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Digital Video Steganalysis Exploiting Statistical
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Abstract—In this paper, we present effective steganalysis tech-
niques for digital video sequences based on interframe collusion
that exploits the temporal statistical visibility of a hidden message.
Steganalysis is the process of detecting, with high probability, the
presence of covert data in multimedia. Present image steganalysis
algorithms when applied directly to video sequences on a frame-by-
frame basis are suboptimal; we present methods that overcome
this limitation by using redundant information present in the tem-
poral domain to detect covert messages embedded via spread-spec-
trum steganography. Our performance gains are achieved by ex-
ploiting the collusion attack that has recently been studied in the
field of digital video watermarking and pattern recognition tools.
Through analysis and simulations, we evaluate the effectiveness of
the video steganalysis based on linear collusion approaches. The
proposed steganalysis methods are successful in detecting hidden
watermarks bearing low energy with high accuracy. The simula-
tion results also show the improved performance of the proposed
temporal-based methods over purely spatial methods.

Index Terms—Collusion attack, information forensics, pattern
recognition, video steganalysis, video steganography.

I. INTRODUCTION

THE purpose of steganalysis is to detect the presence of
covert data within innocuous-looking media, called cover

media, such as digital images or video. Steganalysis is an art
of covert signal detection in which the signal in question has
been “embedded” within another, often a more prominent,
signal using steganography. A steganalyst may be passive (in
which only the presence of a hidden message or the use of a
particular steganographic algorithm is to be detected) or active
(in which, additionally, some characteristic of hidden data,
such as embedding location or length of the message is to be
estimated) [1]. Steganalysis has gained attention in the fields of
computer forensics [2] and homeland security [3], [4] in which
threats of covert communications hold serious consequences.
In addition, automated steganalysis techniques are effective in
civilian applications to monitor Trojan horse programs, viruses,
spywares, adwares, and other malicious data that may be hidden
in digital media to adversely affect computer use [5].

Many practical steganalysis methods to date are designed to
be passive. We briefly survey several techniques in this class. For
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instance, Fridrich et al. [6] propose a successful method to de-
tect least-significant bit (LSB) embedding in 24-b color images
by observing that the number of unique colored pairs decreases
after LSB embedding. For JPEG images, it has been shown by
Fridrich et al. [7] that steganalysis is possible by exploiting
the unique fingerprints left by the JPEG quantization matrix.
Methods based on first-order statistical analysis involving the
Chi-square test on pairs of values by Westfeld and Pfitzmann [8]
and the center of mass of the histogram classification function
by Harmsen and Pearlman [9] have also been proposed. Provos
[10] has subsequently demonstrated a way to design a steganog-
raphy algorithm in which the associated first-order statistics are
preserved making it necessary to employ higher-order statistics
(HOS) tests for steganalysis.

For instance, Farid and his colleagues [11]–[14] have de-
signed blind steganalysis methods that employ mean, variance,
and HOS, such as skew and kurtosis to measure the disruption
of statistical regularity due to steganography in wavelet coef-
ficients of digital images. Linear and nonlinear classification
methods, such as the Fischer linear discrimination and the sup-
port vector machine are applied. The low and HOS are believed
to be rich enough to detect a broad class of steganography in
digital images.

Image-quality metrics and multivariate regression analysis
has also been proposed for steganalysis by Avcibas et al. [15],
[16]. It is observed that the distance between image features car-
rying covert data and those of a filtered version is greater than
for a purely cover image (with no hidden data). The most ef-
fective image quality metrics to measure this change in distance
for a number of embedding methods are determined [17]. Part
of the work proposed in this paper may be interpreted as being
analogous to [15] in that temporal filters are applied to aid in
steganalysis.

The steganalysis methods in [18] and [19] by Liu et al. focus
on detecting wavelet-based steganography, popular due to the
use of compression standards, such as JPEG2000. The param-
eters for a generalized Gaussian distribution to model the sub-
band coefficients in a three-level wavelet decomposition of an
image are calculated and then input into a trained neural net-
work [19]. In another method by the authors [18], the energy of
the wavelet coefficients is computed using the discrete Fourier
transform (DFT), and the corresponding strength of the energy
curve spikes is compared to a threshold.

A. Video Steganalysis, Watermarking Attacks, and Statistical
Visibility

The data rate of covert data transmission using steganography
is low in order to keep the covert data imperceptible within the
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cover medium. This data rate is somewhat proportional to the
volume of the cover medium and, for this reason, digital video is
a convenient choice for moderate rate steganography. The tem-
poral domain provides fertile ground for embedding higher vol-
umes of covert data by exploiting the temporal masking char-
acteristics of the human visual system (HVS). However, at the
same time, the redundancy in this domain allows greater oppor-
tunity for steganalysis.

To the best of the authors’ knowledge, the steganalysis
methods proposed to date (with the exception of the authors’
own work in [20]) do not apply to digital video. Although
raw video streams are essentially sequences of images, the
application of image steganalysis to video on a frame-by-frame
basis can result in suboptimal solutions. Given the need for
automated tools to monitor widespread steganography [21], we
address the problem of passive steganalysis of digital video.
This research generalizes, extends, and provides thorough
analytic justification and simulations to [20].

