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Abstract— The increased push for green transportation has
been apparent to address the alarming increase in atmospheric
C O2 levels, especially in the last five years. The success and
popularity of Electric Vehicles (EVs) have led many carmakers to
shift to developing clean cars in the next decade. Moreover, many
countries around the globe have set aggressive EV target adoption
numbers, with some even aiming to ban gasoline cars by 2050.
Unlike their gasoline-based counterparts, EVs comprise many
sensors, communication channels, and decision-making com-
ponents vulnerable to cyberattacks. Hence, the unprecedented
demand for EVs requires developing robust defenses against
these increasingly sophisticated attacks. In particular, recently
proposed cyberattacks demonstrate how malicious owners may
mislead EV charging networks by sending false data to unlawfully
receive higher charging priorities, congest charging schedules,
and steal power. This paper proposes a learning-based detection
model that can identify deceptive electric vehicles. The model
is trained on an original dataset using real driving traces and
a malicious dataset generated from a reinforcement learning
agent. The Reinforcement Learning (RL) agent is trained to
create intelligent and stealthy attacks that can evade simple
detection rules while also giving a malicious EV high charging
priority. We evaluate the effectiveness of the generated attacks
compared to handcrafted attacks. Moreover, our detection model
trained with RL-generated attacks displays greater robustness to
intelligent and stealthy attacks.

Index Terms— Cybersecurity, deep learning, reinforcement
learning, EV charging.

I. INTRODUCTION

IN THE recent decade, the EV revolution has shown a
promising solution to the climate change threat by alleviat-

ing air pollution in densely populated cities while diversifying
energy resources [1]. To facilitate the unprecedented adop-
tion of EVs in the coming decades, interconnected charging
infrastructures are being built to manage the charging and
discharging of millions of EVs [2]. An EV owner can drive
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into a charging station and seamlessly plug their car to start
charging vehicle batteries. EVs can also contribute to the
grid during peak demand by discharging to the network or
even powering up appliances in a house during blackouts.
Such a bi-directional flow of energy benefits a variety of grid
stakeholders [3], [4].

Several protocols have been designed to enable the two-way
flow of information and energy between EVs and the energy
grid [5]. Such protocols enable the integration of electric
vehicles into the smart grid, allow for a consumer-centric
way for owners to charge their vehicles, and facilitate the
grid’s demand for stable and energy-efficient operation. For
example, the ISO 15118 protocol governs all charging request
communication between an EV and a charging station, such
as EV ID, payment info, etc. The Open Charge Point Protocol
(OCPP), introduced by Open Charge Alliances, enables public
EV charging stations to seamlessly coordinate power flow and
information between the EV and the grid [5].

Nonetheless, the inherent complexity of the charging sys-
tem and the enhanced integration of communication systems
within EVs increases the cyber-attack surface. Moreover, the
exchange of sensitive and personal information between the
EV and charging infrastructure attracts a host of threats. For
example, attackers may target user privacy and integrity by
accessing location information, EV ID, State of Charge (SoC),
and payment info through Man-in-the-Middle attacks [6]. The
leaked user data can then be used for unauthorized transactions
or generating fake traffic to disrupt the grid [7]. With the lack
of vital security measures, EVs can serve as compromised
IoT devices that initiate a DDoS attack on charging stations
by flooding the network with fake requests [7], [8]. Such
attacks may overload the charging schedules and prevent other
vehicles from using the grid. Moreover, compromised EVs
may modify the “charging profile” to increase demand on
the grid during peak hours. The smart grid has difficulty
serving the connected load in such events, possibly preventing
legitimate consumers from receiving power.

Previous work [7] has shown the original OCCP standard
to be particularly vulnerable to such attacks. This is mainly
due to communication between parties happening in clear text,
thus, allowing attackers to sniff private information easily.
Though OCPP developers can deploy the TLS protocol to
provide encryption over links, manufacturers often leave these
protocols to avoid overhead and additional costs. Nonetheless,
even in the presence of TLS, Alcaraz et al. [9] found OCPP
vulnerable to various distortion, disruption, and disclosure
attacks. For instance, a Man-in-the-Middle attack on the charg-
ing station can destabilize the grid. An attacker may perturb
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power usage or reverse power flow during off-peak times to
cause unanticipated loads, potentially initiating blackouts.

