

Property	Time Domain	Frequency Domain
Notation:	<i>x</i> (<i>n</i>)	<i>X</i> (<i>k</i>)
Periodicity:	x(n) = x(n+N)	X(k) = X(k+N)
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(k) + a_2X_2(k)$
Time reversal	x(N-n)	X(N-k)
Circular time shift:	$x((n-l))_N$	$X(k)e^{-j2\pi kl/N}$
Circular frequency shift:	$x(n)e^{j2\pi ln/N}$	$X((k-l))_N$
Complex conjugate:	$x^{*}(n)$	$X^{*}(N-k)$
Circular convolution:	$x_1(n) \otimes x_2(n)$	$X_1(k)X_2(k)$
Multiplication:	$x_1(n)x_2(n)$	$\frac{1}{M}X_1(k)\otimes X_2(k)$
Parseval's theorem:	$\sum_{n=0}^{N-1} x(n) y^*(n)$	$\frac{1}{N}\sum_{k=0}^{N-1}X(k)Y^{*}(k)$

The Discrete Fourier Transform Pair

► DFT and inverse-DFT (IDFT):

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi k \frac{n}{N}}, \quad k = 0, 1, \dots, N-1$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi k \frac{n}{N}}, \quad n = 0, 1, \dots, N-1$$

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

2 / 58

Circular Convolution

Assume: $x_1(n)$ and $x_2(n)$ have support n = 0, 1, ..., N - 1.

$$x_{1}(n) \otimes x_{2}(n) = \sum_{k=0}^{N-1} x_{1}(k) x_{2}((n-k))_{N}$$
$$= \sum_{k=0}^{N-1} x_{2}(k) x_{1}((n-k))_{N}$$

where $(n)_N = n \mod N =$ remainder of n/N.

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

6 / 58

Thus, $x((n))_N$ is a periodic signal comprised of the following repeating pattern: $\{x(0), x(1), \dots x(N-2), x(N-1)\}$.

Overlap During Periodic Repetition

A periodic repetition makes an aperiodic signal x(n), periodic to produce $\tilde{x}(n)$.

$$ilde{\mathbf{x}}(n) = \sum_{l=-\infty}^{\infty} \mathbf{x}(n-lN)$$

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

Overlap During Periodic Repetition

A periodic repetition makes an aperiodic signal x(n), periodic to produce $\tilde{x}(n)$.

There are two important parameters:

- 1. smallest support length of the signal x(n)
- 2. period N used for repetition that determines the period of $\tilde{x}(n)$
- smallest support length > period of repetition
 - ► there will be overlap
- smallest support length \leq period of repetition
 - ► there will be no overlap $\Rightarrow x(n)$ can be recovered from $\tilde{x}(n)$
- Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

9 / 58

10 / 58

Circular Convolution: One Interpretation

Assume: $x_1(n)$ and $x_2(n)$ have support $n = 0, 1, \dots, N - 1$.

To compute $\sum_{k=0}^{N-1} x_1(k) x_2((n-k))_N$ (or $\sum_{k=0}^{N-1} x_2(k) x_1((n-k))_N$):

1. Take the periodic repetition of $x_2(n)$ with period N:

$$\tilde{x}_2(n) = \sum_{l=-\infty}^{\infty} x_2(n-lN)$$

2. Conduct a standard linear convolution of $x_1(n)$ and $\tilde{x}_2(n)$ for n = 0, 1, ..., N - 1:

$$x_1(n) \otimes x_2(n) = x_1(n) * \tilde{x}_2(n) = \sum_{k=-\infty}^{\infty} x_1(k) \tilde{x}_2(n-k) = \sum_{k=0}^{N-1} x_1(k) \tilde{x}_2(n-k)$$

Note: $x_1(n) \otimes x_2(n) = 0$ for $n < 0$ and $n \ge N$.

Circular Convolution: Another Interpretation

Assume: $x_1(n)$ and $x_2(n)$ have support n = 0, 1, ..., N - 1.

