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Discrete-Time LTI Systems Discrete-time Systems

Input-Output Description of Dst-Time Systems

Discrete-time
System

x(n)

Discrete-time
signal

y(n)

Discrete-time
signal

input/
excitation

output/
response

I Input-output description (exact structure of system is unknown
or ignored):

y(n) = T [x(n)]

I “black box” representation:

x(n)
T−→ y(n)
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Discrete-Time LTI Systems Discrete-time Systems

System Properties

Why is this so important?

I mathematical techniques developed to analyze systems are often
contingent upon the general characteristics of the systems being
considered

I for a system to possess a given property, the property must hold
for every possible input to the system

I to disprove a property, need a single counter-example
I to prove a property, need to prove for the general case
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Discrete-Time LTI Systems Discrete-time Systems

Terminology: Implication

If “A” then “B” Shorthand: A =⇒ B

Example 1:
it is snowing =⇒ it is at or below freezing temperature
Example 2:
α ≥ 5.2 =⇒ α is positive
Note: For both examples above, B 6=⇒ A
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Discrete-Time LTI Systems Discrete-time Systems

Terminology: Equivalence

If “A” then “B” Shorthand: A =⇒ B

and
If “B” then “A” Shorthand: B =⇒ A

can be rewritten as

“A” if and only if “B” Shorthand: A ⇐⇒ B

We can also say:

I A is EQUIVALENT to B

I A = B

=
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Discrete-Time LTI Systems Discrete-time Systems

Common Properties
I Time-invariant system: input-output characteristics do not

change with time

I a system is time-invariant iff

x(n)
T−→ y(n) =⇒ x(n − n0)

T−→ y(n − n0)

for every input x(n) and every time shift n0.
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Discrete-Time LTI Systems Discrete-time Systems

Common Properties
I Linear system: obeys superposition principle

I a system is linear iff

T [a1 x1(n) + a2 x2(n)] = a1 T [x1(n)] + a2 T [x2(n)]

for any arbitrary input sequences x1(n) and x2(n), and any
arbitrary constants a1 and a2.
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Discrete-Time LTI Systems Discrete-time Systems

Additivity:

Homogeneity:
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Discrete-Time LTI Systems Discrete-time Systems

Common Properties

I Causal system: output of system at any time n depends only on
present and past inputs

I a system is causal iff

y(n) = F [x(n), x(n − 1), x(n − 2), . . .]

for all n.

I Bounded Input-Bounded output (BIBO) Stable: every bounded
input produces a bounded output

I a system is BIBO stable iff

|x(n)| ≤ Mx <∞ =⇒ |y(n)| ≤ My <∞

for all n and for all possible bounded inputs.
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Discrete-Time LTI Systems The Convolution Sum

The Convolution Sum

Recall:

x(n) =
∞∑

k=−∞

x(k)δ(n − k)
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Discrete-Time LTI Systems The Convolution Sum

The Convolution Sum
Let the response of a linear time-invariant (LTI) system denoted T to
the unit sample input δ(n) be h(n).

δ(n)
T−→ h(n)

δ(n − k)
T−→ h(n − k)

α δ(n − k)
T−→ α h(n − k)

x(k) δ(n − k)
T−→ x(k) h(n − k)

∞∑
k=−∞

x(k)δ(n − k)
T−→

∞∑
k=−∞

x(k)h(n − k)

x(n)
T−→ y(n)
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Discrete-Time LTI Systems The Convolution Sum

The Convolution Sum

Therefore,

y(n) =
∞∑

k=−∞

x(k)h(n − k) = x(n) ∗ h(n)

for any LTI system.
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Discrete-Time LTI Systems The Convolution Sum

Causality and Convolution

For a causal system, y(n) only depends on present and past inputs
values. Therefore, for a causal system, we have:

y(n) =
∞∑

k=−∞

h(k)x(n − k)

=
−1∑

k=−∞

h(k)x(n − k) +
∞∑
k=0

h(k)x(n − k)

=
∞∑
k=0

h(k)x(n − k)

where h(n) = 0 for n < 0 to ensure causality.
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Discrete-Time LTI Systems The Convolution Sum

Stability and Convolution

It can also be shown that

∞∑
n=−∞

|h(n)| <∞ ⇐⇒ LTI system is BIBO stable

Note:

I ⇐⇒ means that the two statements are equivalent

I BIBO = bounded-input bounded-output
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Discrete-Time LTI Systems The Convolution Sum