Bao et al. [10] analyze the various scenarios of ISO/IEC
15118 protocol where the charging service availability and
integrity are compromised. The authors show that the adver-
sary can exploit non-binding certificate authorities to perform
masquerade and DoS attacks on charging stations. Another
study [6] on ISO 15118 demonstrates the impersonate attack
by copying transactions in the RFID chip and consequently
disguising itself as another vehicle by replacing its ID with
the victim’s ID. The charging station receives the ID and can
wrongfully write the billing information to the victim. More
importantly, ISO 15118 is also susceptible to other attacks
that fabricate metering data and battery level (SoC) to give
the malicious EV smaller bills and higher charging priority.

The rise of such attack vectors calls for developing intrusion
detection systems (IDS) that can effectively detect sophis-
ticated attacks while helping aggregators and owners take
appropriate mitigation strategies to isolate malicious actors and
EVs. The IDS is vital for SoC tampering attacks wherein an
attacker exploits the protocol vulnerabilities discussed above
to report false SoC data to the charging infrastructure [11].
A malicious EV can send a charging request with a smaller
SoC value to gain higher charging priority. This exploit can
scale up an army of compromised or malicious EVs that
gain higher priority to preventing benign users from charging,
hence, causing what is known as a denial-of-charge attack.
An ideal IDS should immediately detect and isolate such
malicious charging requests, which may otherwise be difficult
to discover by a human expert.

Nevertheless, widely deployed state-of-art IDS, such as
signature-based approaches, require knowledge of previous
attack signatures and must be updated regularly to detect
new attack patterns [12]. This calls for more intelligent IDS
that can generalize to novel attack strategies. Several prior
works explore deep neural networks (DNNs) to flag suspicious
behaviors in the smart grid infrastructure. Recently, DNN-
based IDS displayed promising performance in detecting DoS
attacks on charging stations [13] and deceptive EVs that report
false SoC data [14]. However, while DNNs are known for their
powerful generalization capabilities, ability to learn complex
tasks and speed [15], they require training on real-world
attack data, which is scarce in practice. To alleviate this issue,
[14], [16] resorts to augmenting datasets with handcrafted
attacks. Synthetic attacks are effective at maliciously gaining
higher power allocation and charging priority; however, they
may not mimic real-world attack strategies. Consequently, any
detection model trained on such datasets may not generalize
well to more intelligent attacks encountered in practice.

To solve this problem, we develop a reinforcement learning
framework to generate SoC values that illegally fool schedul-
ing mechanisms to favor malign EVs, cause a denial-of-charge
to benign EVs, and disrupt the load on the grid. In contrast
to previous works, we use the proposed framework to create
intelligent (stealthy) attacks that are more effective than hand-
crafted ones. We evaluate the robustness of a detection model
trained on the generated attacks and a dataset of benign EVs
to classify malicious and honest EVs. Moreover, we show

that using reinforcement learning to create potential attacks
gives rise to more novel attack schemes from which the
detection model can learn. Lastly, we demonstrate our model’s
robustness compared to the one trained on handcrafted attacks.

Our contributions can be summarized as follows:
• We develop a novel reinforcement learning framework

to generate intelligent and stealthy attacks to falsify
the SoC .

• We show that RL-generated attacks are considerably more
effective than handcrafted ones.

• We train a more robust detection model on a combination
of real-world user behavior and generated intelligent
attacks.

The remainder of this paper is organized as follows: In the
next section (Section II), we provide an overview of the charg-
ing infrastructure and relevant parties, related work on deep
learning for EV cybersecurity, and the problem formulation
and threat model considered. Section III outlines the RL attack
methodology. Section IV discusses benign and malicious data
generation. Section V proposes the detection model, followed
by experimental details in Section VI. Finally, we analyze
our findings in Section VII, and the conclusion is drawn in
Section VIII.

II. BACKGROUND AND PROBLEM FORMULATION

A. EV Infrastructure and Protocols

A typical EV charging infrastructure [2] is comprised of the
following key stakeholders:
• EV owner and EV
• Electric vehicle supply equipment (EVSE): The device

that connects the EV to the grid.
• Charging station (CS): A station equipped with many

EVSEs.
• Aggregator: Responsible for collecting EV charging

requests and sending them to the CC.
• Control Centre: A central management system that man-

ages the power grid and supervises the energy requests
by charging stations and EVs. The allocation of energy
requests happens through an internal charging coordinator
(CC).

The data shared among stakeholders is sent through several
protocols. We highlight the critical data transmitted across
multiple communication links and the corresponding protocols
that attackers can exploit:
• The EV interacts with the CS (or CC) to reserve an EVSE

and exchange charging parameters, including EV ID,
location, SoC, payment info, etc. IEC/ISO 15118-1/2/3
protocols expedite such communication.

• The CS and control center exchange incoming EV data
to ensure the availability of EVSE.

• The control center negotiates power usage, scheduling,
and pricing with the power distributor. The aggregator
forwards the charging schedules back to the EVs.

