n − 7)

I new input x(n + 1) can be processed after y(n) is produced

I corresponding input needed in registers is
[x(n + 1) x(n) x(n − 1) · · · x(n − 6)]
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System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

I If it takes TB time units to process the register block, then for a continuous
input stream the throughput is one output sample per TB time units.

I A new input sample is placed into the register block every TB time units.

Time Register Block
0 [x(n) x(n − 1) x(n − 2) · · · x(n − 7)]
TB [x(n + 1) x(n) x(n − 1) · · · x(n − 6)]
2TB [x(n + 2) x(n + 1) x(n) · · · x(n − 5)]
3TB [x(n + 3) x(n + 2) x(n + 1) · · · x(n − 4)]
...

...

I A shift in the register block every TB time units is needed to accommodate
a new input sample.
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System Level Parallelism and Pipelining
Consider 8-tap FIR filter:

I If the sampling period TS is larger than TB , then buffering is needed.

I If the sampling period TS is less than TB , then the processor may be idle.

I TB can be reduced with appropriate parallelism and pipelining.
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Implementation Using a Single MAC Unit

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I T : time taken to compute one product term and add it to accumulator
I new input sample can be processed every 8T time units; i.e., TB = 8T

Dr. Deepa Kundur (University of Toronto) Architectures for Programmable DSPs 63 / 74

Architectures for Programmable DSPs Speed Issues

MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 0, initialization occurs.

I Accumulator = 0
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = T

I Accumulator = 0+ h(0)x(n)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 2T

I Accumulator = h(0)x(n) + h(1)x(n − 1)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 3T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 4T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 5T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3) + h(4)x(n − 4)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 6T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3) + h(4)x(n − 4)
+ h(5)x(n − 5)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 7T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3)+
h(4)x(n − 4) + h(5)x(n − 5) + h(6)x(n − 6)
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MAC
Unit

8T 8T 8T 8T 8T 8T 8T

Multiplexer

Multiplexer

y(n)

h(0)
h(1)

h(2)
h(3)

h(4)
h(5)

h(6)
h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

I At t = 8T

I Accumulator = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + h(3)x(n − 3)+
h(4)x(n − 4) + h(5)x(n − 5) + h(6)x(n − 6) + h(7)x(n − 7)
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Pipelined Implementation: 8 Multipliers and 8 Accumulators

T T T T T T T

y(n)

h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

0

MAC MAC MAC MAC MAC MAC MAC MAC

I T : time taken to compute one product term and add it to accumulator

I new input sample can be processed every T time units;
i.e., TB = T (8 times faster!)
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Parallel Implementation: Two MAC Units

MAC
Unit

Multiplexer

Multiplexer

y(n)

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7)

h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)

MAC
Unit

Multiplexer

Multiplexer

4T 4T 4T 4T4T 4T 4T

+

I T : time taken to compute one product term and add it to accumulator
I new input sample can be processed every 4T time units;

i.e., TB = 4T �
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