PROOF

For a stable system, y(n) is bounded if x(n) is bounded. What are the implications on h(n)?
We have:

|y(n)| = |
∞∑

k=−∞
h(k)x(n − k)|

≤
∞∑

k=−∞
|h(k)x(n − k)| =

∞∑
k=−∞

|h(k)| · |x(n − k)|︸ ︷︷ ︸
|x(n)|≤Mx<∞

≤
∞∑

k=−∞
|h(k)|Mx = Mx

∞∑
k=−∞

|h(k)|

Therefore,
∑∞

k=−∞ |h(k)| <∞ is a sufficient condition to guarantee:

y(n) ≤ Mx

∞∑
k=−∞

|h(k)| <∞

and we can write:
∞∑

n=−∞
|h(n)| <∞ =⇒ LTI system is stable
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Discrete-Time LTI Systems The Convolution Sum

PROOF

To prove the reverse implication (i.e., necessity), assuming
∑∞

n=−∞ |h(n)| =∞ we must find a
bounded input x(n) that will always result in an unbounded y(n). Recall,

y(n) =
∞∑

k=−∞
h(k)x(n − k)

y(0) =
∞∑

k=−∞
h(k)x(0− k) =

∞∑
k=−∞

h(k)x(−k)

Consider x(n) = sgn(h(−n)); note: |x(n)| ≤ 1.

y(0) =
∞∑

k=−∞
h(k)x(−k)

=
∞∑

k=−∞
h(k)sgn(h(−(−k))) =

∞∑
k=−∞

h(k)sgn(h(k))

=
∞∑

n=−∞
|h(n)| =∞

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis 16 / 61



Discrete-Time LTI Systems The Convolution Sum

PROOF

Therefore,
∞∑

n=−∞
|h(n)| =∞

guarantees that there exists a bounded input that will result in an unbounded output, so it is
also a necessary condition and we can write:

∞∑
n=−∞

|h(n)| <∞ ⇐= LTI system is stable

Putting sufficiency and necessity together we obtain:

∞∑
n=−∞

|h(n)| <∞ ⇐⇒ LTI system is stable

Note: ⇐⇒ means that the two statements are equivalent.

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis 17 / 61

Discrete-Time LTI Systems The z-Transform and System Function

The Direct z-Transform

I Direct z-Transform:

X (z) =
∞∑

n=−∞

x(n)z−n

I Notation:

X (z) ≡ Z{x(n)}

x(n)
Z←→ X (z)
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Discrete-Time LTI Systems The z-Transform and System Function

Region of Convergence

I the region of convergence (ROC) of X (z) is the set of all values
of z for which X (z) attains a finite value

I The z-Transform is, therefore, uniquely characterized by:

1. expression for X (z)
2. ROC of X (z)
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Discrete-Time LTI Systems The z-Transform and System Function

z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X (z) ROC: r2 < |z| < r1

x1(n) X1(z) ROC1

x2(n) X1(z) ROC2

Linearity: a1x1(n) + a2x2(n) a1X1(z) + a2X2(z) At least ROC1∩ ROC2

Time shifting: x(n − k) z−kX (z) ROC, except
z = 0 (if k > 0)
and z =∞ (if k < 0)

z-Scaling: anx(n) X (a−1z) |a|r2 < |z| < |a|r1

Time reversal x(−n) X (z−1) 1
r1
< |z| < 1

r2
Conjugation: x∗(n) X∗(z∗) ROC

z-Differentiation: n x(n) −z dX (z)
dz

r2 < |z| < r1

Convolution: x1(n) ∗ x2(n) X1(z)X2(z) At least ROC1∩ ROC2

among others . . .
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Discrete-Time LTI Systems The z-Transform and System Function

Common Transform Pairs

Signal, x(n) z-Transform, X (z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z | > 1

3 anu(n) 1
1−az−1 |z | > |a|

4 nanu(n) az−1

(1−az−1)2 |z | > |a|
5 −anu(−n − 1) 1

1−az−1 |z | < |a|
6 −nanu(−n − 1) az−1

(1−az−1)2 |z | < |a|
7 (cos(ω0n))u(n) 1−z−1 cosω0

1−2z−1 cosω0+z−2 |z | > 1

8 (sin(ω0n))u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

9 (an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

10 (an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis 21 / 61

Discrete-Time LTI Systems The z-Transform and System Function

The System Function

h(n)
Z←→ H(z)

time-domain
Z←→ z-domain

impulse response
Z←→ system function

y(n) = x(n) ∗ h(n)
Z←→ Y (z) = X (z) · H(z)