• The EV and EVSE employ a physical power line to
exchange electricity and charging parameters (such as
SoC). The flow of electricity is bi-directional to allow
both charging and discharging.

Authorized licensed use limited to: The University of Toronto. Downloaded on October 09,2023 at 03:56:22 UTC from IEEE Xplore.  Restrictions apply. 



ALOMRANI et al.: DETECTING STATE OF CHARGE FALSE REPORTING ATTACKS VIA RL APPROACH 10469

Communication between the CS and EVSE happens through
the J1772 standard, while OCPP governs all communication
among EVSE, control center, and grid.

B. Deep Learning for EV Cybersecurity

In this section, we explore several works which utilize deep
neural networks (DNNs) to flag suspicious behaviors in the
smart charging infrastructure.

Kuadey et al. [17] devise a Long-Short-Term-Memory
(LSTM) based DeepSecure framework to detect DDoS attacks
on user equipment network traffic in the fifth-generation
cellular network. The proposed method assigns an appropriate
slice to a legitimate user equipment request, learns the net-
work traffic features, and distinguishes malicious traffic from
legitimate traffic. Their experiments show that the proposed
LSTM method outperforms the previous deep-learning-based
detection methods detecting DDoS attacks.

Zhang et al. [18] provide a survey and analyze the efficiency
of deep learning-based attack detection models for the cyber-
physical system. The authors demonstrate that with excellent
accuracy and precision, the Recurrent Neural Network, LSTM,
and Convolutional Neural Network models outperform base-
line methods such as Support Vector Machines.

Furthermore, Basnet and Ali [13] introduce a novel deep
learning-based IDS for detecting DoS attacks on EVSE
servers. In such attacks, an attacker exploits the EVSE server
to launch any SYN floods, buffer overflow, or teardrop attacks
to compromise the availability of the grid’s resources. The
authors extract critical features from the attack data to train
a feed-forward neural network (FNN) and LSTM network
[19] that implicitly learn the digital fingerprints of DoS/DDoS
attacks resulting in 99% detection accuracy.

Nonetheless, though the authors assume that such datasets
are ideal candidates for learning, they do not include attacks
on EV charging infrastructures that may differ in nature.
For example, an attacker in the EV setting may intelligently
overload charging schedules with fake requests rather than
aim to increase the CPU and memory consumption of servers.
Moreover, their models do not leverage EV charging informa-
tion such as EV ID and previous charging history, which can
be tremendously helpful in identifying benign and malicious
charging behavior.

Bhusal et al. [20] propose a deep learning-based multi-label
classification approach to detect coordinated data falsification
attacks on distributed generators’ power output. The derived
solution can identify coordinated, additive, deductive, and
combined attacks. The authors demonstrate the developed
method on several systems, including a 240-node distribution
system with 99% attack detection accuracy, and compare the
proposed method with FNN, Convolutional Neural networks,
and Recurrent Neural networks.

Shafee et al. [14] devise a machine-learning model to
identify malicious EVs which report false SoC data to the
charging coordinator (CC). The CC schedules EV charging
based on its SoC and assigns higher priority to cars with
lower SoC. Therefore, such attacks may congest charging
schedules and overload the grid when coordinated with other

malicious EVs. Consequently, the authors propose using the
real-world charging behavior of plug-in hybrid electric vehi-
cles combined with synthesized false reporting attacks to train
a DNN with the gated recurrent unit (GRU) architecture. The
GRU model can identify EVs that deviate from their benign
behavior throughout the day and flag them as malicious.
Their GRU model can accurately detect deceptive vehicles
and demonstrates good generalization abilities in detecting
new attacks. However, the synthetic attacks used in [14] and
[16] do not explicitly utilize additional information to predict
more intelligent attack strategies. An attacker who knows other
incoming charging requests may adaptively report false SoC
data while remaining undetected. Hence, detection models
trained on hand-crafted attacks are not robust against more
intelligent or stealthy attackers that may appear in practice.

Rahman et al. [11] study false data injection attacks on the
EV battery management system. They show that attacks that
tamper with energy requests lead to out-of-service vehicles,
power grid destabilization, and battery pack damage via over-
charging. Their proposed DNN model estimates current battery
SoC based on low-level vital metrics such as temperature,
open-circuit voltage, capacity, and power. After training the
SoC estimator, the authors detect false reporting attacks by
measuring the mean absolute percentage error between the
estimated actual SoC and spoofed SoC values.

