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Intro to Audio Signals Amplitude and Loudness

Sound

I Sound: vibration transmitted through a medium (gas, liquid,
solid and plasma) composed of frequencies capable of being
detected by ears.

I Note: sound cannot travel through a vacuum.

I Human detectable sound is often characterized by air pressure
variations detected by the human ear.

I The amplitude, frequency and relative phase of the air pressure
signal components determine (in part) the way the sound is
perceived.
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Intro to Audio Signals Amplitude and Loudness

Sinusoids and Sound: Amplitude

I A fundamental unit of sound is the sinusoidal signal.

xa(t) = A cos(2πF0t + θ), t ∈ R

I A ≡ volume
I F0 ≡ pitch (more on this . . . )
I θ ≡ phase (more on this . . . )
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Intro to Audio Signals Amplitude and Loudness

Sound Volume

I Volume = Amplitude of sound waves/audio signals

I quoted in dB, which is a logarithmic measure; 10 log(A2)
I no sound/null is −∞ dB

I Loudness is a subjective measure of sound psychologically
correlating to the strength of the sound signal.

I the volume is an objective measure and does not have a
one-to-one correspondence with loudness

I perceived loudness varies from person-to-person and depends on
frequency and duration of the sound
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Intro to Audio Signals Amplitude and Loudness

Music Volume Dynamic Range

Tests conducted for the musical note: C6 (F0 = 1046.502 Hz).

Dynamic Level Decibels
Threshold of hearing 0

ppp (pianissimo) 40
p (piano) 60
f (forte) 80

fff (fortississimo) 100
Threshold of pain 120
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Intro to Audio Signals Frequency and Pitch

Sinusoids and Sound: Frequency

I A fundamental unit of sound is the sinusoidal signal.

xa(t) = A cos(2πF0t + θ), t ∈ R

I A ≡ volume
I F0 ≡ pitch
I θ ≡ phase (more on this . . . )
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Intro to Audio Signals Frequency and Pitch

Pure Frequency

I Q: What type of sound does a pure frequency produce?

I A: A pure tone with a single pitch.

I Q: Can any instrument produce a pure tone by playing a single
note?

I A: No.
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Intro to Audio Signals Frequency and Pitch

Tuning Forks

I A tuning fork is a two-pronged instrument that is an acoustic
resonator. It is usually made out of steel and resonates at a
specific constant pitch which is a function of the length of the
prongs.

I Striking the tuning fork will produce the required sounds
although initially there may be overtones that die out quickly.

I A very common tuning fork used by musicians produces the A
note (F0 = 440 Hz), which is international concert pitch used to
tune orchestras.
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Intro to Audio Signals Frequency and Pitch

Frequency and Pitch

I Sinusoids can be represented either as:

xa(t) = A cos(2πF0t + θ), t ∈ R

or for mathematical convenience when interpreting as Fourier
signal components as:

xa(t) = Ae j(2πF0t+θ), t ∈ R

I Pitch is directly related to the frequency F0.

I To be able to hear a frequency F0, it has to be in the human
audible range.
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Intro to Audio Signals Frequency and Pitch

Harmonically Related Frequencies and Pitch

Scientific Designation Frequency (Hz) k for F0 = 8.176

C1 32.703 4
C2 65.406 8
C3 130.813 16

C4 (middle C) 261.626 32
C5 523.251 64
C6 1046.502 128
C7 2093.005 256
C8 4186.009 512

C1 C2 C3 C4 C5 C6 C7 C8
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Intro to Audio Signals Frequency and Pitch

Harmonically Related Frequencies

I Recall harmonically related sinusoids have the following analytic
form for k ∈ Z:

xa,k(t) = A cos(2πkF0t + θ)

or
xa,k(t) = Ae j(2πkF0t+θ)

I They are used in the context of the Fourier Series to build
periodic signals:

x(t) =
∞∑

k=−∞

X (k)e j(2πkF0t)
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Intro to Audio Signals Frequency and Pitch

Signature Sounds

I Q: If two different people sing the same note or two different
instruments play the same note, why do they sound different?