Therefore,

H(z) =
Y (z)

X (z)
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Discrete-Time Fourier Analysis DTFT

Discrete-Time Fourier Transform (DTFT)

I DTFT pair:

x(n) =
1

2π

∫
2π

X (ω)e jωndω

X (ω) =
∞∑

n=−∞

x(n)e−jωn

I X (ω) is the decomposition of x(n) into its frequency
components.
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Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

Consider

X (ω + 2π) =
∞∑

n=−∞

x(n)e−j(ω+2π)n

=
∞∑

n=−∞

x(n)e−jωn · e−j2πn

=
∞∑

n=−∞

x(n)e−jωn · 1 =
∞∑

n=−∞

x(n)e−jωn = X (ω)

Therefore, X (ω) is periodic with a period of 2π.
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Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

I Since X (ω) = X (ω + 2π), when dealing with discrete
frequencies, only a continuous frequency range of length 2π
(representing one period) needs to be considered.

I Minimum frequency for ω = 2kπ, k ∈ Z
I Maximum frequency for ω = (2k + 1)π, k ∈ Z
I Convention is to use ω ∈ [0, 2π) or ω ∈ (−π, π]

I Frequency range of a discrete-time signal is considered to be
ω ∈ (−π, π]
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Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

I Continuous-Time Sinusoids: Frequency and Rate of Oscillation:

x(t) = A cos(ωt + φ)

T =
2π

ω
=

1

f

Rate of oscillation increases as ω increases (or T decreases).
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Discrete-Time Fourier Analysis DTFT

ω smaller
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Discrete-Time Fourier Analysis DTFT

ω larger, rate of oscillation higher
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Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

I Discrete-Time Sinusoids: Frequency and Rate of Oscillation:

x [n] = A cos(Ωn + φ)

Rate of oscillation increases as Ω increases UP TO A POINT then
decreases again and then increases again and then decreases again
. . . .
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Discrete-Time Fourier Analysis DTFT

MINIMUM OSCILLATION

MINIMUM OSCILLATION

MAXIMUM OSCILLATION
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Discrete-Time Fourier Analysis DTFT

0 1 3 4-1-3 5
2-2 6

0 1 3 4-1-3 5
2-2 6
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Discrete-Time Fourier Analysis DTFT

0 1 3 4-1-3 5
2-2 6

0 1 3 4-1-3 5
2-2 6
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Discrete-Time Fourier Analysis DTFT

DTFT Theorems and Properties

Property Time Domain Frequency Domain
Notation: x(n) X (ω)

x1(n) X1(ω)
x2(n) X1(ω)

Linearity: a1x1(n) + a2x2(n) a1X1(ω) + a2X2(ω)
Time shifting: x(n − k) e−jωkX (ω)
Time reversal x(−n) X (−ω)
Convolution: x1(n) ∗ x2(n) X1(ω)X2(ω)
Correlation: rx1x2 (l) = x1(l) ∗ x2(−l) Sx1x2 (ω) = X1(ω)X2(−ω)

= X1(ω)X∗2 (ω) [if x2(n) real]
Wiener-Khintchine: rxx (l) = x(l) ∗ x(−l) Sxx (ω) = |X (ω)|2

among others . . .
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Discrete-Time LTI Filtering

LTI Filtering

y(n) =
∞∑

k=−∞

x(k)h(n − k)

Y (ω) = H(ω)X (ω)

where
x(n)

F←→ X (ω)

h(n)
F←→ H(ω)

y(n)
F←→ Y (ω)

H(ω) = |H(ω)|e jΘ(ω)

|H(ω)| ≡ system gain for freq ω

∠H(ω) = Θ(ω) ≡ phase shift for freq ω
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Discrete-Time LTI Filtering

Complex Nature of X (jω)

Recall, Fourier Transform:

X (jω) =

∫ ∞
−∞

x(t)e−jωtdt ∈ C

and Inverse Fourier Transform:

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωtdω

=
1

2π

∫ 0

−∞
X (jω)e jωtdω +

1

2π

∫ ∞
0

X (jω)e jωtdω

Note: If x(t) is real, then the imaginary part of the negative frequency sinusoids

(i.e., e jωt for ω<0) cancel out the imaginary part of the positive frequency

sinusoids (i.e., e jωt for ω>0)
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Discrete-Time LTI Filtering

Complex Nature of X (jω)

I Rectangular coordinates: rarely used in signal processing

X (jω) = XR(jω) + j XI (jω)

where XR(jω),XI (jω) ∈ R.