Steganalysis tools have been developed over the years,
forming a library of tests that can be used to flag suspicious
communication. Many of these methods are reactive and,
thus, are designed to address steganalysis for a specifically
developed steganographic algorithm. In this work, we develop
a methodology that leverages toolsets from research fields of
watermarking attacks and pattern recognition. In this way, there
is a natural means to more proactively develop steganalysis
tools by leveraging the rapidly evolving field of watermarking
attacks. In addition, good watermark attack operators are at-
tractive features for steganalysis because they demonstrate the
following characteristics: 1) they successfully remove hidden
data if present in test media and 2) leave the test media essen-
tially intact if hidden data do not exist. Thus, one can argue that
some difference measure between an original test media and
an attacked version is different in cases when steganography
has and has not taken place providing a detection feature for
steganalysis.

For video steganalysis, we make use of “statistical visibility”
in the temporal domain as studied in [22] and [23] in order to
assess the usefulness of temporal correlations for steganalysis.
Linear collusion has been proven to be an effective and effi-
cient attack operator for video-embedding algorithms exhibiting
temporal statistical visibility. Thus, we focus on developing an
approach that makes use of collusion for video steganalysis.
There is a tradeoff between the detection accuracy and the ap-
plicability of steganalysis to a broad class of embedding algo-
rithms. The inspiration for this work is drawn from a number of
currently available steganalysis techniques aimed at detecting
hidden messages from a variety of embedding schemes [9], [11],
[12], [16].

B. Contributions of this Paper

In this paper, the following occur.
1) We propose a general framework for developing steganal-

ysis methods that exploit advancements in watermark at-
tack research and pattern recognition. The goal is to pro-
vide a general methodology to produce a library of timely
steganalysis algorithms that are suited for a class of appli-
cations.

2) Using this framework, we design efficient steganalysis
techniques for video sequences that take advantage of
temporal redundancy. We develop composite methods that
can be used to detect messages hidden using spread-spec-
trum steganography in the spatial as well as the frequency
domain.

3) We highlight the limitations of data hiding in video. We as-
sert that the chances of the detection of hidden messages
greatly improve due to the presence of temporal redun-
dancy in video. We show, with analytic arguments and sim-
ulations, that it is infeasible to hide data in those parts of
video that are nonmoving or have translational motion.

4) We study the tradeoff between “statistical invisibility”
and robust embedding of hidden messages in a video
sequence. Through analysis and simulations, we show the
lower bounds on the embedding strengths of the hidden
message that leads to the failure of the proposed steganal-
ysis method.

In the next section, we discuss the nomenclature that we em-
ploy in this paper and formally define the video steganalysis
problem. In Sections III and V, we discuss the collusion-based
steganalysis approach and its enhancements. Comparisons and
simulations are provided in Section VI followed by conclusions
and insights in Section VII.

II. PRELIMINARIES

A. Nomenclature

A steganographic system involves two parties: the sender who
embeds the secret message in the cover media to produce the
stego media and the receiver who extracts it. Security comes,
in part, from the presence of a symmetric secret key in the
system that details how the secret message is embedded and
extracted. We assume that is securely exchanged between
the sender and receiver prior to covert communication; this key
is particular to the steganography algorithm and may impose
specifics such as how strongly and where in the cover object
the secret information is embedded, and/or seed information for
pseudorandom number generation.

Our video steganographic system scenario is summarized in
Fig. 1. The sender takes the “host” video sequence called the
cover video and embeds a secret binary message vector using
to produce a stego video sequence that is perceptually identical
to the cover video. The stego video is then communicated along
a public channel to the receiver. At the receiver, the stego-object
and secret key are used to extract the secret binary message.
The public channel may be monitored by an active or a passive
steganalyst whose goal is to detect the presence of covert com-
munication.

The cover video is denoted by where
is the frame number and are the row and column indices of
the pixels, respectively. The binary secret message is embedded
into the host by modulating it into a signal we call the watermark
[24] denoted by . Since the influence of the secret
message is carried on to the watermark, we will use the terms
hidden message and watermark interchangeably throughout this
paper. Detection of the watermark will imply the presence of
hidden information in the medium. For notational compatibility,
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Fig. 1. Steganography and steganalysis.

the watermark is defined over the same domain as the
host ; the reader should note that this holds even if the
watermark is inserted in a nonspatial domain such as the discrete
cosine transform (DCT). The stego-video signal is represented
by the commonly used equation [22]

(1)

where is a scaling factor used to manipulate the
strength of the hidden message to tradeoff perceptibility and
robustness. For simplicity of analysis, is considered to be
constant over all of the pixels and frames to give

(2)

The scaled watermark is a function of the bi-
nary hidden message, secret key , and the host . The
relation between these parameters is decided by the embedding
algorithm.

B. Problem Formulation and Assumptions

One goal of this paper is to evaluate the importance of ex-
ploiting temporal correlations for video steganalysis. Thus, we
first focus on video processing in the temporal domain; image
methods that work in the orthogonal spatial domain can then
be easily incorporated to enhance performance. Another goal
is to develop a proactive steganalysis framework that applies
to a larger genre of steganography algorithms or cover media
and which exploits the actively evolving field of digital water-
marking attacks. Thus, we focus on the steganalysis of Gaussian
spread-spectrum-based steganographic methods [24], [25] due
to its influence in the research literature.

Fig. 2 summarizes the basic framework. Two essential blocks
are present: a watermarking attack stage used to estimate the
host media from the possibly watermarked media, and a pat-
tern recognition stage used for the detection of steganographic

Fig. 2. Video steganalysis framework.

activity. Different algorithms can be substituted for each block
to produce steganalysis techniques for a variety of applications.
Instead of borrowing from libraries of image processing and sta-
tistical functions to identify potential primitives for steganalysis,
the block-based structure also allows one to borrow from recent
advancements in the related field of watermark attacks and pat-
tern recognition for a timely steganalysis algorithm.