In conclusion, previous works in the literature have either
used handcrafted attacks or general attack data on non-EV
infrastructures to train detection models due to the lack
of real-world attack data. While such attacks can work in
practice, a more intelligent attacker with reconnaissance capa-
bilities can learn to game the EV charging infrastructure
with novel and adaptive attack schemes. Hence, the proposed
detection models are not trustworthy enough to be deployed
in practice.

C. Problem Formulation

The primary goal of this work is to design a robust
DNN-based IDS that can identify attackers that report fake
SoC values by observing their historical charging requests.
The attacker represents a malicious EV that aims to gain higher
charging priority by reporting a fake SoC value when sending
a charging request. Our attack model assumes the attacker
possesses reconnaissance capabilities and can sniff and edit
messages between communicating parties, particularly the
EVs and charging stations. The attacker knows all incoming
charging requests to the charging coordinator but can only
distort the malicious EV’s SoC value. These abilities can be
attained by exploiting the ISO 15118 and OCCP protocols
using the strategies discussed in Section I.

We consider a charging system that comprises of a charging
coordinator (CC), aggregator, and EV community, as described
in Section II-A. Time across the day is divided into T time
slots of equal length. At the beginning of each time slot, EVs
that need charging send charging requests to the aggregator.
The aggregator, in turn, forwards the charging request to the
CC for scheduling. The requests contain essential information
for scheduling, such as the battery SoC and time-to-complete-
charge (TCC). Once the CC receives all charging requests from
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TABLE I
SoC FALSE REPORTING ATTACKS [14]. ta AND tb ARE RANDOMLY

GENERATED INTERVAL BOUNDS

a particular area, the charging coordination mechanism [21]
prioritizes a subset of EVs such that the total allocated power
does not exceed the energy capacity C . More concretely, for
each charging request j , the CC receives SoC j , T CC j , and
the energy demand η j to construct a priority index p j for an
EV ( j):

p j = ϵ f1(SoC j )+ (1− ϵ) f2(T CC j ) (1)

where 0 ≤ ϵ ≤ 1, f1, and f2 are functions that map SoC
and TCC to values between 0 and 1. The CC then divides the
priority index of each vehicle p j by its energy demand (η j )
and selects the EVs with the highest ratios for charging such
that the maximum charging capacity (C) is not exceeded as,∑

j∈o

η j ≤ C; where o ⊆ n (2)

where n is the set of EVs that send requests for charging, and o
is the subset of n with higher priority that satisfy the constraint
given in eq. (2). Consequently, for any EV j , the CC allows
it to charge with energy demand η j or defer the request for
a future time slot. The energy demand η j is defined in terms
of the SoC: η j = (1 − SoC j )B where B is the total battery
capacity of a vehicle.

While such efficient CC mechanisms help maintain the
grid’s stability and preserve the users’ privacy, they naively
assume that EVs report correct charging data, such as SoC
and T CC . With the lack of intelligent detection mechanisms,
a malicious EV may report false SoC data to obtain higher
priority and energy allocation. Consequently, malicious EV
with basic false reporting capabilities can steal power, congest
charging schedules, and destabilize the grid.

Various attack strategies have been proposed in [14] and
[16], where an EV reports a false SoC value at day d and
time t for EV i , denoted by ψi (d, t), as shown in Table I.
The existing research shows that such attacks disrupt the
scheduling scheme; however, they can strongly deviate from
normal charging behavior, making them easy to detect, and do
not utilize the current state of the charging schedules to their
advantage, e.g., reporting SoC value of 0 may not be wise at
some times of the day. Therefore, their model is not robust
against more intelligent false reporting attacks. An attacker
with knowledge of incoming charging requests of other EVs
can generate fake SoC values to gain higher priority and power
while also evading being detected.

Our paper’s main contribution is that we employ reinforce-
ment learning methods to generate realistic and stealthy attacks

that can evade basic detection mechanisms and provide higher
priority to the attacker. We combine these intelligent attacks
with the handcrafted attacks in Table I and a normal behavior
dataset to train a detection model to classify an EV as honest
or malicious accurately.

In Table I, Si (d, t) denotes the real SoC value of EV i
at day d and time t . α is a constant less than 1. βi (d, t)
is a hand-picked time-dependent function between 0 and 1.
In principle, the attacks randomly report a lower SoC value
as charging coordinators generally give cars with low batteries
higher priority to charge. Attack 1 scales the real SoC by a
constant α < 1. Attack 2 scales the SoC by a time-dependent
function βi (d, t) between 0 and 1. Attacks 3 and 4 reports an
SoC value of 0 on random intervals of the time horizon.