I Polar coordinates: more intuitive way to represent frequency content

X (jω) = |X (jω)| e j∠X (jω)

where |X (jω)|,∠X (jω) ∈ R.
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Discrete-Time LTI Filtering

Magnitude and Phase of X (jω)

I |X (jω)|: determines the relative presence of a sinusoid e jωt in
x(t)

I ∠X (jω): determines how the sinusoids line up relative to one
another to form x(t)
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Discrete-Time LTI Filtering

Magnitude and Phase of X (jω)

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωtdω

=
1

2π

∫ ∞
−∞
|X (jω)| e j∠X (jω)e jωtdω

=
1

2π

∫ ∞
−∞
|X (jω)| e j(ωt+∠X (jω))dω

I Recall, e j(ωt+∠X (jω)) = cos(ωt + ∠X (jω)) + j sin(ωt + ∠X (jω)).

I The larger |X (jω)| is, the more prominent e jωt is in forming x(t).

I ∠X (jω) determines the relative phases of the sinusoids (i.e. how they line
up with respect to one another).
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Discrete-Time LTI Filtering

LTI Filtering

y(n) =
∞∑

k=−∞

x(k)h(n − k)

Y (ω) = H(ω)X (ω)

where
x(n)

F←→ X (ω)

h(n)
F←→ H(ω)

y(n)
F←→ Y (ω)

H(ω) = |H(ω)|e jΘ(ω)

|Y (ω)| = |H(ω)||X (ω)|
∠Y (ω) = Θ(ω) + ∠X (ω)
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Discrete-Time LTI Filtering

LTI Systems as Frequency-Selective Filters

I Filter: device that discriminates, according to some attribute of
the input, what passes through it

I For LTI systems, given Y (ω) = H(ω)X (ω)

I H(ω) acts as a weighting or spectral shaping function of the
different frequency components of the signal

I LTI system is known as a frequency shaping filter

LTI system ⇔ filter
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Discrete-Time LTI Filtering

Causal FIR Filters

Definition: a discrete-time finite impulse response (FIR) filter is one
in which the associated impulse response has finite duration.

y(n) =
∞∑

k=−∞

h(k)x(n − k)

=
M−1∑
k=0

h(k)x(n − k)

I lower limit of k = 0 is from causality requirement

I upper limit of 0 ≤ M − 1 <∞ is from the finite duration
requirement; in this case the support is M consecutive points
starting at time 0 and ending at M − 1
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Discrete-Time LTI Filtering

Causal IIR Filters

Definition: a discrete-time infinite impulse response (IIR) filter is one
in which the associated impulse response has infinite duration.

y(n) =
∞∑

k=−∞

h(k)x(n − k)

=
∞∑
k=0

h(k)x(n − k)

I lower limit of k = 0 is from causality requirement

I necessary upper limit of ∞ is from the infinite duration
requirement
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Discrete-Time LTI Filtering

LCCDEs

Linear constant coefficient difference equations (LCCDEs) are an
important class of filters that we consider in this course:

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

They have a rational system function:

H(z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

=
polynomial in z

another polynomial in z

Depending on the values of N ,M , ak and bk they can correspond to
either FIR or IIR filters.
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Discrete-Time LTI Filtering

LCCDEs
Q: Why does an LCCDE have a rational system function?

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

a0y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k) a0 ≡ 1

N∑
k=0

aky(n − k) =
M∑
k=0

bkx(n − k)

Z{
N∑

k=0

aky(n − k)} = Z{
M∑
k=0

bkx(n − k)}

N∑
k=0

akZ{y(n − k)} =
M∑
k=0

bkZ{x(n − k)}
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Discrete-Time LTI Filtering

z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X (z) ROC: r2 < |z| < r1

x1(n) X1(z) ROC1

x2(n) X1(z) ROC2

Linearity: a1x1(n) + a2x2(n) a1X1(z) + a2X2(z) At least ROC1∩ ROC2

Time shifting: x(n − k) z−kX (z) ROC, except
z = 0 (if k > 0)
and z =∞ (if k < 0)

z-Scaling: anx(n) X (a−1z) |a|r2 < |z| < |a|r1

Time reversal x(−n) X (z−1) 1
r1
< |z| < 1

r2
Conjugation: x∗(n) X∗(z∗) ROC

z-Differentiation: n x(n) −z dX (z)
dz

r2 < |z| < r1

Convolution: x1(n) ∗ x2(n) X1(z)X2(z) At least ROC1∩ ROC2

among others . . .
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Discrete-Time LTI Filtering