We make the following necessary assumptions.
1) The host frames 1 are assumed to be from a distribution

having mean and variance .
2) The correlation among the host frames follows the first-

order Markov model where the correlation coefficient be-
tween frame and is given by , and is the cor-
relation coefficient between any two adjacent frames.

3) The watermark frames are assumed to be independent
of and of each other, and derived from a Gaussian dis-
tribution having mean 0 and variance . Since the water-
mark is embedded with an embedding strength of , the
effective variance of the watermark is .

For slow-moving sequences, we can assume that the frames
have approximately the same mean and variance as stated in
Assumption 1). If the mean of the video frames is not constant,
it can be estimated on a frame-by-frame basis and subtracted
out to produce a zero-mean video sequence for processing. In

1Please note that we have removed the subscriptsm;n from our notations for
clarity. For the rest of this paper, we will assume that all operations are done on
the entire frame unless stated otherwise.
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Fig. 3. Proposed framework for steganalysis.

Assumption 2), we employ the first-order Markov correlation
model commonly found in the literature [26]. Assumption 3)
directly comes from the structure of higher capacity spread-spec-
trum steganography methods where the watermarks embedded
in each frame are from a zero mean Gaussian distribution and
are independent from each other and the host frames [27]. The
interframe independence may suggest higher capacity embed-
ding since the same payload is not restricted to be repeated
throughout the video sequence and can change from frame to
frame. This assumption also applies to zero mean Gaussian
watermarks embedded in other linear domains such as the
DCT.

We also assume that the sender embeds a watermark into each
pixel/coefficient of every frame of the video sequence; this as-
sumption is reasonable because to maximize the steganographic
capacity, a sender must make use of as much of the host signal
as possible for information embedding. There is, however, a
tradeoff between steganographic security and transmission ca-
pacity as we discuss later.

The figures of merit used to assess success of the algorithm
are the probability of false positive detection and the proba-
bility of false negative detection defined as follows. The proba-
bility of false positive detection is the likelihood of detecting
that hidden information is present in a given video sequence
when nothing has been embedded (i.e., ); that is, a given
video signal is flagged stego video when it is not. The proba-
bility of false negative detection is the likelihood of detecting
that hidden information is not present when, in fact, it has been
embedded (i.e., ); that is, a given video signal is declared
cover video when it is not. A good steganalysis technique should
strive to minimize both error probabilities. Some research pri-
oritizes false negative detection rates using the philosophy that
a false positive can be subsequently corrected using further of-
fline video processing techniques. However, as pointed out by
two reviewers of this paper, due to the low numbers of video that
carry covert information, it is impractical to sacrifice false pos-
itive probabilities and a good balance between these error rates
must be achieved for practical application.

III. COLLUSION-BASED STEGANALYSIS

The spirit of most steganalysis methods is to devise a func-
tion that differentiates between the general characteristics of a
signal with and without embedding. This function is normally
compared implicitly or explicitly to a threshold in order to decide
whether a given signal contains hidden information. Much re-
search on image steganalysis has focused on identifying image
features that change when steganography algorithms are applied.
Researchers have traditionally employed image processing and
statistical toolsets that in some form attempt to estimate a poten-
tial host signal from . This host estimate is
then compared in some way to in order to detect if something
is hidden. The basic hypothesis is that the deviation of specific
characteristics of and will differ if something is embedded
in (i.e., ) in comparison to when
nothing is embedded in (i.e., ). Pattern classification
is often employed to characterize this deviation effectively.

In this section, we specify the design of the blocks in the basic
architecture proposed for video steganalysis in Section II-B.
Fig. 3 presents our framework. The video sequence under con-
sideration is passed through a digital watermarking attack
block (in this case, a temporal collusion attack) that attempts
to estimate the host signal to produce . This block may as-
sume knowledge of the embedding algorithm (if any is used)
to be effective. The estimate of the watermark , calculated
by taking the difference between and , is passed through
an appropriate pattern classifier. If is a stego video, then the
input to the pattern classifier is a watermark signal corrupted by
some interference related to temporal filtering from the water-
mark attack. On the contrary, if is a pure video signal without
hidden data, the estimate will only consist of the noise due
to filtering. In an ideal case, if the filter is able to perfectly re-
construct the host, the estimate will consist of the embedded
watermark in case of a stego video or will be zero otherwise. By
employing some a priori information about the embedding al-
gorithm, the distinction between these two cases can be made to
detect the presence of covert communication.
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We conjecture that the linear collusion attack, used to re-
move the presence of independent digital watermarks in a se-
quence of images or video frames [22], is ideal to address our
goals. First, the attack focuses on temporal correlations between
video frames to estimate a host video sequence that can be easily
incorporated into our framework. Second, much analytic and
simulation-based work [22], [23], [28], [29], [27] focuses on
this area, providing a strong foundation upon which to build
a steganalysis method. Finally, the attack is computationally
simple making our steganalysis approach practically feasible for
real-time applications.

