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Complexity of Filtering and the FFT Complexity of Filtering in the Time-Domain

Digital Filtering in the Time Domain

Let x(n) and h(n) be real signals.

Let the support of x(n) be n = 0, 1, . . . ,N − 1. We are interested in
determining y(n) for n = 0, 1, . . . ,N − 1.

y(n) = x(n) ∗ h(n)

=
∞∑

k=−∞

x(k)h(n − k)

=
N−1∑
k=0

x(k)h(n − k) n = 0, 1, . . . ,N − 1
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Digital Filtering in the Time Domain

Complexity of doing a brute-force convolution is given by:

I For fixed n:

y(n) =
N−1∑
k=0

x(k)•h(n − k)

I N real multiplications
I N − 1 real additions

I For all n (n=0, 1, . . . , N-1):
I N·N = N2 = O(N2) real multiplications
I (N − 1)·N = N(N − 1) = O(N2) real additions
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Complexity of Digital Filtering in the Time Domain

I Is O(N2) high?

I Yes.

I Idea: Maybe filtering in the frequency domain can reduce
complexity.
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Discrete Fourier Transform (DFT)

I Frequency analysis of discrete-time signals is conveniently
performed on a DSP.

I Therefore, both time-domain and frequency-domain signals must
be discrete.

I x(t)
sampling−→ x(n)

I X (ω)
sampling−→ X (2πkN ) or X (k)

I What happens when we sample in the frequency domain?
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Fourier Duality

Time Domain Frequency Domain
sinc rectangle

rectangle sinc

sinc2 triangle
triangle sinc2

ringing truncation
truncation ringing

discrete periodic
periodic discrete

continuous aperiodic
aperiodic continuous among others . . .
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DFT Intuition

aperiodic + dst in time
F←→ cts + periodic in freq

↓ sampling

periodic + dst in time
F←→ dst + periodic in freq

periodic + discrete
DTFS←→ periodic + discrete

one period of dst samples
DFT←→ one period of dst samples

n = 0, 1, . . . ,N − 1 k = 0, 1, . . . ,N − 1
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DFT Intuition

Example

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x(n)

periodic  + dst in time-domain

1

X(k)

-1 10
k

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

periodic  + dst in freq-domain

DTFS

DFT

note: signal examples are artificial
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Frequency Domain Sampling

I Recall, sampling in time results in a periodic repetition in
frequency.

x(n) = xa(t)|t=nT
F←→ X (ω) =

1

T

∞∑
k=−∞

Xa(ω +
2π

T
k)

I Similarly, sampling in frequency results in periodic repetition in
time.

xp(n) =
∞∑

l=−∞

x(n + lN)
F←→ X (k) = X (ω)|ω= 2π

N
k
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Frequency Domain Sampling

-1 10

0

k
2 N-1 N... ......

Note: N is directly proportional to the sampling rate of ω; there are N samples

per 2π
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Frequency Domain Sampling and Reconstruction

I Therefore,

x(n)
F←→ X (ω)

xp(n)
F←→ X (k)

I Implications:
I The samples of X (ω) can be used to reconstruct xp(n).
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Frequency Domain Sampling and Reconstruction

I Q: Can we reconstruct x(n) from the samples of X (ω)?
I Can we reconstruct x(n) from xp(n)?

I A: Maybe.

xp(n) =

[
∞∑

l=−∞

x(n + lN)

]
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Frequency Domain Sampling and Reconstruction
N = 4

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7

2

1 1

x(n)

=x(n)

-1 10
n

x(n)

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

=x(n)

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x  (n)p

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x  (n)p
time-domain aliasing

no temporal aliasing
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Frequency Domain Sampling and Reconstruction

I x(n) can be recovered from xp(n) if there is no overlap when
taking the periodic repetition.

I If x(n) is finite duration and non-zero in the interval
0 ≤ n ≤ L− 1, then

x(n) = xp(n), 0 ≤ n ≤ N − 1 when N ≥ L

I If N < L then, x(n) cannot be recovered from xp(n).
I or equivalently X (ω) cannot be recovered from its samples

X
(
2π
N k
)

due to time-domain aliasing
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DTFT, DTFS and DFT

x(n) for all n
DTFT←→ X (ω) for all ω

xp(n) for all n
DTFS←→ X (k) for all k

x̂(n)
DFT←→ X̂ (k)

where

x̂(n) =

{
xp(n) for n = 0, . . . ,N − 1
0 otherwise

and

X̂ (k) =

{
X (k) for n = 0, . . . ,N − 1
0 otherwise
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The Discrete Fourier Transform Pair

I DFT and inverse-DFT (IDFT):