III. RL ATTACK METHODOLOGY

We propose using simple feed-forward neural networks to
detect malicious behavior against CCs by leveraging historical
data such as SoC and T CC . Our approach is similar to the
one presented in [14] and [16], except that we decompose
training into two stages. First, we train (see Fig. 2) an RL
agent to generate charging requests with fake SoC values that
maximize the energy allocation and priority of a malicious EV.
Second, we train a feed-forward neural network on a dataset
composed of the generated attacks by the trained RL agent and
regular charging requests by benign EVs to detect malicious
behavior.

The advantages of such decomposition are three-fold. First,
the RL agent can adapt its attack strategy to any scheduling
mechanism instead of general handcrafted attacks, thus making
the detection model more robust to various deceptive strate-
gies. Second, the RL agent can be trained to evade a detection
mechanism by giving it a low reward signal if it deviates
from the actual behavior. Lastly, deep reinforcement learning
methods learn through interactions with the environment,
requiring little data to generate attacks. In contrast, generative
models, such as GANs [22], need a dataset of attacks and can
only create samples that are as good as the dataset.

To train the RL-based SoC attack method within an RL
framework, we must formulate the SoC attack problem as a
Markov decision process:
• State: At timestep, t , a state st consists of the incoming

charging requests of all EVs, represented by a vector of
the current SoC values of all incoming requests.

• Action: At each timestep t , the agent must choose to
perturb the actual current SoC value by a continuous
normalized amount at ∈ [−1, 1]. The agent only perturbs
the SoC value Si (t) of the malicious vehicle i :

ψi (t) = Si (t)+ at (3)

ψi (t) represents the perturbed SoC value of malicious EV
i at time t .

• Reward function: The terminal reward ω is the sum of
the power allocated to the malicious EV i by the charging
scheduler across all timesteps. To encourage the agent
to be stealthy, we subtract the term γat where the γ
parameter controls the significance of this term. In RL
terms, the total power is an extrinsic reward signal while
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γat is an intrinsic reward signal. Therefore, the ultimate
measure of performance we care about improving is the
value of the extrinsic reward achieved by the agent; the
intrinsic reward serves only to motivate the agent to be
stealthy:

ω =

T∑
t=1

(ki (t)− γat ) (4)

where ki (t) is the power allocated to the malicious EV i
at timestep t , and T is the total number of timesteps in
an episode.

• Policy: We define a solution as a set of actions π =
{a1, . . . , aT }, representing the perturbations of the SoC
values reported at each timestep. The policy network
defines a stochastic policy p(π |S) for selecting a solution
π given the sequence of actual SoC values of all EVs,
denoted by S. It is parameterized by θ and can be
factorized as:

pθ (π |S) =
T∏
t

pθ (at |st ) (5)

When γ = 0, the RL agent only aims to maximize the power
gained, regardless of the amount of perturbation. However,
large perturbations are easy to detect. Therefore, we subtract
the term γat , which decreases the reward in case of large
perturbations and, thus, discourages the agent from deviating
too much from normal behavior. The RL agent must balance
being stealthy and gaining more power. The γ hyperparameter
lets us control how much we care about stealthiness.

A. Adversarial RL Agent

To enhance training data for a more accurate FNN cyberat-
tack detection model, we make use of an adversarial RL agent
to generate synthetic attacks that are presented in this section.

1) Adversarial RL Agent Simulation Strategy: Consider a
set of n EVs and a set of time slots of equal length across
a day (episode). At each time-step t , any EV that wants to
charge sends a request to the CC with its current SoC. Once
the CC receives all charging requests at time-step t , it sends
back the power allocations for each charging demand, with
some recommendations receiving no power.

Algorithm 1 outlines the RL agent training in the charging
environment. Let i be the index of a malicious EV, and
CC(.) : Rc+1

→ Rc+1 be the charging coordinator, N be the
training epochs, λ be the arriving rate, D be the benign training
set and the α be the learning rate. The number of arriving
charging requests (other than malicious EV) is c, determined
by the Poisson distribution in line 8. The number of vehicles
is n. At the beginning of each training episode, we sample
a benign SoC sequence Si from the real-world training set.
This represents the real SoC values of i throughout one day.
Let Si (t) ∈ R be the real SoC value of malicious vehicle i at
time t . To simulate the benign incoming charging requests,
we also sample c, the number of other arriving charging
requests at the current timestep t , from the Poisson distribution
to mimic real-world charging request arrivals. Then, the c
benign SoC values are sampled from the uniform distribution.

Sb(t) ∈ Rc represents the reported SoC values of all benign
vehicles. Before sending the charging requests to the CC, the
RL agent perturbs Si (t) by at ∈ [−1, 1]. Finally, the CC
returns k(t), the power allocation for each charging request.
ki (t) represents the power allocation of i .

