

 If A then B
 Shorthand: $A \implies B$

 Example 1:
 it is snowing \implies it is at or below freezing temperature

 Example 2:
 $\alpha \ge 5.2 \implies \alpha$ is positive

 Note: For both examples above, $B \not\Rightarrow A$

Discrete-Time LTI Systems Discrete-time Systems

Common Properties

- Linear system: obeys superposition principle
 - ► a system is linear iff

$$\mathcal{T}[a_1 x_1(n) + a_2 x_2(n)] = a_1 \mathcal{T}[x_1(n)] + a_2 \mathcal{T}[x_2(n)]$$

for any arbitrary input sequences $x_1(n)$ and $x_2(n)$, and any arbitrary constants a_1 and a_2 .

Discrete-Time LTI Systems Discrete-time Systems

Common Properties

- Time-invariant system: input-output characteristics do not change with time
 - ▶ a system is time-invariant iff

$$x(n) \xrightarrow{\mathcal{T}} y(n) \implies x(n-n_0) \xrightarrow{\mathcal{T}} y(n-n_0)$$

for every input x(n) and every time shift n_0 .

Discrete-Time LTI Systems Discrete-time Systems

Common Properties

- Causal system: output of system at any time n depends only on present and past inputs
 - ► a system is causal iff

$$y(n) = F[x(n), x(n-1), x(n-2), \ldots]$$

<u>for all</u> n.

- Bounded Input-Bounded output (BIBO) Stable: every bounded input produces a bounded output
 - ► a system is BIBO stable iff

$$|x(n)| \leq M_x < \infty \implies |y(n)| \leq M_y < \infty$$

 $\underline{\text{for all }} n$ and for all possible bounded inputs.

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Systems The Convolution Sum

The Convolution Sum

Let the response of a linear time-invariant (LTI) system denoted \mathcal{T} to the unit sample input $\delta(n)$ be h(n).

$$\delta(n) \xrightarrow{\mathcal{T}} h(n)$$

$$\delta(n-k) \xrightarrow{\mathcal{T}} h(n-k)$$

$$\alpha \ \delta(n-k) \xrightarrow{\mathcal{T}} \alpha \ h(n-k)$$

$$\mathbf{x}(k) \ \delta(n-k) \xrightarrow{\mathcal{T}} \mathbf{x}(k) \ h(n-k)$$

$$\sum_{k=-\infty}^{\infty} \mathbf{x}(k)\delta(n-k) \xrightarrow{\mathcal{T}} \sum_{k=-\infty}^{\infty} \mathbf{x}(k)h(n-k)$$

$$\mathbf{x}(n) \xrightarrow{\mathcal{T}} \mathbf{y}(n)$$

The Convolution Sum The Convolution Sum Recall: $x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$

Discrete-Time LTI Systems The Convolution Sum
The Convolution Sum
Therefore,

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = x(n) * h(n)$$
for any LTI system.

9 / 61

Discrete-Time LTI Systems The Convolution Sum

Causality and Convolution

For a causal system, y(n) only depends on present and past inputs values. Therefore, for a causal system, we have:

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

=
$$\sum_{k=-\infty}^{-1} h(k)x(n-k) + \sum_{k=0}^{\infty} h(k)x(n-k)$$

=
$$\sum_{k=0}^{\infty} h(k)x(n-k)$$

where h(n) = 0 for n < 0 to ensure causality.

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Systems The Convolution Sum

PROOF

For a stable system, y(n) is bounded if x(n) is bounded. What are the implications on h(n)? We have:

$$|y(n)| = |\sum_{k=-\infty}^{\infty} h(k)x(n-k)|$$

$$\leq \sum_{k=-\infty}^{\infty} |h(k)x(n-k)| = \sum_{k=-\infty}^{\infty} |h(k)| \cdot \underbrace{|x(n-k)|}_{|x(n)| \le M_x < \infty}$$

$$\leq \sum_{k=-\infty}^{\infty} |h(k)| M_x = M_x \sum_{k=-\infty}^{\infty} |h(k)|$$

Therefore, $\sum_{k=-\infty}^{\infty} |h(k)| < \infty$ is a sufficient condition to guarantee:

$$y(n) \leq M_x \sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

and we can write:

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty \implies$$
 LTI system is stable

15 / 61

13 / 61

Stability and Convolution

It can also be shown that

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty \iff \text{LTI system is BIBO stable}$$

Note:

