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Abstract—Power systems are on the cusp of a rapid technolog-
ical, economic and environmental evolution. Classical problems
must naturally adapt to new requirements taking into account
enormous growth in the number of distributed generation plants.
Physical and computational constraints within the new landscape
must be revisited. In this paper, we focus on the generator
scheduling problem in smart grid incorporating the novel con-
straints of transmission line capacity limits and policy to provide
a more comprehensive view for planning in the smart grid.
Given the mammoth size of the power networks, we propose
a computationally efficient partition-based scheduling scheme.
A case study based on IEEE 300 bus test system shows the
advantage of the proposed scheme.

I. INTRODUCTION

The paradigm shift for the power systems from relying on
few large central power plants (mainly coal, hydal, and nu-
clear) towards a large number of small distributed-generation
power plants has increased the complexity of fundamental
problems like generator scheduling to many folds. In many
such scenarios, the solutions that are tractable for traditional
setups become “practically” intractable [1]. Therefore there is
a need for developing computationally efficient solutions that
are “practically” tractable for very large problem instances.
We propose to use a divide-and-conquer type approach which
partitions a power network into smaller and efficiently solvable
sub-networks. Such partitioning strategies have been shown to
be much powerful when dealing with systems of mammoth
sizes and have applications in a large array of systems (for
few examples see [2], [3], [4]). However, partitioning a power
network into any arbitrary set of sub-networks might not be
useful, rather partitions based on the problem specification are
required since we might loose the solutions quality otherwise.

In this paper we focus on generator scheduling under a
set of emerging constraints imposed by deregulation in power
market. Scheduling generation plants to meet load demands at
least operating cost has historically been a cardinal problem
in power systems. A number of tools including priority-
lists, dynamic programming, integer programming, branch
and bound, simulate annealing, Lagrangian relaxation, and
genetic algorithms (see [5],[6] and references therein) have
been applied to solve this known NP-hard problem [7]. In
its classical setting, this unit commitment problem involves
selection of generation units to supply the forecasted load in
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a way that minimizes cost over a required planning horizon
while leaving a specified margin of spinning reserve.

Traditionally, the unit commitment problem has accounted
for some system constraints like individual startup delays,
generation costs, and physical operational constraints. Shift
to a “smarter” grid in a deregulated market results in a
fluctuating technical, political and financial landscape in which
decisions are constrained by additional issues including policy
and transmission line bottlenecks. For instance, although it
may take one year to build a wind farm, it can take five
years to build the necessary transmission lines needed to carry
its power to cities [8]. In addition, the smart grid vision in-
corporates consumer-driven and regulator-driven policies such
as priority of renewable sources resulting in novel system
constraints. Furthermore, the burgeoning cyber infrastructure
promotes high performance computing applications for a more
optimized grid necessitating that distributed computing and
complexity be considered. Moreover, move towards distributed
generation with many small mass-produced energy sources
has proportionally resulted in hugely increased complexity
of the generator scheduling problem. Hence, there is need
for developing the solutions that can scale-well with the
humongous increase in the number of generation points.
We assert that an important step in smart grid development
involves revisiting and reformulating classical problems to suit
emerging constraints.

In this vein, we consider the generator scheduling problem
in which we integrate new requirements. Specifically, we
address: 1) transmission line constraints involving line over-
loads that arise from usage by multiple generating points, 2)
policy constraints which deal with prioritization of generation
source classes for specific load areas, and 3) delay constraints
including startup lags. We call this the constrained generation
schedule (CGS) problem. To address the needs of smart grid
systems, we associate a time-varying cost of operation to each
generating source, for example, to reflect the changing cost
of solar or wind power. An instance of the CGS problem
consists of a number of generating points, a set of transmission
lines, and a set of load areas. Each generating point can
represent a collection of generators or virtual power plants
(VPPs) each with an associated delay. Each load area consists
of a set of geographical regions with policy-driven preferences
regarding the choice of generating points and has a forecasted
demand. There is a price tag offered by generation companies
(GenCos) for each generating point to serve the forecasted
demand of a specific load area. Transmission lines that are
either owned by transmission companies (TxCos) or have
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transmission rights reserved for specific GenCos or consumer
areas are a shared resource with limited capacity. We transform
the system of aforementioned constraints into an equivalent
graph representation and partition the power network to reduce
the complexity of the CGS problem, where each partition
comes up with its own scheduling in a cascaded fashion.
Example I-B elaborates it further.