A. Collusion

Collusion for digital watermarking and steganography refers
to the use of multiple image frames (that may or may not form a
video sequence) to remove the presence of a watermark in one
or more of the frames. In general, the collusion may be linear
or nonlinear exploiting the differences and similarities among
frames to judiciously reduce the energy of the watermark in re-
lation to that of the host information. We represent the collusion
of a sequence of video frames as

(3)

where is called the colluded result and in this paper repre-
sents the estimate of the th host frame . is the collusion
operator with parameters (which, in this paper, represents the
collusion window length) that exploits the similarities and dif-
ferences among all or a select subset of possibly watermarked
image frames to produce . As we discuss, the
colluded result will ideally contain a significantly less con-
tribution from compared to . Common forms of the col-
lusion operator include taking the pixel-by-pixel maximum,
minimum, mean, or median over a range of image frames [22],
[28], [29].

Linear collusion is a special case in which represents a
weighted average operation of select video features and frames.
Intuitively, linear collusion on a sequence of video frames am-
plifies parts of the frames that are similar and attenuates com-
ponents that are different. In the next subsection, we consider
the case where the collusion weights applied to each frame are
equal. For the remainder of this paper, we refer to this as the
simple linear collusion scheme.

B. Simple Linear Collusion

Let us assume that we use a sliding window to denote the
temporal neighborhood used for frame averaging; this window
is assumed to contain visually similar frames. Specifically, we
take a window size of frames centered at frame to
average the video sequence. The estimate of the th host frame
is given by

(4)

where is the frame under consideration to produce , an esti-
mate of . The first and the third cases of (4) account for edge
effects of the window moving out of the range .

The effectiveness of as an approximation of depends
on the value of in relation to the rate of motion in the video
sequence. Through analysis, we show that an optimum value of

will lead to the cancelation of the Gaussian watermarks and
ensure the assumption that holds true.

If collusion is applied to a given video sequence that may
or may not contain a watermark, we believe that in both cases
for slowly varying video and an appropriately selected value of

, the result will be an approximation of . Thus, if a water-
mark is embedded in the video, subtracting from gives

, an estimate of the scaled zero
mean Gaussian watermark. If no watermark is present in ,
then the result will be independent of any characteristics such as
Gaussianity that we assume for the watermark. This difference
is exploited by a pattern classifier discussed in the next section
for steganalysis.

C. Classification

Our objective is to build a classifier that discriminates be-
tween an estimate of the scaled watermark and no watermark.
The two main components of a typical classifier are feature
extraction and the discriminator [30]. Feature extraction derives
characteristics from the signal under consideration to provide
relevant information to the discriminator for classification.
Since we assume that steganography occurs through the ad-
dition of Gaussian watermarks, we employ features that can
measure the level of Gaussianity in a signal. These include
kurtosis, entropy, and the 25th percentile.

Kurtosis [31] is a value that partially measures the “shape”
of a distribution. Kurtosis for a Gaussian distribution is 3 and
varies for most of the other distributions. The kurtosis estimate
for the sample set is defined as

Kurtosis (5)

where and represent the variance and mean of the distribu-
tion.

Entropy [31] helps to determine the degree of “randomness”
in a given distribution. For a fixed variance, the Gaussian dis-
tribution has maximum entropy. Thus, the estimates obtained
from a watermarked video sequence should have a higher en-
tropy than those obtained from nonwatermarked sequences. The
entropy estimate is given by

Entropy (6)

where is an estimate of the distribution of .
The last feature that we consider is the 25th percentile of a

given distribution defined as the value above which 25% of the
points in the histogram reside.

Once the features are extracted, we build a kNN classifier
[30], [32]. More sophisticated classifiers using support vector
machines and neural networks [32] could have been employed
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for discrimination, but are higher in complexity without pro-
viding significantly improved performance from our prelimi-
nary tests. The kNN classifier must be trained to be able to op-
erate for steganalysis. Cross validation [30], [32] is employed to
determine the video set which yields the lowest probability of
false positive and false negative.

IV. DESIGN AND DEVELOPMENT

This section provides analysis and intuitive explanations
to justify the choice of steganalysis building blocks and
parameters.

A. Effectiveness of Simple Linear Collusion

Linear collusion has recently received analytic and experi-
mental attention in the digital video watermarking community
[22], [23], [27]. It has been shown analytically that if the linear
correlation among host video frames for some differs from
that of the watermark frames over the same range of , then
linear collusion will be successful in either attenuating or am-
plifying the presence of the watermark in the resultant frame
[22].

We focus on the application of higher capacity spread-spec-
trum steganography on video sequences that implies is in-
dependent for each frame (as discussed in Section II-B). We as-
sume that the motion in the video sequence is “slow” which im-
plies that adjacent video frames are similar (as presented by our
correlation model of Section II-B). Because of this visual cor-
relation, it is expected that over a neighborhood of centered
at , the watermarked video frames can be averaged in order to
attenuate the presence of the watermark in the th frame.

Substituting for all from (2) into (4), we
obtain

(7)

where the summations are over the appropriate domains for the
various ranges of shown in (4). Since the watermarks are
independent and zero mean, the second term of the left-hand
side of (7) approaches zero as increases. Furthermore, because
we assume for all in the neighborhood of the sliding
window centered at , the first term will dominate resulting in
the approximation . We note that choosing an appro-
priate window size, the colluded frame is a good estimate of the
host frame.

The success of the steganalysis method, which leverages the
watermark characteristics, depends on the success in estimating
the watermark in each frame. The estimate of the scaled water-
mark is given by

(8)

In case of nonwatermarked video, ,
where . Therefore

(9)

since for nonwatermarked sequences. For simplicity of
notation, we let .

This residual “noise” from simple linear collusion, repre-
sented by , is a measure of the invariance of the collusion
operator on legitimate nonwatermarked data. Ideally, we would
like .