I The notes are not pure tones. There are natural overtones and
undertones that provide distinguishing signatures that can be
viewed in the associated spectra.
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Intro to Audio Signals Frequency and Pitch

Fourier Transforms of the Same Note

0
f

Instrument A

0
f

Instrument B

0
f

Tuning Fork
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Intro to Audio Signals Frequency and Pitch

Human Audible Range

I Hearing is usually limited to frequencies between 20 Hz and 20
kHz.

I The upper limit decreases with age.
I The audible frequency range is different for animals
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Intro to Audio Signals Frequency and Pitch

Animal Audible Range

Species Approx Range (Hz)
human 20 - 20,000
dog 67 - 45,000
rabbit 360 - 42,000
bat 2,000 - 110,000
goldfish 20 - 3,000

Reference: R.R. Fay (1988), Hearing in Vertebrates: A Psychophysics
Databook.
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Intro to Audio Signals Phase and Sound

Sinusoids and Sound: Phase

I A fundamental unit of sound is the sinusoidal signal.

xa(t) = A cos(2πF0t + θ), t ∈ R

I A ≡ volume
I F0 ≡ pitch
I θ ≡ phase
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Intro to Audio Signals Phase and Sound

Phase and Sound

Consider a general sound signal x(t) that is comprised of frequency
components each with a specific phase shift.

x(t) =

∫ ∞
−∞

X (f )e j2πf tdf

I |X (f )|: relative volume of a sinusoidal component

I ∠X (f ): relative phase of a sinusoidal component
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Intro to Audio Signals Phase and Sound

Phase and Sound

I If x(t) is the general sound signal, then x(−t) is the sound
signal in reverse.

I Q: Do x(t) and x(−t) sound similar?
I A: No.
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Intro to Audio Signals Phase and Sound

Phase and Sound

I Recall, from the continuous-time Fourier transform (CTFT) that
for a real signal x(t):

x(t)
F←→ X (f )

x(−t)
F←→ X (−f )

and
X (f ) = X ∗(−f )
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Intro to Audio Signals Phase and Sound

Phase and Sound

I Taking the magnitude and phase of both sides we have:

X (f ) = X ∗(−f )

|X (f )| = |X ∗(−f )| = |X (−f )|
∠X (f ) = ∠X ∗(−f ) = −∠X (−f )

I Conjugate Symmetry (for real signals x(t)):
I CTFT magnitude is even
I CTFT phase is odd

Dr. Deepa Kundur (University of Toronto) Audio DSP 20 / 56



Intro to Audio Signals Phase and Sound

Phase and Sound

I Therefore, for

x(t)
F←→ X (f )

x(−t)
F←→ X (−f )

I |X (f )| = |X (−f )| ⇒ the CTFT magnitudes for forward and
reverse sound signals are exactly the same.

I ∠X (f ) 6= ∠X (−f )⇒ the CTFT phases for forward and reverse
sound signals are different.

I Therefore, the relative phase of the sinusoidal components of
sound contains very salient perceptual information much like for
images.
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Intro to Audio Signals Auditory Masking

Auditory Masking

I occurs when the perceived quality of one (primary) sound is
affected by the presence of another (secondary) sound

I Simultaneous masking: the secondary sound is heard at the
same time as the primary sound

I Can be exploited (as we see in an upcoming lab) to mask
non-ideal signal processing.
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Audio Digital Signal Processing Analog and Digital Audio

Why Digitize Audio?

I Fidelity of digital audio is much higher than analog audio.

I Manipulation tools for digital audio are much more sophisticated
than those available for analog audio.

I Compression of digital audio provides significantly reduced
storage requirements.

I Storage of digital audio (e.g., CDs) are much more convenient
and compact.

I Duplication of digital audio is exact in contrast to analog audio.
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Audio Digital Signal Processing Analog and Digital Audio

Benefits of Digital Audio

I Convenient recording, enhancement, mass-production and
distribution.

I CDs, online stores such as iTunes, etc.
I data files are distributed instead of physical media storing the

information such as records and tapes.
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Audio Digital Signal Processing Analog and Digital Audio

Concerns about Digital Audio

I Convenient recording, enhancement, mass-production and
distribution.