A. Motivation and Contributions

Although intelligent generation scheduling (involving unit
commitment [9], [10] and economic dispatch [11]) has been
widely studied, but classically generator scheduling has not
accounted for policy and transmission line capacity constraints
often leaving its inclusion to the next stage of economic
dispatch. However, the growing trend in power systems is
one in which these limitations must be accounted for early on
during the scheduling phase to provide a more comprehensive
view [12]. Therefore, research has also been done for the
generator scheduling in the presence of the security constraints
[13] and transmission line capacity constraints [14], but the
drift towards “smarter” grid calls for inclusion of policy based
constraints which is addressed in this paper. Moreover, to
address the tremendous growth in the number of generating
points research has also been done to solve the generator
scheduling problem for real-life large-scale power systems
(e.g., see [1]) that are mostly heuristic solutions. However,
question of developing a more concrete deterministic solution
for large power network is still open.

Scheduling generation to match demand while simultane-
ously meeting constraints involves extensive combinatorics
due to the discrete nature of the problem; a generator is either
selected or not. In general, choosing the least cost combination
of generating points requires exhaustive search. An alternative
approach could relax the integer constraints imposed by the
problem and solve it via linear programming; however, such
a solution may lack optimality and in some cases rounding
might result in an infeasible solution [15]. Thus, in this work
we propose an approach for combinatorial optimization that
aims to leverage the natural symmetry and structure of the
CGS problem that is suitable for distributed computing while
providing insight on issues of computational complexity. We
focus on the application of matriod theory [16] to the smart
grid scheduling problem. The structure of matroids enables
one to effectively rule out large groups of generator sets for
scheduling with a simple test instead of sifting through all
possible combinations.

We propose a novel computationally efficient partition-
based scheme for generator scheduling in large scale power
networks. In the proposed scheme generators are partitioned
based on their constraint-driven correlation with each other.
We then use an cascaded scheduling algorithm to schedule the
generators in closely correlated partitions, and the generators
in rest of the partitions are scheduled independently. Moreover,
a case study based on IEEE 300 bus power system [17] shows
the advantage of our proposed scheme.

Fig. 1. A 12 bus power system with eight generating points g1, · · · , g8 and
there load areas to be served A1, A2, A3.

B. Example Case Study: 12-Bus Power System

Consider a 12-bus power system, that we revisit throughout
this paper, with generating points g1, · · · , g8, load areas to be
served A1, A2, A3, and a set of two bottleneck transmission
lines γ1 (in red), γ2 (in blue) shown in Fig. 1. The sum from
any group of two or more generating point outputs exceeds
the transmission line capacities of γ1 and γ2, and therefore
prohibits simultaneous use by more than one generating point.
The cost of the each generating point is shown in green. A
careful study reveals the following facts.

If selected for dispatch, generating points Gγ1 =
{g1, g2, g3, g8} need to use one common transmission line
γ1 and thus cannot be simultaneously scheduled. Similarly,
Gγ2 = {g4, g5, g6, g7} cannot be simultaneously scheduled for
dispatch on γ2. Thus the transmission line constraints impose
that no two generating points from Gγ1 and Gγ2 be scheduled
to use γ1 and γ2, respectively, at the same time. Moreover, due
to policy matters each load area has preference of generating
points. In this example, A1 chooses GA1

= {g1, g2, g3}, A2

opts for GA2
= {g4, g5}, and area A3 must fulfill its demand

with GA3
= {g6, g7, g8}. Thus, within the scope of the

planning horizon, the transmission line and policy constraints
dictate selection of only one generating point from each of
GA1

, GA2
, and GA3

for load areas A1, A2 and A3 respectively.
In this example, we assume that any generating point within
GAi can accommodate the forecasted load for Ai; if that is
not the case then more than one generating point from the set
can be selected.

II. MODEL

We consider scheduling from a set of n generating points
G = {g1, · · · , gn} over ` transmission lines Γ = {γ1, · · · , γ`}
for k load areas A1, · · · , Ak and a planning horizon T .
Wi, Lj and Dm denote the output of gi, capacity limit of
transmission line γj and the forecasted load demand for area
Am, respectively.