- \blacktriangleright \iff means that the two statements are equivalent
- BIBO = bounded-input bounded-output

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

14 / 61

Discrete-Time LTI Systems The Convolution Sum

PROOF

To prove the reverse implication (i.e., necessity), assuming $\sum_{n=-\infty}^{\infty} |h(n)| = \infty$ we must find a <u>bounded</u> input x(n) that will always result in an <u>unbounded</u> y(n). Recall,

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$y(0) = \sum_{k=-\infty}^{\infty} h(k)x(0-k) = \sum_{k=-\infty}^{\infty} h(k)x(-k)$$

Consider $x(n) = \operatorname{sgn}(h(-n))$; note: $|x(n)| \le 1$.

$$y(0) = \sum_{k=-\infty}^{\infty} h(k)x(-k)$$
$$= \sum_{k=-\infty}^{\infty} h(k)\operatorname{sgn}(h(-(-k))) = \sum_{k=-\infty}^{\infty} h(k)\operatorname{sgn}(h(k))$$
$$= \sum_{n=-\infty}^{\infty} |h(n)| = \infty$$

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Systems The Convolution Sum

PROOF

Therefore,

$$\sum_{n=-\infty}^{\infty} |h(n)| = \infty$$

guarantees that there exists a <u>bounded</u> input that will result in an <u>unbounded</u> output, so it is also a <u>necessary</u> condition and we can write:

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$
 \leftarrow LTI system is stable

Putting sufficiency and necessity together we obtain:

n

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty \quad \Longleftrightarrow \quad \mathsf{LTI} \text{ system is stable}$$

Note: \iff means that the two statements are equivalent.

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Systems The z-Transform and System Function

The Direct *z*-Transform

► Direct *z*-Transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

Notation:

$$X(z) \equiv \mathcal{Z}\{x(n)\}$$

$$x(n) \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z)$$

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

18 / 61

Discrete-Time LTI Systems The z-Transform and System Function

z-Transform Properties

Time Domain	<i>z</i> -Domain	ROC
x(n)	X(z)	ROC: $r_2 < z < r_1$
$x_1(n)$	$X_1(z)$	ROC ₁
$x_2(n)$	$X_1(z)$	ROC ₂
$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least $ROC_1 \cap ROC_2$
x(n-k)	$z^{-k}X(z)$	ROC, except
		z = 0 (if $k > 0$)
		and $z = \infty$ (if $k < 0$)
$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
x(-n)	$X(z^{-1})$	$\frac{1}{2} < z < \frac{1}{2}$
x*(n)	$X^{*}(z^{*})$	ROC
n x(n)	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$
$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least $ROC_1 \cap ROC_2$
	Time Domain x(n) $x_1(n)$ $x_2(n)$ $a_1x_1(n) + a_2x_2(n)$ x(n - k) $a^nx(n)$ x(-n) $x^*(n)$ n x(n) $x_1(n) * x_2(n)$	$\begin{array}{c ccc} {\rm Time \ Domain} & z{\rm -Domain} \\ \hline x(n) & X(z) \\ x_1(n) & X_1(z) \\ x_2(n) & X_1(z) \\ a_1x_1(n) + a_2x_2(n) & a_1X_1(z) + a_2X_2(z) \\ x(n-k) & z^{-k}X(z) \\ \hline \\ & \\ a^nx(n) & X(a^{-1}z) \\ x(-n) & X(z^{-1}) \\ x^*(n) & X^*(z^*) \\ n x(n) & -z \frac{dX(z)}{dz} \\ x_1(n) * x_2(n) & X_1(z)X_2(z) \\ \hline \end{array}$

among others . . .

Therefore, $X(\omega)$ is periodic with a period of 2π .

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Complex Nature of $X(j\omega)$

Recall, Fourier Transform:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \in \mathbb{Q}$$

and Inverse Fourier Transform:

$$\begin{aligned} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{0} X(j\omega) e^{j\omega t} d\omega + \frac{1}{2\pi} \int_{0}^{\infty} X(j\omega) e^{j\omega t} d\omega \end{aligned}$$

<u>Note</u>: If x(t) is real, then the imaginary part of the negative frequency sinusoids (i.e., $e^{j\omega t}$ for $\omega < 0$) cancel out the imaginary part of the positive frequency sinusoids (i.e., $e^{j\omega t}$ for $\omega > 0$)