I unlawful manipulation of recorded audio is difficult to detect
I piracy: unlawful copying and redistribution of copyrighted

content
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Audio Digital Signal Processing Analog and Digital Audio

Analog vs. Digital Audio: Analog Audio System

Analog
audio
signal

Transmission/
Storage

Loudspeaker

Transducer
(e.g., microphone)

I microphone: converts sound into an electrical signal;
air pressure → motion of conductor/coil → magnetic field → electrical signal

I loudspeaker: converts electrical signal into acoustic waves;
electrical signal → magnetic field → motion → air pressure
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Audio Digital Signal Processing Analog and Digital Audio

Analog vs. Digital Audio: Analog Audio System

Analog
audio
signal

Transmission/
Storage

Loudspeaker

Transducer
(e.g., microphone)

I associated circuits suffer from inherent noise (noise floor)

I capacitance and inductance of the circuits limit bandwidth, and resistance
limits amplitude
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Audio Digital Signal Processing Analog and Digital Audio

Analog vs. Digital Audio: Digital Audio Chain

Analog
audio
signal

Digital
audio
signal

Transmission/
Storage

D/A Converter

A/D Converter Error Correction
Coding (ECC)

ECC
Decoding

I fidelity limited by quantization noise

I bandwidth limited by sampling rate

I dynamic range limited by bit resolution
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter

Anti-aliasing Filter:
I ensures that analog audio input does not contain frequency

components higher than half of the sampling frequency (to avoid
aliasing)

I Example: C6713 DSP, Fs = 8 kHz, therefore anti-aliasing filter
must have a passband of 0 Hz to 4000 Hz.
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter

Sample and Hold:
I holds a sampled analog audio value for a short time while the

A/D converts and interprets the value as a digital
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter

A/D:
I converts a sampled data audio value into a digital number, in

part, through quantization of the amplitude

Dr. Deepa Kundur (University of Toronto) Audio DSP 34 / 56

Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter

Processing for Transmission/Storage:
I transmission/storage contains inherent non-idealities that cause

errors in the received/retrieved data symbols

I error correction coding (ECC) is employed to add redundancy to
the digital signal so that errors can be compensated for during
decoding
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Audio Digital Signal Processing Analog and Digital Audio

Error Correction Coding

Example: N-repetition code

Input Signal Bit Coded Sequence
0 0 0 0 · · · 0︸ ︷︷ ︸

N zeros

1 1 1 1 · · · 1︸ ︷︷ ︸
N ones

Therefore, for N = 3 the following input signal sequence: 0 0 1 would
be coded as follows: 0 0 0 0 0 0 1 1 1.
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Audio Digital Signal Processing Analog and Digital Audio

Error Correction Coding

Q: How would you interpret receiving the following coded sequence
(with possible error):

1 1 1 0 1 0 0 0 0?

1 1 1︸ ︷︷ ︸
1

0 1 0︸ ︷︷ ︸
0

0 0 0︸ ︷︷ ︸
0

A: Decoding can make use of majority vote logic.
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Audio Digital Signal Processing Analog and Digital Audio

Error Correction Coding

Coder for N = 3:

Input Signal Bit Coded Sequence
0 0 0 0
1 1 1 1

Majority vote logic decoder for N = 3:

Received Coded Seq Decoded Signal Bit
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter

D/A:
I converts a digital audio signal into a “staircase”-like signal for

further reconstruction
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

A/D
Processing for
Transmission/

Storage
D/A

Analog audio
input (from
microphone
transducer)

Bandlimited
analog audio
signal

Sampled data
signal

Analog
audio
output

Cts-time dst-amp 
“staricase” signal

Digital
signal
{0100101}

Digital
signal
{0110001}

Audio DSP System

Antialiasing
Filter

Sample 
and Hold

Reconstruction
Filter

Reconstruction Filter:
I converts a “staircase”-like signal into an analog filter through

lowpass filtering

I depending on the application the filter can be similar to the
anti-aliasing filter, or may be very cheap (e.g., compact disk
receivers), or may using a different sampling rate for special
effects
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

The “quality” of digitizing audio is related to the following
parameters:

I sampling rate (Hz)

I bit depth (bits/sample) and dynamic range (related to number
of quantization levels)

I mono vs. stereo
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Audio Digital Signal Processing Analog and Digital Audio

Digitizing Audio

Note: For the same cost, digital audio provides higher signal-to-noise
ratio or lower mean-square error between the real sound and what is
recorded/played.