Each generating point is associated with a time-dependent
generation cost c : G × {0, 1, · · · , T − 1} −→ R ≥ 0
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Algorithm 1 Cascaded Generator Scheduling Algorithm
Input: χ1, · · ·χτj for connected component ξj
1: Gon = φ
2: for i = 1 to τj in increasing order of cost(χi) do
3: Let Gχi be the subset of generators in the partition χi
4: Let modified transmission line constraints be: TLC(Gχi ) = {xj |gp ∈

xj∀gp ∈ Gχi andxj ∈ TLC(G)}
5: Let modified policy constraints be: PC(Gχi ) = {sj |gp ∈ sj∀sj ∈

Gχi andsj ∈ PC(G)}
6: for ∀g /∈ Gχi do
7: Delete g from all xj ∈ TLC(Gχi ) and sj ∈ PCC(Gχi )
8: end for
9: Generate ID for the generators in Gχi based on their matroid representation of

TLC(Gχi ) and PC(Gχi ) [18]
10: Gon ← Gon ∪ {1− RCGS(Gχi )}
11: Let ˜TLC(Gχi ) and ˜PC(Gχi ) be the set of constraints satisfied.

12: Modify TLC(G) = TLC(G) − ˜TLC(Gχi ) and PC(G) = PC(G) −
˜PC(Gχi )

13: end for

that assigns non-negative costs to each generating point gi
over all time units tj ∈ {0, 1, · · · , T − 1} such that c(gi, tj)
refers to the generation cost of gi at tj . In addition, each
generating point gi is associated with a generation delay
d(gi) ∈ {0, 1, · · · } to reflect wait times in startup. If gi is
allocated a desired transmission line at tj , it implies that
the actual time when gi couples to the transmission line is
d(gi) + tj .

An allocation at time ti denoted ati is a set of generating
points that are allocated their desired transmission line at time
ti. A schedule is defined to be the set of allocations at times
0, 1, · · · , T−1 for a planning horizon of T . A feasible schedule
is a schedule that satisfies the following three constraints:

1) Transmission line constraints: are described by a
family of subsets of G, TLC(G) = {x1, · · · , xR|xi ⊆
G ∀i} where set xi contains all generating points that
require line γi but have conflicts such that their total
output exceeds the line capacity Li. Thus, in a feasible
schedule if gi, gj ∈ xv and gi is allocated γv at time tm,
and gj is allocated γv at tl, then d(gi)+tm 6= d(gj)+tl.

2) Delay constraints: In a feasible allocation and for a
planning horizon T , a generating point gi can only be
allocated its required transmission line at time tj if
d(gi) + tj ≤ T − 1.

3) Policy constraints: are described by a family of subsets
of G denoted PC(G) = {s1, · · · , sk} consisting of
distinct (non-overlapping) policy sets si ⊆ G defined for
each load area Ai and representing the set of generating
points opted for meeting its demand. We say Ai has
been provided the service if at least one generating point
in si has been allocated its desired transmission line.
For each si we define a variable f(si) ∈ {0, 1}, where
f(si) = 1 if area Ai has been provided the service, and
f(si) = 0 otherwise. Since a goal is to provide service
to as many service areas as possible, formally we require
maximization of

∑
si∈PC(G)

f(si).

The cost of an allocation ati is defined to be the sum of
the generation costs of all the generating points in ati given
by: cost(ati) =

∑
gj :gj∈ati

c(gj , ti). Subsequently, the cost of

a schedule Q is given by of the sum of costs over all its

allocations given by: cost(Q) =
∑

ati :ati∈Q
cost(ati).

Definition 1: Constrained Generation Scheduling (CGS)
Problem Find a least cost feasible schedule; that is, no other
feasible schedule has a lower cost.

Informally, we can say that the objective of the CGS
problem is to provide service to the maximum possible number
of service areas while respecting their policy initiatives without
violating the transmission line and delay constraints such
that the solution has the least cost amongst all constrained
possibilities.

For easy excursion through the paper we focus on the 1-
RCGS problem, as defined below, for the rest of the paper.
The solution can then be extended to the general problem
using extended sets [18]. In the restricted constrained gen-
eration scheduling (RCGS) problem we assume that each
transmission line has equal capacity (i.e., Li = Lj ,∀i, j)
and each generating point has same level of output (i.e.,
Wi = Wj ,∀i, j). Furthermore, we assume that the capacity of
the transmission lines is less than twice the output capacity of
any one generating point. We start by presenting the solution to
the 1-RCGS problem which exhibits the following additional
restrictions: T = 1, which naturally implies d(gi) = 0 ∀i and
c(gi, tj) = c(gi) ∀i, j.

It is obvious that the the least cost schedule for the 1-RCGS
problem, is same as least cost allocation at time ti = 0 since
the planning horizon is just one time unit.