In case of watermarked sequences, .
Since , the estimate of the scaled
watermark is given by

(10)

where we let .
In the case of the watermarked sequences, the estimate of

the watermark is the sum of the noise due to collusion and a
Gaussian signal which bears a high correlation with embedded
watermark . In the situation when all of the host frames are
the same, will be zero and the estimate of the watermark
will be the embedded watermark .

We study the expected mean squared error (MSE) between
the estimate of the watermark and the embedded watermark

to find conditions for which simple linear collusion will be
successful in extracting the watermark from the original frames.
The expected MSE is given by

(11)

Proposition 1: Given a sequence of watermarked video
frames , as defined by (2). Under Assump-
tions (1), (2), and (3), the expected MSE between the original
watermark and the estimated watermark obtained from simple
collusion is given by

(12)

where .
Proof: See Appendix, Sec. A.

In the next proposition, we evaluate the MSE when ,
that is, no temporal collusion is applied.

Proposition 2: Under assumptions 1), 2), and 3), the expected
MSE between the original watermark and the estimated water-
mark when there is no temporal collusion is given by

(13)

Proof: See Appendix, Sec. B. Since the estimate of the wa-
termark when is always zero, the expected MSE between
the watermarks is always equal to the variance of the effective
watermark embedded (i.e., ).

The next proposition analyzes when collusion is successful
for steganalysis. We study the ratio of the variance of the host
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Fig. 4. Upperbound on (� )=(� � ) as a function of �; L.

to the variance of the embedded watermark, an inverse mea-
sure of watermark-signal-to-noise ratio (WSNR) often denoted
“host-to-watermark ratio.”

Proposition 3: Under assumptions 1), 2), and 3), the collu-
sion attack is successful if the following condition is satistfied:

(14)

where .
Proof: See Appendix, Sec. C.

We arrive at the bounds on the above ratio by laying a con-
straint that the expected MSE of the watermark estimate in case
of simple linear collusion is smaller than the expected MSE en-
countered when there is no collusion at all. The accuracy of ste-
ganalysis is related to two issues: 1) the ability of collusion to
reduce the watermark strength (which increases reliability) and
2) the degree of residual noise present from temporal collusion
(which decreases reliability). This constraint ensures issue 1)
outweighs 2) so that the overall effect of collusion is successful
in reducing MSE (and, hence, aids in steganalysis). The associ-
ated inequality of (14) provides insights on the conditions under
which the proposed collusion-based method is successful.

Fig. 4 graphs the upperbound of as a function
of for various , which relates a range of window lengths

for successful collusion to the similarity between
video frames and the strength of the watermark, if present. For
example, we see that for a correlation coefficient of be-
tween adjacent frames and , the maximum
can be 10. This means that if the variance of the host is greater
than 10 times the effective variance of the watermark, a collu-
sion length of 4 (or less) will provide benefits for steganalysis
in estimating the watermark. Although Fig. 4 provides us with
an idea of when the collusion approach to steganalysis holds
promise, it does not, however, provide information about the op-
timal value of to produce the best estimate of the watermark.

The reader should note that practical simulations discussed
in Section VI suggest that the bound of Fig. 4 is conservative.

Fig. 5. MSE as a function of L; �.

Inverse WSNR values can often be in the order of thousands
implying that the value of needs to be close to 1 for collusion
to be effective for steganalysis. However, our simulations
demonstrate that our collusion-based steganalysis works for
the majority of video test sequences (even those with high
inverse WSNRs and a lower value of ). We believe that
this discrepancy is due, in part, to the use of the Markov
model for video frame correlation. This well-known model is
used to provide a tractable series of analytic design insights.
However, after studying the model and comparing it to practical
data, we believe the model provides a conservative assessment
for steganalysis performance because the correlation between
frames does not drop as quickly as the model suggests in
many test sequences. We may, at times, be able to interpret
this as the existence of a high value of (above 0.98), which
is variable. In addition, the use of the kNN classifier stage
(which is not modeled in the formulation of Fig. 4) provides
an additional level of robustness to the technique when applied
to real data.

Fig. 5 displays the expected watermark estimate MSE in
terms of (i.e., ) computed by
(12) as a function of and assuming .
We see that for a given (i.e., window length
of ) provides an optimal watermark estimate in
terms of MSE. Although the MSE is an intermediate signal of
the steganalysis architecture, it is believed that a more accurate
watermark estimate into the pattern classifier will usually result
in a more successful overall steganalysis.

The reader should note that in the case of fast-moving video
sequences (smaller values of in Fig. 5), the simple linear col-
lusion scheme will not result in a reasonable approximation for

; the minimum MSE occurs for . This motivates our
work in Section V where we provide a practical alternative to
improve simple linear collusion performance for steganalysis
that involves using block-based collusion.

B. Justification of Feature Selection

Estimation of the watermark is one phase of our steganal-
ysis framework. The nonlinear pattern classification stage is dis-
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Fig. 6. Distribution of the watermark estimates for a video sequence (a) with
and (b) without steganographic data embedded. (a) Watermarked sequence. (b)
Nonwatermarked sequence.

cussed in this section. We justify the choice of kurtosis, entropy,
and 25th percentile of the watermark estimate as our feature
vectors to aid the pattern classifier stage. Fig. 6 gives a repre-
sentative example of the histogram distribution of the estimated
watermark for a frame from a watermarked and a nonwater-
marked video sequence. It is clear that there exists a difference
between the two cases that can be quantified through statistical
features; the case in which no watermark is present results in a
distribution that is not Gaussian.