Discrete-Time LTI Filtering

LTI Filtering

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$Y(\omega) = H(\omega)X(\omega)$$

where

$$\begin{array}{lll} x(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & X(\omega) \\ h(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & H(\omega) \\ y(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & Y(\omega) \end{array}$$

 $\begin{array}{lll} H(\omega) &=& |H(\omega)|e^{j\Theta(\omega)} \\ |H(\omega)| &\equiv & \text{system gain for freq } \omega \\ \angle H(\omega) &= \Theta(\omega) &\equiv & \text{phase shift for freq } \omega \end{array}$

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Filtering **Complex Nature of X**(*j* ω) • Rectangular coordinates: rarely used in signal processing $X(j\omega) = X_R(j\omega) + j X_I(j\omega)$ where $X_R(j\omega), X_I(j\omega) \in \mathbb{R}$. • Polar coordinates: more intuitive way to represent frequency content $X(j\omega) = |X(j\omega)| e^{j \angle X(j\omega)}$ where $|X(j\omega)|, \angle X(j\omega) \in \mathbb{R}$.

Magnitude and Phase of $X(j\omega)$

- ► $|X(j\omega)|$: determines the relative presence of a sinusoid $e^{j\omega t}$ in x(t)
- ► ∠X(jω): determines how the sinusoids line up relative to one another to form x(t)

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Filtering

LTI Filtering

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
$$Y(\omega) = H(\omega)X(\omega)$$

where

$$\begin{array}{rcl} x(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & X(\omega) \\ h(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & H(\omega) \\ y(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & Y(\omega) \end{array}$$

$$H(\omega) = |H(\omega)|e^{j\Theta(\omega)}$$

$$|Y(\omega)| = |H(\omega)||X(\omega)|$$

$$\angle Y(\omega) = \Theta(\omega) + \angle X(\omega)$$

Magnitude and Phase of $X(j\omega)$

$$\begin{aligned} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)| e^{j \angle X(j\omega)} e^{j\omega t} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)| e^{j(\omega t + \angle X(j\omega))} d\omega \end{aligned}$$

- ► Recall, $e^{j(\omega t + \angle X(j\omega))} = \cos(\omega t + \angle X(j\omega)) + j\sin(\omega t + \angle X(j\omega)).$
- The larger $|X(j\omega)|$ is, the more prominent $e^{j\omega t}$ is in forming x(t).
- ∠X(jω) determines the relative phases of the sinusoids (i.e. how they line up with respect to one another).
- Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Filtering

LTI Systems as Frequency-Selective Filters

- Filter: device that discriminates, according to some attribute of the input, what passes through it
- For LTI systems, given $Y(\omega) = H(\omega)X(\omega)$
 - H(ω) acts as a weighting or spectral shaping function of the different frequency components of the signal
 - LTI system is known as a frequency shaping filter

LTI system \Leftrightarrow filter

37 / 61

Causal FIR Filters

Definition: a discrete-time finite impulse response (FIR) filter is one in which the associated impulse response has finite duration.

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=0}^{M-1} h(k)x(n-k)$$

- lower limit of k = 0 is from causality requirement
- upper limit of $0 \le M 1 < \infty$ is from the finite duration requirement; in this case the support is M consecutive points starting at time 0 and ending at M 1

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

Discrete-Time LTI Filtering

LCCDEs

Linear constant coefficient difference equations (LCCDEs) are an important class of filters that we consider in this course:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

They have a rational system function:

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} = \frac{\text{polynomial in } z}{\text{another polynomial in } z}$$

Depending on the values of N, M, a_k and b_k they can correspond to either FIR or IIR filters.

41 / 61

Causal IIR Filters

Definition: a discrete-time infinite impulse response (IIR) filter is one in which the associated impulse response has infinite duration.

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=0}^{\infty} h(k)x(n-k)$$

- lower limit of k = 0 is from causality requirement
- \blacktriangleright necessary upper limit of ∞ is from the infinite duration requirement

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

42 / 61

Discrete-Time LTI Filtering

LCCDEs

Q: Why does an LCCDE have a rational system function?

$$y(n) = -\sum_{k=1}^{N} a_{k}y(n-k) + \sum_{k=0}^{M} b_{k}x(n-k)$$

$$a_{0}y(n) = -\sum_{k=1}^{N} a_{k}y(n-k) + \sum_{k=0}^{M} b_{k}x(n-k) \quad a_{0} \equiv 1$$

$$\sum_{k=0}^{N} a_{k}y(n-k) = \sum_{k=0}^{M} b_{k}x(n-k)$$

$$\mathcal{Z}\{\sum_{k=0}^{N} a_{k}y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{M} b_{k}x(n-k)\}$$

$$\sum_{k=0}^{N} a_{k}\mathcal{Z}\{y(n-k)\} = \sum_{k=0}^{M} b_{k}\mathcal{Z}\{x(n-k)\}$$