III. PARTITION BASED CASCADED GENERATOR
SCHEDULING

As described in Section II, the transmission-line constraints
and policy constraints can be presented in form of sets of
subsets of generators. Our focus is to partition the generating
points in a way such that the intersection of the constraints
sets for any two partitions has least cardinality. To capture
the constraint sharing between any two generating points we
construct the Constrained Graph C(V,E), a vertex-weighted
undirected graph with vertex set V , and edge set E. Each
vertex vi ∈ V is assigned a weight w(vi). Given an instance
of 1-RCGS problem we define the Constrained Graph C(V,E)
as: V := G and E := {(gi, gj)|gi, gj ∈ xp, p = 1, · · · , R} ∪
{(gi, gj)|gi, gj ∈ sq, q = 1, · · · , k}, and w(vi) = c(gi). An
example of the Constrained Graph for the 12-Bus example is
shown in Fig. 2. Next we find connected components in the
Constrained Graph. After that for each connected component
we find the partitions using Sparsest Cut Clustering [19].
As a result of Sparsest Cut Clustering for each connected
component of C(V,E), say ξj , τj partitions χ1, · · ·χτj are
formed. Each partition consists of a number of generating
points (vertices of C(V,E)). Define the cost of a partition
χi as: cost(χi) =

∑
vj∈χi w(vj).

Without loss of generality, order the partitions such that
cost(χ1) ≤ cost(χ2) · · · ≤ cost(χτj ). We call two partitions
to be adjacent if they share one or more edges. For each
connected component the proposed Constrained Generator
Scheduling algorithm works in a cascaded fashion solving
scheduling problem for one partition at a time in increas-
ing order of the partition costs. The primary motive behind
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Fig. 2. Graph representation of the constraints imposed by the 12 bus power
system.

cascaded scheduling for each connected component is that
in certain scenarios different partitions might share a number
of edges (representing one or both constraints) where solving
the constrained generation scheduling for one partition solves
a number of constraints that are needed to be removed for
the adjacent partitions for avoiding repeatedly solving the
same constraint in adjacent partitions. Furthermore, the choice
of solving constrained generation scheduling in order of the
costs of partition results in greedy optimization over the
constraints shared among different partitions since solving the
lesser cost partitions first might result in inclusion of lesser
cost generator in the final schedule compared to its costly
replacement in adjacent partition. Specifically Algorithm 1
Cascaded Scheduling Algorithm starts by initiating the set of
generators selected for final schedule Gon to be φ (step 1)
and then proceed with finding the locally optimal schedule
for the partition of generators Gχi in increasing order of their
costs. Steps 4-8 define the transmission line constraint set
TLC(Gχi) and policy constraint set PC(Gχi) for partition
χi by deleting the constraints over the generators not in the
partition χi from TLC(G) and PC(G) respectively. Step 9
generate the IDs for the generators and Step 10 runs Algorithm
1 − RCGS [18] for finding the allocation of generators and
append it to Gon. Step 12 modifies TLC(G) and PC(G)
by deleting the constraints satisfied for the partition χi i.e.,

˜TLC(Gχi) and ˜PC(Gχi). The same steps are repeated for
rest of the partitions.

For the 12-bus example I-B, the sparsest cut partitions are
χ1 = {g1, g2, g3, g8} and χ2 = {g4, g5, g6, g7} with the
corresponding costs 19 and 25 respectively. Note that there
is just one connected component for the Constrained Graph
shown in Fig. 2.

Lemma 2: For each partition the schedule found in steps
3-10 of the Algorithm 1 is locally optimal.

Theorem 3: If for each connected component ξj , |τj | = 1
then the Algorithm 1 provides the optimal solution.
Brief Sketch of Proof When the partitions are non-adjacent
then the locally optimal schedule found for each partitions is
globally optimal as well.

IV. TEST SYSTEM STUDY

To evaluate the performance of the propose scheme on
practical power systems we performed a simulation study
using IEEE 300 bus test system [17]. IEEE 300 bus test system
was developed by IEEE Test Systems Task Force in 1993, so

No. of Partitions 5 10 15 20
µ 1.1390 1.6118 2.0282 2.4474

TABLE I

it does not incorporate the smart grid scenario with a large
number of generating points. To incorporate the smart grid
scenario with a large number of generating points, we extended
the number of generating points in this system which is a
know practice (see for example [20]). To incorporate both the
sub-optimality, and running time of the proposed scheme we
used the cost-time product as the performance metric. More
specifically, for each realization we calculated the product of
the total cost of scheduling and the total running time. We
compared the cost-time product of the proposed scheme with
standard optimal solution. We define µ to be the ratio of
the cost-time product of the proposed scheme and standard
optimal solution. Table I shows average µ (average was taken
over 100 random instances) versus number of partitions. µ > 1
imply better performance of the proposed scheme compared
to standard optimal solution.
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