1) Kurtosis: Kurtosis [31] is a measure of the degree of flat-
ness or peakness of a distribution compared to the Gaussian
case. A higher value implies a distribution with a higher peak
than the Gaussian distribution. We expect from a water-
marked sequence to have a kurtosis close to 3. The estimate from
a nonwatermarked sequence should yield a higher kurtosis value
owing to its peakiness as shown in Fig. 6.

2) Entropy: Entropy measures the degree of randomness in
a data set. We argue that the estimate of the watermark from a
watermarked video sequence will have more entropy compared

to the estimate from a nonwatermarked sequence. This sup-
ports [33] where Anderson and Petitcolas define a good stegano-
graphic algorithm as one that can minimize the increase in en-
tropy due to embedding. Let us represent the entropy of ob-
tained for nonwatermarked sequences as and the entropy of
the estimate of the watermark from a watermarked sequence as

.
Proposition 4: In the case of simple linear collusion, the en-

tropy of obtained from a watermarked sequence is
greater to the entropy of obtained from a nonwatermarked
sequence (i.e., ).

Proof: See Appendix, D.
3) Distribution Percentile: The last feature that we consider

is the 25th percentile of a given distribution defined as the
value above which 25% of the points in the histogram reside.
From Fig. 6, it is clear that the distribution when a watermark
is present is more “spread” than when no watermark is present
resulting in a difference in this percentile value.

Fig. 7 represents a scatter plot of specific statistical features
of for different video sequences that do and do not contain
steganographic information. The features are estimates of the
kurtosis, entropy, and 25th percentile of the distribution of
to form a 3-D feature vector that is plotted for different video
frames in two different test video sequences (shown as parts (a)
and (b) in the figure). The colored vector points represent the
results of different video containing hidden information and the
clear points are the results for no hidden information. The sep-
arate clustering for the two cases is clear which makes classifi-
cation possible.

V. ENHANCEMENT: BLOCK-BASED COLLUSION

In case of fast-moving sequences or sequences having non-
translational motion, simple collusion may be suboptimal in
producing a watermark-free frame. However, if we consider col-
lusion at the block-unit (e.g., 8 8 pixels) instead of at the frame
level, it may be possible to compensate for motion by effec-
tively matching blocks of distinct frames via techniques similar
to those found in MPEG/H.263x coding schemes.

Block-based collusion for five frames is demonstrated in
Fig. 8. The frame corresponding to the center of the window

is called the reference frame. For each block in this refer-
ence, the best block match is found in all of the other frames

via an MSE measure. A new set
of “reconstructed” frames is then
formed by repositioning the matched blocks, so that they are
at the position corresponding to the associated block in the
reference frame. Once the reconstructed frames are formed,
steganalysis is applied via collusion and pattern classification.

An insight that is drawn is that the effective embedding data
rate that can be achieved in a video sequence can be significantly
reduced if block-based collusion is employed instead of frame-
based collusion attack. This is because the effective correlation
between the blocks will be higher for nonmoving parts and will
help in detecting messages embedded in those areas. Thus, from
an embedder’s point of view, he or she can judiciously hide the
messages only in frame areas for which a good match cannot be
found in the other frames of the collusion window.
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Fig. 7. Scatter plots of kurtosis, entropy, and 25th percentile feature vectors
extracted from each frame. Colored and clear points represent the cases with
and without a watermark present in the video, respectively. (a) Scatter plot for
“Backyard” video sequence. (b) Scatter plot for “Hotel” video sequence.

VI. RESULTS

The sequences2 that were chosen for simulation and testing
consist of grayscale video sequences of different resolutions in
raw format. As discussed in Sections II-A and II-B, the mes-
sages are embedded in the spatial domain of each video frame
to test the performance of our technique. However, the reader
should note that our approach to steganalysis will still work
if the embedding is done in another linear transform domain
such as the DCT; tests for the embedded DCT domain were
conducted, resulting in similar conclusions and are thus not in-
cluded for reasons of space. The embedding was done by adding
watermarks from a zero-mean unit variance (i.e., )
Gaussian distribution as presented in (2) into every pixel of each
frame. The watermark strength parameter is varied to test
the effects on secrecy. The values used in our simulations are

resulting in an embedded watermark variances of

2The sequences were downloaded from http://ise.stanford.edu/video.html and
http://www.articom.info/1489.html.

Fig. 8. Block-based collusion attack.

values , respectively. The smaller the value of
, the less perceptible the mark is both visually and through ste-

ganalysis, but the lower the capacity or robustness of the covert
data embedding is, making it more vulnerable to active wardens.

Because of the variation of for each test video sequence,
the inverse WSNR values have been found to be in the range
38–3500, 4–390, and 1.5–140 for , and , respectively,
providing a diverse basis for testing.

A. Window Length for Collusion

As mentioned in Section III-B we use a sliding window to per-
form the collusion attack. Different window lengths were em-
ployed for simple linear collusion on test video sequences con-
taining watermarks to produce . The difference
was then obtained to provide an estimate of . To determine
the success of the window length for steganalysis, the pairwise
correlation coefficient was computed, where

(15)

where denotes the covariance and denotes the
variance of the argument random variable(s).