In our simulation, all vehicles have a battery capacity of B
of 200 kWh. The total power available at the charging station
is 1500 kWh. We assume the number of arriving charging
requests at times-step t follows the Poisson distribution with
arrival rate λ. This is observed in real-world charging stations
where incoming EVs expect to be charged as soon as possible
[23], [24]. We simulate 48-time steps, equivalent to the training
set’s length of the SoC sequences.

Algorithm 1 RL Agent Training in Charging Simulation
Input: pθ , CC , N , D, λ, α, B.
Initialize T ← 48.
Initialize n← 30
for i ← 0 to N do

Initialize ω← 0 ▷ Reward for malicious vehicle
Si ← {D} ▷ Real SoC sequence for malicious vehicle
for t ← 1 to T do

c ∼ ρ(λ) ▷ Number of arriving charging request sample
Sb(t) ∼ U [0, 1] ▷ SoC value for benign EV on sample c
ψ(t)← Sb(t) ∪ Si (t)
(µ, σ )← pθ (ψ(t))
at ∼ N (µ, σ ) ▷ Action sampled from Normal distribution
ψ(t)← Sb(t) ∪ (Si (t)+ at ) ▷ Perturbed SoC value for malicious EV
η(t)← (1− ψ(t))B ▷ Power demand
k(t)← CC(η(t)) ▷ Power allocation at t for each charging request
ω← ω + (ki (t)− γat ) ▷ Update reward for malicious EV

end for
θ ← θ − α∇L(θ |S)

end for

B. Architecture and Training

Our policy network pθ (at |st ) utilizes the feed-forward
architecture. The forward feed model inputs a list of all
vehicles’ actual SoC values, including the malicious EV at
the current timestep. The input is followed by 3 hidden layers
of size 236 neurons. Each hidden layer is followed by a
ReLU activation unit [25] to introduce non-linearity. The final
output layer consists of 2 neurons representing the mean µ and
standard deviation σ of a normal distribution N (at |µ, σ). The
continuous action at , which represents the value by which
the malicious EV’s SoC value is perturbed, is sampled from
the normal distribution. This is a classic trick to allow RL
agents to operate on continuous action spaces [26]. The policy
network is trained separately and uses a different FNN than
the detection model (See Section V).

The action policy is trained using policy gradient reinforce-
ment learning [27] for its effectiveness and simplicity. That is,
we learn the policy parameter θ by optimizing the loss L(θ |S)
using gradient descent:

∇L(θ |S) = Epθ (π |S)[(L(π)− b(π))∇ log pθ (π |S)]

where L(π) = −r with reward r = ω, and S is sequence
of real SoC values of all EVs. In principle, the policy gradi-
ent algorithm reinforces actions that maximize the expected
outcome and discourages actions that give a low reward.
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TABLE II
ATTACK TYPES THAT EACH MODEL IS TRAINED ON

To reduce gradient variance and noise, we add a baseline b(s)
which is the exponential moving average [28], b(π) = M ,
where M is the loss L(π) in the first training iteration. The
update step is b(π) = βM + (1 − β)L(π) with decay β.
In principle, our formulation can support any RL algorithm
that operates in a Markov Decision Process [26]. We choose
the policy gradient algorithm combined with an effective base-
line as this setup has been shown to work on several real-world
problems [29], [30] and has minimal hyper-parameters.

It is important to note that the proposed adversarial RL
framework is not confined to EV charging attacks but can
be applied to many attack formulations against the grid. For
example, the RL agent could report fraudulent home power
usage to disrupt the smart grid or steal power. We leave such
attacks for future work.

IV. DATASET

The generation of training data is of paramount importance
to the success of detecting malicious data. In this section,
we outline our approach for dataset generation for both benign
and malicious samples.

A. Benign Dataset

We use a dataset of 536 Plugin Hybrid Electric Vehicles
(taxis) [31] that reported their locations (latitude and longi-
tude) every minute and charging times for 24 days. We also
assume that the data represents the Kia Soul EV [32] and
use Kia’s charging rates and battery capacity to estimate
the minute-by-minute SoC values from the driving traces.
During charging or driving, the SoC value is updated using
the following respective equations:

SoC = SoC +
Charging rate× duration

Battery Capacity
(6)

SoC = SoC −
Consumption rate× duration

Battery Capacity
(7)

To create a data sample, we sample the SoC value every
30 minutes to create a sequence of 48 SoC values for one
day. In total, we have 536 taxis × 24 days = 12864 data
samples. Fig. 1 shows the SoC distribution of 2 taxis reported
over 23 days. It can be seen that each EV has a unique
behavior. Therefore, we must employ a complex model to learn
the temporal behavior of the taxis and detect any malicious
deviation.