X (k) =
N−1∑
n=0

x(n)e−j2πk
n
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)e j2πk
n
N , n = 0, 1, . . . ,N − 1

Note: we drop the ·̂ notation from now on.
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Important DFT Properties

Property Time Domain Frequency Domain
Notation: x(n) X (k)
Periodicity: x(n) = x(n + N) X (k) = X (k + N)
Linearity: a1x1(n) + a2x2(n) a1X1(k) + a2X2(k)
Time reversal x(N − n) X (N − k)

Circular time shift: x((n − l))N X (k)e−j2πkl/N

Circular frequency shift: x(n)e j2πln/N X ((k − l))N
Complex conjugate: x∗(n) X∗(N − k)
Circular convolution: x1(n)⊗ x2(n) X1(k)X2(k)
Multiplication: x1(n)x2(n)

1
N
X1(k)⊗ X2(k)

Parseval’s theorem:
∑N−1

n=0 x(n)y∗(n) 1
N

∑N−1
k=0 X (k)Y ∗(k)
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Complexity of the DFT (and IDFT)

X (k) =
N−1∑
n=0

x(n)e−j2πk
n
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)e j2πk
n
N , n = 0, 1, . . . ,N − 1

New notation: WN = e−j
2π
N

X (k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)W−kn
N , n = 0, 1, . . . ,N − 1
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Complexity of the DFT

X (k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . ,N − 1

Straightforward implementation of DFT to compute X (k) for
k = 0, 1, . . . ,N − 1 requires:

I N2 complex multiplications
I 1 complex mult =

(aR + jaI )×(bR + jbI ) = (aR×bR−aI ×bI )+ j(aR×bI +aI ×bR)
= 4 real mult + 2 real add

I 4N2 = O(N2) real multiplications
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Complexity of the DFT

X (k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . ,N − 1

Straightforward implementation of DFT to compute X (k) for
k = 0, 1, . . . ,N − 1 requires:

I N(N − 1) complex additions
I 1 complex add =

(aR + jaI )+(bR + jbI ) = (aR + bR) + j(aI + bI ) = 2 real add
I 2N(N − 1) + 2N2 (from complex mult) real additions

= 2N(2N − 1) = O(N2) real additions.
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Complexity of the DFT

I Is O(N2) high?

I Yes. A linear increase in the length of the DFT increases the
complexity by a power of two.

I Given the multitude of applications where Fourier analysis is
employed (linear filtering, correlation analysis, spectrum
analysis), a method of efficient computation is needed.
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Complexity of the DFT
I How can we reduce complexity?

I Exploit symmetry of the complex exponential.

W
k+N

2
N = −W k

N

LHS = W
k+N

2
N = e−j2π

k+N/2
N = e−j2π

k
N e−j2π

N/2
N

= e−j2π
k
N e−jπ

= e−j2π
k
N · (cos(−π) + j sin(−π))

= e−j2π
k
N (−1)

= −e−j2π
k
N = −W k

N = RHS
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Complexity of the DFT
I How can we reduce complexity?

I Exploit periodicity of the complex exponential.

W k+N
N = W k

N

LHS = W k+N
N = e−j2π

k+N
N = e−j2π

k
N e−j2π

N
N

= e−j2π
k
N e−j2π

= e−j2π
k
N · (cos(−2π) + j sin(−2π))

= e−j2π
k
N (1)

= e−j2π
k
N = W k

N = RHS
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Radix-2 FFT: Decimation-in-time

X (k) =
N−1∑
n=0

x(n)W kn
N k = 0, 1, . . . ,N − 1

=
∑
n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

=

(N/2)−1∑
m=0

x(2m)W
k(2m)
N +

(N/2)−1∑
m=0

x(2m + 1)W
k(2m+1)
N

=

(N/2)−1∑
m=0

x(2m)︸ ︷︷ ︸
≡f1(m)

W 2km
N +

(N/2)−1∑
m=0

x(2m + 1)︸ ︷︷ ︸
≡f2(m)

W 2km
N W k

N
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Radix-2 FFT: Decimation-in-time

Note: W 2
N = e−j

2π
N
·2 = e−j

2π
N/2 = WN/2

X (k) =

(N/2)−1∑
m=0

x(2m)︸ ︷︷ ︸
≡f1(m)

W 2km
N +

(N/2)−1∑
m=0

x(2m + 1)︸ ︷︷ ︸
≡f2(m)

W 2km
N W k

N

=

(N/2)−1∑
m=0

f1(m)W km
N/2︸ ︷︷ ︸

N
2
−DFT of f1(m)