Fig. 9(a)–(c) shows the average correlation between the
embedded watermarks and the estimated watermarks over 40
frames using simple linear collusion for different values of
embedding strength and window lengths for various sequences.
We see that in Fig. 9(a), the correlation is highest for a majority
of the sequences for a window length of 3. The optimum collu-
sion window length increases for higher embedding strengths
as can be seen from Fig. 9(b) and (c). This is in accordance
with our earlier assertion that for a fixed value of and , an
increase in WSNR will lead to a increase in the value of the
optimum as demonstrated in Fig. 4. From Fig. 9(a)–(c), we
see that the optimum collusion length of sequence “alex” is 3,
9, and 13 for embedding strengths of 1, 3, and 5, respectively.
However, we see that for the sequences “carphone,” “mobile,”
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Fig. 9. Average correlation between W and Ŵ for different sequences: (a) � = 1, (b) � = 3, and (c) � = 5. (Color version available online at: http://
ieeexplore.ieee.org.)

“paris,” “tempete,” and “trevor,” the optimum collusion length
does not change with an increase in the embedding strength.
This is because the increase in the embedding strength does not
decrease the inverse WSNR (which was found to be very high
for most of these sequences) sufficiently to cause an increase in
the collusion length as predicted in Fig. 4.

We assume that the embedder uses a low embedding strength
for watermark insertion since a higher embedding strength
would leave significant statistical imprints. With this assump-
tion, we chose the optimum collusion length to be
for future tests of the proposed steganalysis method. However,
the reader should note that the optimum technique would
choose the collusion window length based on characteristics of
the video sequences, such as correlation coefficient, degree of
global motion, and variance of frames, and is a potential area
of future work.

B. Training and Parameter Selection for the kNN Classifier

Other issues that require optimization are the training and pa-
rameter selection of the kNN classifier. The number of video
sequences required for training for effective classification is ap-
plication dependent. In our training, we employed 14 video se-
quences consisting of 40 frames each. Each video sequence
was watermarked using the particular spread-spectrum embed-
ding approach to represent the class of watermarked videos. The
other class comprised of the same sequences without any em-
bedded data. Features representing the watermarked and unwa-
termarked classes were extracted from in each frame for
every video sequence using collusion. We minimized the proba-
bility of false negative detection given a maximum false positive
rate of 25% in simulations. The parameter in the kNN classi-
fier [30], [32] that determines the number of “nearest neighbors”
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TABLE I
FALSE ALARM RATES (%) FOR SPATIAL-DOMAIN

STEGANOGRAPHY USING � = 1

searched to reach a classification decision was set to to
give a low probability of false negative and positive with low
complexity; higher values of did not improve performance.

C. Performance Results

The probabilities of false negative and false positive
for frame-by-frame detection were computed for a given test
video sequence by counting the number of misdetections over
each frame in the sequence (40 frames per sequence were em-
ployed); thus, if one video frame out of the 40 results in a false
detection, the error probability is 2.5%. We estimated by
embedding a Gaussian watermark into a given cover-video se-
quence and then applying collusion to estimate the watermark
present. The fraction of failed detections was counted to es-
timate . Similarly, the same approach was applied to un-
marked video sequences to estimate .

Our aim is to detect the presence of covert data in a video se-
quence on the whole rather than estimating the presence of wa-
termarks in individual frames. So if and are less than
0.5, we still have a successful steganalysis attack. Let us assume
that the for a watermarked sequence is 0.3. This means
that 30% of the total number of frames from a watermarked
sequence are classified as nonwatermarked and the remainder
as watermarked. By adopting a majority-takes-all strategy, this
flags the overall video sequence as containing hidden data. The
steganalysis method was tested on three different variations of
the spread-spectrum steganography as discussed in [24] pro-
viding similar results. We provide the results for the embedding
approach described in Section II-A.

Tables I–III show the probability of false negative and
the probability of false positive for the proposed steganal-
ysis method for embedding in spatial domain via (2). The ta-
bles show the error encountered in detection of watermarked and
nonwatermarked sequences for different values of using dif-
ferent steganalysis methods. The comparisons between the spa-
tial-based steganalysis method based on Wiener filtering [34]
to estimate the hidden watermark and the temporal methods
using simple linear collusion and the block-based collusion have
been provided. As we can see from Table I, for an embedding

TABLE II
FALSE ALARM RATES (%) FOR SPATIAL-DOMAIN

STEGANOGRAPHY USING � = 3

TABLE III
FALSE ALARM RATES (%) FOR SPATIAL-DOMAIN

STEGANOGRAPHY USING � = 5

strength of , the is reasonably low for most test video
sequences.

Tables II and III also show how the performance of the ste-
ganalysis technique improves as the magnitude of the embed-
ding strength increases. It follows that a steganalysis tech-
nique that works well for a lower value of will work at least
as well for higher values. Thus, our analysis of small values of

provides a minimum performance limit on the algorithm.
The proposed steganalysis techniques produced high error

rates for Sequence 15 and Sequence 23. This is due to the high
degree of camera movement or global change in the scenes. The
nontranslational nature of the motion in these sequences causes
the block-based approach to fail as well. Due to the lack of suf-
ficient temporal correlation, the energy of the residual noise due
to collusion is high, thus confusing the pattern classifier into
believing that an additional component from watermarking ex-
ists in . Again, this observation verifies the trend of Fig. 4
that collusion is less effective for steganalysis when the correla-
tion between frames is lower.

Overall, we observe comparable or improved performance of
the purely temporal-based techniques over the purely spatial ap-
proach based on Wiener filtering demonstrating the usefulness
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of temporal processing for video steganalysis. The performance
of the block-based scheme is naturally better than the simple
linear collusion scheme.