B. Malicious Dataset

In addition to the handcrafted attacks outlined in Table I,
we use the trained RL agent to generate intelligent, stealthy
attacks from each data sample. We deploy the RL agent in

Fig. 1. SoC Distribution per hour of two taxis over 23 days.

Fig. 2. The full training pipeline for the detection model. Note that the
adversarial RL agent used here is already trained.

the charging simulation to perturb the malicious EV’s actual
SoC values for each data sample in the benign dataset. The
resulting perturbed sequence is labeled as a malicious data
sample. We generate different malicious samples for each
benign sample to ensure that we have rich attack data. To get
new attack samples, we deploy the RL agent in the charging
simulation multiple times but with different random seeds
each time. The ADASYN [33] method is then used as a data
augmentation technique to balance the ratio of benign samples
to malicious samples. The entire framework can be seen in
Figure 2.

V. MODEL FOR CYBERATTACK DETECTION

This section outlines the architecture and training of the
detection model, which utilizes the feed-forward architecture
to classify benign and malicious behavior.

Feed-forward neural networks (FNN) have displayed phe-
nomenal results over the past few years for their general-
ization abilities, and powerful learning capacity [15]. FNNs
are multi-layer perceptrons where each node takes input
from all nodes in the previous layer and passes it on to
all nodes in the next layer. Each node applies weights to
the inputs before applying a non-linearity such as a ReLU
[25] or Sigmoid. The successive layers of non-linearities give
the FNN powerful learning capacities. In our experiments,
we use a similar detection model as in [14]. Our FNN
comprises six hidden layers of size 768 neurons with the ReLU
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Fig. 3. Training plots for RL agent and detection models. (a) Average Episode Reward throughout training for 4 RL agents with different random seeds.
(b) Average training loss from 4 runs with different random seeds for all models. (c) Validation accuracy throughout training.

non-linearity. The input layer receives the SoC sequence for
one day ψ(d, ∗), and the output layer consists of 2 neurons
followed by a softmax layer which outputs the probability of
the sequence being malicious. Since over-fitting can cause a
severe problem in our large model, we add a dropout [34]
layer after each hidden layer. Dropout is a technique that
addresses over-fitting by randomly dropping out some nodes in
the network during training with probability p.1 This prevents
the nodes in an extensive network from co-adapting too much
and thus performs better generalization.

VI. EXPERIMENTAL DETAILS

The charging simulation has been implemented in
Python 3.7. We use the Pytorch library [35] for the training and
evaluation of all deep learning models. All models are trained
using the Adam optimizer [36]. Hyper-parameters such as the
learning rate and exponential decay are tuned on the validation
set using the grid search method. See repository2 for details.

A. RL Agent Training

Figure 3 shows the average reward per episode as training
progresses for 120 epochs. The models are fairly robust across
different random runs and converge quickly. We train 4 agents
with γ ∈ [0.3, 0.4, 0.5, 0.6]. One can see that the higher the γ
the lower the reward that the agents converge to. This is due
to the trade-off between stealthiness and gaining more power
and priority in the charging schedules. A higher γ forces the
agent to make smaller perturbations while also gaining more
power than benign EVs.

B. Detection Model Training

To experiment with the effectiveness of the intelligent
attacks, we train the detection model on three datasets with
different combinations of malicious samples. Table II outlines
the malicious attacks that are generated per benign sample
using attack models described in Section III. Models 1, 2,
and 3 are the same, except that each is trained on a dataset
with different combinations of malicious samples. Attacks 1-4
represents the hand-crafted samples described in Table I.

1A tuned hyper-parameter.
2https://github.com/alomrani/ev-charging-rl-attacks.git

TABLE III
DATASET SPLIT FOR EACH MODEL

Fig. 4. Model 1 avg Detection Accuracy on datasets of random malicious
samples generated by RL Agents with different γ. Results are averaged over
4 runs with different seeds.

γ attacks represent malicious samples generated by an RL
agent trained with γ—the dataset size after ADASYN aug-
mentation is shown in Table III.

We train all detection models for 200 epochs. Figure 3c
shows the training results of all models. Notably, the addition
of dropout layers allows the model to learn for a long period
without over-fitting too much of the training data, as evident
in the first plot.