To compute
$$\sum_{k=0}^{N-1} x_1(k) x_2((n-k))_N$$
 (or $\sum_{k=0}^{N-1} x_2(k) x_1((n-k))_N$):

1. Conduct a linear convolution of $x_1(n)$ and $x_2(n)$ for all n:

$$x_L(n) = x_1(n) * x_2(n) = \sum_{k=-\infty}^{\infty} x_1(k) x_2(n-k) = \sum_{k=0}^{N-1} x_1(k) x_2(n-k)$$

2. Compute the periodic repetition of $x_L(n)$ and window the result for n = 0, 1, ..., N - 1:

$$x_1(n) \otimes x_2(n) = \sum_{l=-\infty}^{\infty} x_l(n-lN), \quad n = 0, 1, ..., N-1$$

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

21 / 58

Overlap-Save and Overlap-Add Circular and Linear Convolution

Using DFT for Linear Convolution

Let x(n) have support $n = 0, 1, \dots, L-1$. Let h(n) have support $n = 0, 1, \dots, M-1$.

We can set $N \ge L + M - 1$ and zero pad x(n) and h(n) to have support n = 0, 1, ..., N - 1.

- 1. Take N-DFT of x(n) to give X(k), $k = 0, 1, \dots, N-1$.
- 2. Take *N*-DFT of h(n) to give H(k), k = 0, 1, ..., N 1.
- 3. Multiply: $Y(k) = X(k) \cdot H(k), k = 0, 1, ..., N 1.$
- 4. Take *N*-IDFT of Y(k) to give y(n), n = 0, 1, ..., N 1.

Using DFT for Linear Convolution

Therefore, circular convolution and linear convolution are related as follows:

$$x_{\mathcal{C}}(n) = x_1(n) \otimes x_2(n) = \sum_{l=-\infty}^{\infty} x_l(n-lN)$$

for n = 0, 1, ..., N - 1

Q: When can one recover $x_L(n)$ from $x_C(n)$? When can one use the DFT (or FFT) to compute linear convolution?

A: When there is no overlap in the periodic repetition of $x_L(n)$. When support length of $x_L(n) \leq N$.

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

22 / 58

Overlap-Save and Overlap-Add Filtering of Long Data Sequences

Filtering of Long Data Sequences

- The input signal x(n) is often very long especially in real-time signal monitoring applications.
- For linear filtering via the DFT, for example, the signal must be limited size due to memory requirements.

Overlap-Save and Overlap-Add Filtering of Long Data Sequences

Filtering of Long Data Sequences

- Strategy:
 - 1. Segment the input signal into fixed-size blocks prior to processing.
 - 2. Compute DFT-based linear filtering of each block separately via the FFT.
 - 3. Fit the output blocks together in such a way that the overall output is equivalent to the linear filtering of x(n) directly.
- Main advantage: samples of the output y(n) = h(n) * x(n) will be available real-time on a block-by-block basis.

Filtering of Long Data Sequences

- All N-input samples are required simultaneously by the FFT operator.
- ► Complexity of *N*-FFT is *N* log(*N*).
- If N is too large as for long data sequences, then there is a significant delay in processing that precludes real-time processing.

Overlap-Save and Overlap-Add Filtering of Long Data Sequences

Filtering of Long Data Sequences

- Goal: FIR filtering: y(n) = x(n) * h(n)
- ► Two approaches to real-time linear filtering of long inputs:
 - Overlap-Add Method
 - Overlap-Save Method
- Assumptions:
 - FIR filter h(n) length = M
 - Block length = $L \gg M$

Overlap-Save and Overlap-Add Overlap-Add Method

Overlap-Add Method

Deals with the following signal processing principles:

- ▶ The <u>linear</u> convolution of a discrete-time signal of length *L* and a discrete-time signal of length *M* produces a discrete-time convolved result of length L + M 1.
- <u>Add</u>ititvity:

$$(x_1(n)+x_2(n))*h(n) = x_1(n)*h(n)+x_2(n)*h(n)$$

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add

30 / 58

Overlap-Add Filtering Stage

- makes use of the *N*-DFT and *N*-IDFT where: N = L + M 1
 - Thus, zero-padding of x(n) and h(n) that are of length L, M < N is required.</p>
 - The actual implementation of the DFT/IDFT will use the FFT/IFFT for computational simplicity.