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

z-Transform Properties

Property	Time Domain	<i>z</i> -Domain	ROC	
Notation:	x(n)	<i>X</i> (<i>z</i>)	ROC: $r_2 < z < r_1$	
	$x_1(n)$	$X_1(z)$	ROC ₁	
Linesihu	$x_2(n)$	$X_1(z)$	ROC_2	
Linearity: Time chifting:	$a_1x_1(n) + a_2x_2(n)$	$a_1 \lambda_1(z) + a_2 \lambda_2(z)$	At least $ROC_1 ROC_2$	
Time sinting.	X(n-K)	Z = X(Z)	z = 0 (if $k > 0$)	
			and $z = \infty$ (if $k < 0$)	
z-Scaling:	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$	
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$	
Conjugation:	x*(n)	$X^{*}(z^{*})$	ROC	
z-Differentiation:	n x(n)	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$	
Convolution:	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least $ROC_1 \cap ROC_2$	
			among athers	
			among others	
Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis				

Discrete-Time LTI Filtering

$$y(n) = \sum_{k=0}^{M-1} b_k x(n-k) = \sum_{k=-\infty}^{\infty} h(k) x(n-k)$$
$$H(z) = \sum_{k=0}^{M-1} b_k z^{-k}$$

Please note: upper limit is M - 1 opposed to M (which is used for the general LCCDE case) to meet common FIR convention of an M-length filter. By inspection:

$$h(n) = \left\{ egin{array}{cc} b_n & 0 \leq n \leq M-1 \ 0 & ext{otherwise} \end{array}
ight.$$

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

47 / 61

Discrete-Time LTI Filtering

LCCDEs

Dr.

$$\sum_{k=0}^{N} a_k \underbrace{\mathcal{Z}\{y(n-k)\}}_{z^{-k}Y(z)} = \sum_{k=0}^{M} b_k \underbrace{\mathcal{Z}\{x(n-k)\}}_{z^{-k}X(z)}$$

$$\sum_{k=0}^{N} a_k z^{-k}Y(z) = \sum_{k=0}^{M} b_k z^{-k}X(z)$$

$$Y(z) \sum_{k=0}^{N} a_k z^{-k} = X(z) \sum_{k=0}^{M} b_k z^{-k}$$

$$H(z) \equiv \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \quad a_0 \equiv 1$$

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 \cdot z^{-0} + \sum_{k=1}^{N} a_k z^{-k}} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$
Deepa Kundur (University of Toroto) Discrete-Time LTI Systems and Analysis 46 / 61

Direct Form II IIR Filter Implementation

Discrete-Time LTI Filtering

Discrete-Time LTI Filtering Stability of Rational System Function Filters Recall, $\sum_{n=-\infty}^{\infty} |h(n)| < \infty \iff \text{LTI system is stable}$ Dr. Deepa Kundur (University of Toroto) Discrete-Time LTI System and Analysis Stability of Rational System Function Filters $y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$ $H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$ Recall, for BIBO stability of a causal system the system poles must be strictly inside the unit circle. Why?

Discrete-Time LTI Filtering

Stability of Rational System Function Filters $H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$ $|H(z)| \leq \sum_{n=-\infty}^{\infty} |h(n)z^{-n}| = \sum_{n=-\infty}^{\infty} |h(n)||z^{-n}|$ When evaluated for |z| = 1 (i.e., on the unit circle), $|H(z)| \leq \sum_{n=-\infty}^{\infty} |h(n)| < \infty$

Therefore, BIBO stability \implies ROC includes unit circle ROC includes unit circle \implies BIBO stability is also true.

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

Autoregressive moving average (ARMA) filter:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$
$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

has both poles and zeros

► IIR

Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

Moving average (MA) filter:

$$y(n) = \sum_{k=0}^{M} b_k x(n-k)$$
$$H(z) = \sum_{k=0}^{M} b_k z^{-k}$$

- has zeros only; no poles; is BIBO stable
- ► FIR

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

• Autoregressive (AR) filter:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k)$$

$$H(z) = \frac{1}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

has poles only; no zeros

► IIR

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis

61 / 61