VII. NUMERICAL EVALUATION

A. Effect of γ

In Figure 5, we visualize the SoC perturbed sequence
reported by some malicious EV versus the real SoC sequence
under different γ settings. For γ = 0.3, the RL agent mostly
cares about maximizing the amount of power received across
all time steps; Thus, the perturbed sequence is stochastically
compared to the actual sequence representing a real-world
EV’s behavior. As γ increases, the reported SoC values
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TABLE IV
EFFECTIVENESS OF RL ATTACKS ON CHARGING SIMULATION AND DETECTION MODELS. EACH TEST ATTACK DATASET WAS GENERATED 4 TIMES

WITH DIFFERENT RANDOM SEEDS. WE REPORT (MEAN ± STD) FOR ALL RESULTS. ALL MODELS’ BEST ACCURACY IS HIGHLIGHTED IN BOLD

Fig. 5. Malicious vs. Benign SoC sequence generated by the RL agents on a random EV.

become closer to the valid values, and therefore the SoC
sequence across the day becomes more realistic.

Table IV shows the average power allocated to the malicious
EV per timestep by the charging coordinator. For γ = 0.3,
the malicious EV is allocated 3 times more power than a
benign EV. However, as seen in Fig. 5, the RL agent deviates
significantly from real SoC values, making this abnormal
charging pattern easily detectable. For γ = 0.6, the RL agent
is encouraged to make small perturbations only and, therefore,
receives less power than with γ = 0.3. However, the malicious
EV is still given ≥ 90% more power than the average benign
vehicle while staying close to the true SoC values (See Fig. 5
for an example).

These results further show that the role of γ is necessary to
make the RL attacks hard to detect while remaining effective
at stealing more power than benign EVs. Therefore, the RL
agent can learn novel attack strategies that exploit the charging
coordination mechanism while remaining stealthy. Notably,
based on the knapsack algorithm, our charging coordinator is
designed to be fair and efficient to all requests [21]. However,

without a detection mechanism in place, it is evident that one
can “game” the charging schedules by spying on other requests
to gain more priority.

Moreover, the intrinsic motivation controlled by γ encour-
ages the agent to learn stealthy attack strategies that can
mislead a naive detection model. Fig. 4 plots the detection
accuracy of Model 1, proposed by [14] and trained on the
handcrafted attacks only against the RL attacks. For γ =
0.3, 0.4, 0.5, Model 2-3 can detect these attacks with full
accuracy since they are too stochastic and deviate significantly
from normal charging behavior (See Fig. 5 for an example).
However, the accuracy steadily decreases with higher γ,
eventually approaching a value of approximately 0.5, which
means the model cannot distinguish between benign charging
behavior and intelligent RL attacks.

We note that Attacks 1 and 2 provide the malicious EV
with approximately 10% more power than the average EV but
are less effective than the RL attacks. Attacks 3 and 4 give
the malicious EV less power than a benign EV, although they
follow similar strategies to Attacks 1 and 2. We believe this is
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due to reporting an SoC value of 0 on some intervals, giving
the EV a low priority in the charging schedules and, hence,
less power on average.

B. Remarks on Detection Models

To investigate the generalization ability of the detection
models, we include the detection accuracies of Models 2 and 3,
which were trained on different attack types. For Model 2,
trained on RL attacks only, the model performs well on all γ
attacks, although it was only trained on γ = 0.6 attacks. How-
ever, the model cannot generalize well to all the handcrafted
attacks because they are entirely different attack strategies.
Therefore, for Model 3, we include both RL attacks and
handcrafted attacks. As a result, Model 3 can detect both
handcrafted and intelligent RL attacks and correctly identify
normal charging behavior with reasonable accuracy. This
further motivates combining RL attacks and well-handcrafted
attacks to get a robust model.

VIII. CONCLUSION

We developed a machine learning-based method to detect
intelligent attacks against the EV charging system. A novel
RL approach was utilized to generate attacks aiming to gain
higher priority and power in charging coordination systems.
The adversarial RL policy was trained in a charging sim-
ulation using policy gradient to effectively perturb the real
battery level before being sent to the CC. We add intrinsic
motivation to the reward signal to encourage the agent to be
stealthy. We show that RL-generated attacks are more effective
than handcrafted attacks in gaining more power while also
being undetectable by models trained on handcrafted attacks.
Finally, we train an FNN on a combination of handcrafted
and RL-generated samples to obtain a more robust detection
model against various attack strategies. We outline a few future
directions worthy of exploration:
• Multi-Agent Attacks: Our results show the effective-

ness of only one malicious agent attacking the charging
environment. However, a collaborative attack between
multiple agents should yield far more damage on the grid
and is more challenging to detect as multiple parties are
involved.

• Extension to More Attack Settings: Our framework is
not restricted to EV charging environments. It can be
extended to other settings where real-world attack data
is not readily available such as homeowners who report
false power usage.
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