33 / 58

Output blocks $y_m(n)$ must be fitted together appropriately to generate:

The support overlap amongst the $y_m(n)$ blocks must be accounted for.

Overlap-Save and Overlap-Add Overlap-Add Method

Overlap-Add Addition Stage

From the <u>Add</u>ititvity property, since:

$$\begin{aligned} x(n) &= x_1(n) + x_2(n) + x_3(n) + \dots = \sum_{m=1}^{\infty} x_m(n) \\ x(n) * h(n) &= (x_1(n) + x_2(n) + x_3(n) + \dots) * h(n) \\ &= x_1(n) * h(n) + x_2(n) * h(n) + x_3(n) * h(n) + \dots \\ &= \sum_{m=1}^{\infty} x_m(n) * h(n) = \sum_{m=1}^{\infty} y_m(n) \end{aligned}$$

Overlap-Add Overlap-Add Method Break the input signal x(n) into non-overlapping blocks x_m(n) of length L. Zero pad h(n) to be of length N = L + M - 1. Take N-DFT of h(n) to give H(k), k = 0, 1, ..., N - 1. For each block m: Zero pad x_m(n) to be of length N = L + M - 1. Take N-DFT of x_m(n) to give X_m(k), k = 0, 1, ..., N - 1. For each block m: Zero pad x_m(n) to be of length N = L + M - 1. Take N-DFT of x_m(n) to give X_m(k), k = 0, 1, ..., N - 1. For each block m: Take N-DFT of x_m(k) to give X_m(k), k = 0, 1, ..., N - 1. Multiply: Y_m(k) = X_m(k) · H(k), k = 0, 1, ..., N - 1. Form y(n) by overlapping the last M - 1 samples of y_m(n) with the first M - 1 samples of y_{m+1}(n) and adding the result.

Overlap-Save and Overlap-Add Overlap-Save Method

Overlap-Save Method

Convolution of x_m(n) with support n = 0, 1, ..., N − 1 and h(n) with support n = 0, 1, ..., M − 1 via the N-DFT will produce a result y_{C,m}(n) such that:

 $y_{C,m}(n) = \begin{cases} \text{aliasing corruption} & n = 0, 1, \dots, M - 2\\ y_{L,m}(n) & n = M - 1, M, \dots, N - 1 \end{cases}$

where $y_{L,m}(n) = x_m(n) * h(n)$ is the desired output.

- The first M 1 points of a the current filtered output block $y_m(n)$ must be discarded.
- ► The previous filtered block y_{m-1}(n) must compensate by providing these output samples.

Overlap-Save and Overlap-Add Overlap-Save Method

Overlap-Save Input Segmentation Stage

- 1. All input blocks $x_m(n)$ are of length N = (L + M 1) and contain sequential samples from x(n).
- 2. Input block $x_m(n)$ for m > 1 overlaps containing the first M 1 points of the previous block $x_{m-1}(n)$ to deal with aliasing corruption.
- 3. For m = 1, there is no previous block, so the first M 1 points are zeros.

Using DFT for Circular Convolution N = L + M - 1.Let $x_m(n)$ have support n = 0, 1, ..., N - 1. Let h(n) have support n = 0, 1, ..., M - 1. We zero pad h(n) to have support n = 0, 1, ..., N - 1. 1. Take N-DFT of $x_m(n)$ to give $X_m(k)$, k = 0, 1, ..., N - 1. 2. Take N-DFT of h(n) to give H(k), k = 0, 1, ..., N - 1. 3. Multiply: $Y_m(k) = X_m(k) \cdot H(k)$, k = 0, 1, ..., N - 1. 4. Take N-IDFT of $Y_m(k)$ to give $y_{C,m}(n)$, n = 0, 1, ..., N - 1.

Overlap-Save and Overlap-Add

Input signal blocks:

M - 1zeros

Output signal blocks:

Discard

M-1points

 $x_1(n)$

M -

point overlap

 $y_1(n)$

Discard

M-1points

Overlap-Save Method

 $x_2(n)$

M-1

point

 $y_2(n)$

Overlap-Save and Overlap-Add

overlap

Discard M - 1

points

 $x_3(n)$

 $y_3(n)$

58 / 58