LCCDEs

N∑
k=0

ak Z{y(n − k)}︸ ︷︷ ︸
z−kY (z)

=
M∑
k=0

bk Z{x(n − k)}︸ ︷︷ ︸
z−kX (z)

N∑
k=0

akz
−kY (z) =

M∑
k=0

bkz
−kX (z)

Y (z)
N∑

k=0

akz
−k = X (z)

M∑
k=0

bkz
−k

H(z) ≡ Y (z)

X (z)
=

∑M
k=0 bkz

−k∑N
k=0 akz

−k
a0 ≡ 1

H(z) =

∑M
k=0 bkz

−k

1 · z−0 +
∑N

k=1 akz
−k

=

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k
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Discrete-Time LTI Filtering

FIR LCCDEs

y(n) =
M−1∑
k=0

bkx(n − k) =
∞∑

k=−∞

h(k)x(n − k)

H(z) =
M−1∑
k=0

bkz
−k

Please note: upper limit is M − 1 opposed to M (which is used for the general

LCCDE case) to meet common FIR convention of an M-length filter.

By inspection:

h(n) =

{
bn 0 ≤ n ≤ M − 1
0 otherwise
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Discrete-Time LTI Filtering

Block Diagram Represenation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +
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Discrete-Time LTI Filtering

FIR Filter Implementation

y(n) =
M−1∑
k=0

bkx(n − k)

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+ + + + +

...

...

Requires:

I M multiplications

I M − 1 additions

I M − 1 memory elements

Dr. Deepa Kundur (University of Toronto) Discrete-Time LTI Systems and Analysis 49 / 61

Discrete-Time LTI Filtering

IIR LCCDEs

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

H(z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

=
M∑
k=0

bkz
−k

︸ ︷︷ ︸
H1(z)

· 1

1 +
∑N

k=1 akz
−k︸ ︷︷ ︸

H2(z)

= H1(z) · H2(z)
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Discrete-Time LTI Filtering

Direct Form I IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

+

+

+

+

+

LTI All-zero system LTI All-pole system

...... ... ...

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Discrete-Time LTI Filtering

Direct Form II IIR Filter Implementation

+

+

+

+

+

LTI All-pole system
... ...

LTI All-zero system

......

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Discrete-Time LTI Filtering

Direct Form II IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

... ...

+

+

+

+

+

......

... For N>M

Requires: M + N + 1 multiplications, M + N additions, max(M,N) memory

locations
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

H(z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

Recall, for BIBO stability of a causal system the system poles must
be strictly inside the unit circle.

Why?
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters

Recall,

∞∑
n=−∞

|h(n)| <∞ ⇐⇒ LTI system is stable
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters

H(z) =
∞∑

n=−∞

h(n)z−n

|H(z)| ≤
∞∑

n=−∞

|h(n)z−n| =
∞∑

n=−∞

|h(n)||z−n|

When evaluated for |z | = 1 (i.e., on the unit circle),

|H(z)| ≤
∞∑

n=−∞

|h(n)|<∞

Therefore, BIBO stability =⇒ ROC includes unit circle
ROC includes unit circle =⇒ BIBO stability is also true.
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters

Therefore,

∞∑
n=−∞

|h(n)| <∞ ⇐⇒ LTI system
is stable

⇐⇒
H(z) ROC
includes
unit circle

For a causal rational system function, the ROC includes the unit
circle if all the poles are inside the unit circle.
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters
. . . because
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Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

I Autoregressive moving average (ARMA) filter:

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

H(z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

I has both poles and zeros

I IIR
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Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

I Moving average (MA) filter:

y(n) =
M∑
k=0

bkx(n − k)

H(z) =
M∑
k=0

bkz
−k

I has zeros only; no poles; is BIBO stable

I FIR
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Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

I Autoregressive (AR) filter:

y(n) = −
N∑

k=1

aky(n − k)

H(z) =
1

1 +
∑N

k=1 akz
−k

I has poles only; no zeros

I IIR

�
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