I It is less expensive to increase sampling rate and quantization
depth (i.e., reduce quantization noise) than to use less noisy
analog circuitry (i.e., reduce noise floor)

I When signals are represented digitally the natural noise in the
circuits can be circumvented via error correction coding. Thus,
it is possible to have near perfect storage/transmission.
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Audio Digital Signal Processing Audio Quality

Audio Quality and Sampling Rate

Audio Quality as a Function of Sampling Rate:

Sampling Rate (Hz) Quality Similar to
8,000 telephone

11,025 AM radio
22,050 FM radio
44,100 CD
48,000 DAT
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Audio Digital Signal Processing Audio Quality

Audio Quality, Sampling Rate, and Bit Depth

Audio Quality as a Function of Sampling Rate, Bit Depth and
Stereo/Monophony:

Sampling Rate (Hz) Bit Depth Stereo/Mono Quality

8,000 8 mono telephone
11,025 8 stereo low
22,050 8 stereo ·
22,050 16 mono ·
22,050 16 stereo ·
44,100 16 mono good
44,100 16 stereo CD quality
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Audio Digital Signal Processing Audio Quality

Audio Quality

Q: Why do some people insist that analog audio is superior to digital
audio?

A: What they think sounds good isn’t the exact original sound, but a
nonlinearly distorted version generated from the analog components.

Note: Some digital audio companies now make digital amplifiers that
mimic the distortion from analog audio amplifiers.

Quality of audio is a qualitative and psychological measure that is
user-specific.
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Audio Digital Signal Processing Audio Equalizers

Audio Equalization

I Equalization ≡ Equalisation ≡ EQ
I amplifying or attenuation different frequency components of an

audio signal
I Example: bass/treble control in inexpensive car radios

I Common goals of equalization:
I provide fine granularity of frequency amplification/attenuation

control without affecting adjacent frequencies.
I correct for unwanted frequency attenuation/amplification during

recording processes
I enhancing the presence of certain sounds
I reducing the presence of unwanted signals such as noise
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Audio Digital Signal Processing Audio Equalizers

Equalizer Design Basics

1. Determine the processing band of your audio signal.
I human audible range is: 20 Hz to 20 kHz
I if sampling rate of a DSP is Fs then, the bandwidth of the

audio signal to process is: 20 to Fs
2 Hz

I Example: Fs = 16, 000 Hz

1

8000-8000 -20 20
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Audio Digital Signal Processing Audio Equalizers

Equalizer Design Basics

2. Determine the granularity of your equalizer (i.e., number of
frequency bands to independently control).

I one approach might be to equally partition the audio signal
bandwdith

I more popular approaches suited to human auditory system
models have bands that increase in width by two

I Example: 3 frequency bands

1

800030001000-8000 -3000 -1000 -20 20
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Audio Digital Signal Processing Audio Equalizers

Equalizer Design Basics

3. Design your bandpass filters.
I each bandpass filter is independently set/controlled from the

others
I ideally, many people would like shelving EQ
I Example: Ideal bandpass filters

1

800030001000-8000 -3000 -1000 -20 20
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Audio Digital Signal Processing Audio Equalizers

Equalizer Design Basics

3. Design your bandpass filters.
I each bandpass filter is independently set/controlled from the

others
I ideally, many people would like shelving EQ
I Example: Bell EQ

1

800030001000-8000 -3000 -1000 -20 20
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Audio Digital Signal Processing Audio Equalizers

Common Types of Equalizers

I All bell filters and many other bandpass filters can be
characterized by three parameters:

I center frequency
I width of the bell curve
I gain (i.e. peak) of the bell curve

1

800030001000-8000 -3000 -1000 -20 20

width
peak

amplitude

center
frequency
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Audio Digital Signal Processing Audio Equalizers

Common Types of Equalizers

I Parametric Equalizers: the center frequency, passband width and
peak amplitude can be independently selected for each filter

I most powerful EQ, predominantly used for recording and mixing

I Graphic Equalizers: the center frequency and passband width of
each filter are pre-set; the gains of each filter can be
independently controlled

I used for live applications such as concerts
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Audio Digital Signal Processing Audio Equalizers

Common Types of Equalizers

I Notch Filters: the passband width is small and fixed for each
filter; center frequencies and gains are variable.

I used in multimedia applications/audio mastering

�
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