+W k
N

(N/2)−1∑
m=0

f2(m)W km
N/2︸ ︷︷ ︸

N
2
−DFT of f2(m)

= F1(k) + W k
NF2(k), k = 0, 1, . . . ,N − 1
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Radix-2 FFT: Decimation-in-time

Note: since F1(k) and F2(k) are N
2

-DFTs:

F1(k) = F1(k +
N

2
)

F2(k) = F2(k +
N

2
)

we have,

X (k) = F1(k) + W k
NF2(k)

X (k +
N

2
) = F1(k +

N

2
) + W

k+N
2

N F2(k +
N

2
)

= F1(k)−W k
NF2(k)

since W
k+ N

2

N = e−j 2πN (k+ N
2 ) = e−j 2πN k · e−j 2πN

N
2 = e−j 2πN k(−1) = −W k

N
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Radix-2 FFT: Decimation-in-time

Therefore,

X (k) = F1(k) + W k
NF2(k) k = 0, 1, . . . ,

N

2
− 1

X (k +
N

2
) = F1(k)−W k

NF2(k) k = 0, 1, . . . ,
N

2
− 1
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Radix-2 FFT: Decimation-in-time

Repeating the decimation-in-time for f1(n) and f2(n), we obtain:

v11(n) = f1(2n) n = 0, 1, . . . ,N/4− 1

v12(n) = f1(2n + 1) n = 0, 1, . . . ,N/4− 1

v21(n) = f2(2n) n = 0, 1, . . . ,N/4− 1

v22(n) = f2(2n + 1) n = 0, 1, . . . ,N/4− 1

and

F1(k) = V11(k) + W k
N/2V12(k) k = 0, 1, . . . ,N/4− 1

F1(k + N/4) = V11(k)−W k
N/2V12(k) k = 0, 1, . . . ,N/4− 1

F2(k) = V21(k) + W k
N/2V22(k) k = 0, 1, . . . ,N/4− 1

F2(k + N/4) = V21(k)−W k
N/2V22(k) k = 0, 1, . . . ,N/4− 1

consisting of N/4-DFTs.
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Radix-2 FFT: Decimation-in-time

For N = 8.

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

x(1)
x(5)

x(3)
x(7)

Combine
4-point
DFTs

x(0)
x(4)

x(2)
x(6)

2-point
DFT

2-point
DFT

Combine
2-point
DFTs

2-point
DFT

2-point
DFT

Combine
2-point
DFTs
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Radix-2 FFT: Decimation-in-time

For N = 8.

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

Stage 1 Stage 2 Stage 3

-1

-1

-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

0W 8

0W 8

0W 8

0W 8

0W 8

0W 8

1W 8

2W 8

2W 8

0W 8

2W 8
3W 8
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FFT Complexity

-1

WN
r

a

b

rr
NA = a + W   b

rr
NA = a - W   b

I Each butterfly requires:
I one complex multiplication
I two complex additions

I In total, there are:
I N

2 butterflies per stage
I logN stages

I Order of the overall DFT computation is: O(N logN)
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Convolution using FFT
To compute the convolution of x(n) (support: n = 0, 1, . . . , L− 1)
and h(n) (support: n = 0, 1, . . . ,M − 1):

1. Assign N to be the smallest power of 2 such that N = 2r ≥ M + L− 1.

2. Zero pad both x(n) and h(n) to have support n = 0, 1, . . . ,N − 1.

3. Take the N-FFT of x(n) to give X (k), k = 0, 1, . . . ,N − 1.

4. Take the N-FFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

5. Produce Y (k) = X (k) · H(k), k = 0, 1, . . . ,N − 1.

6. Take the N-IFFT of Y (k) to give y(n), n = 0, 1, . . . ,N − 1.
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Convolution using FFT
To compute the convolution of x(n) (support: n = 0, 1, . . . , L− 1)
and h(n) (support: n = 0, 1, . . . ,M − 1):

1. Assign N to be the smallest power of 2 such that N = 2r ≥ M + L− 1.

2. Zero pad both x(n) and h(n) to have support n = 0, 1, . . . ,N − 1.
O(1)

3. Take the N-FFT of x(n) to give X (k), k = 0, 1, . . . ,N − 1.

4. Take the N-FFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.
O(N logN)

5. Produce Y (k) = X (k) · H(k), k = 0, 1, . . . ,N − 1.
O(N)

6. Take the N-IFFT of Y (k) to give y(n), n = 0, 1, . . . ,N − 1.
O(N logN)
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Complexity of Convolution using FFT

Therefore, the overall complexity of conducting convolution via the
FFT is:

O(N logN)

which is lower than O(N2) through direction computation of
convolution in the time-domain. �
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