We would like to point out that the proposed steganalysis
method has to undergo no change apart from the generation
of the training set in order to successfully detect DCT-based
spread-spectrum steganography [24]. The DCT transform is
linear and, hence, any Gaussian watermark added in the DCT
domain remains Gaussian in the spatial domain. The feature
vectors are thus robust enough to address watermarks using
varied embedding schemes. The results, found in [34], are
comparable to the spatial domain and are not included due to
space reasons.

VII. CONCLUSION

The work presented in this paper demonstrates the potential
of our framework and the use of temporal processing for effec-
tive steganalysis. To the best of our knowledge, we developed
the first video steganalysis algorithm that takes advantage of the
temporal redundancy present in the video. We see improved per-
formance in our method over the spatial methods that work on
a frame-by-frame basis.

An advantage of simple linear collusion is that it has low
complexity and is suitable for real-time applications. For every
frame that is under a steganalysis test, there is a latency of 2–4
future frames before one can perform windowed collusion. At a
display rate of 30 frames per second, this corresponds to a time
lag of of a second. The processing time is low and does
not add any non-negligible processing delay.

We demonstrate how statistical redundancy in the cover
video can aid a steganalyst in detecting hidden watermarks.
Increased interframe correlation improves performance of
collusion. Furthermore, the block-based scheme demonstrates
how slow-moving video sequences are not an ideal choice for
steganography as supported by [1].

Through this paper, we studied the tradeoff between robust
embedding of messages and detection capability of our ste-
ganalysis method. We see that the steganalytic detection rate
increases with an increase in the watermark embedding strength
suggesting that robustness increases the chances of detection.
The analyses suggest using a range of 1 to 3 for to foil col-
lusion-based stegananalysis. We note from simulations that for
an embedding strength of 1, and are relatively high
compared to higher embedding strengths of . However,
employing such low embedding strengths makes steganog-
raphy susceptible to active wardens that can easily remove the
watermark and, thus, prevent covert communications without
employing steganalysis.

A. Limitations and Future Directions

Our steganalysis scheme presumes that the sender alters every
pixel of each frame to embed a watermark. In order to maxi-
mize the capacity of the hidden data, this assumption is reason-
able. However, future investigations must consider how the ef-
fects of interleaving the watermark in selected pixels, frames, or
video features affect the steganalysis detection accuracy. Such
interleaving will provide the sender with greater secrecy at the

expense of capacity or robustness. We expect that there is a
threshold for interleaving below in which steganalysis detection
will become inaccurate. Thus, this value determines the effec-
tive covert communication capacity that cannot be detected.

To develop a strategy that works for a broader class of embed-
ding schemes, one must robustly incorporate information about
the statistics of the video [11], [13], [15], [16] rather than solely
consider the statistics of a possibly hidden message. One area of
possible future research involves incorporating cover-medium
characteristics into the proposed framework.

Another modification that shows promise involves detecting
the presence of a watermark at the block level rather than at a
frame level. A collective decision, such as majority wins, can be
made on each frame using the individual detection results on the
blocks. The detection results for each frame can then be used to
detect the presence and absence of a message in the entire video
sequence. It is shown in [35] that such a distributed framework
can help lower the probability of false negative and false positive
suggesting the promise of this approach.

For situations in which the watermark possesses interframe
correlation, one may consider applying the collusion attack
strategies of [22] for more reliable steganalysis. Adaptation of
the analysis by the second author [22] to the present framework
provides fertile ground for theoretical research that can apply
to algorithmic development.

We are currently exploring the advantages of employing
weighted linear collusion instead of simple collusion and have
derived values for optimal weights. However, the optimal
weights require knowledge of elements of the cover video
and the spread-spectrum embedding parameters, which may
be difficult to estimate from , subsequently resulting in
weak performance. We are as-of-yet uncertain if the additional
complexity is worth the possible performance increase, which
at this stage seems slight, at best.

Finally, we intend to consider employing an adaptive value
of for a given video sequence for more effective collusion in
addition to more complex nonlinear collusion models.

This first study on temporal domain steganalysis demon-
strates that using the time domain provides comparable or better
performance than exclusively spatial-domain approaches. Since
both domains are orthogonal and provide valuable information
for the overall objectives of steganalysis, our long-term goal
is to develop a framework for video steganalysis that makes
efficient use of both domains jointly.

APPENDIX

PROOFS

A. Proof of Proposition 1

The expected MSE between the estimated and the orginal wa-
termark as defined in (11) is given by

E

E

E
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E

E

E

E

E

Using Assumption E

E for and

(16)

where

E

E

Now

E

E

Using Markov Model defined in Assumption

Assuming fails for

Now

E

E

E

The term is

term is

...

term is

The terms can be put together as rows of a Toeplitz matrix and
the sum of all terms is given by the sum of all elements in the
matrix. Adding the terms and assuming , we have

Substituting the values of and in (16) and
simplifying, we have

E
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The mean of the host frames in our proof has been ignored
and is assumed to be zero. However, the final term will be inde-
pendent of the mean even if we take it into account.

B. Proof of Proposition 2

The expected MSE between the watermarks in the case there
is no collusion (i.e., or in (12)) reduces to

E

C. Proof of Proposition 3

To determine the conditions for which simple collusion re-
duces the MSE of the watermark estimate, we consider the case
in which the estimated MSE obtained from use of collusion (i.e.,
the right-hand side (RHS) of (12) is smaller than the estimated
MSE obtained for no collusion (i.e., the RHS of (13). By multi-
plying the RHS of the first inequality by , it
is straightforward to determine that

D. Proof of Proposition 4

In the case of nonwatermarked sequences, and in
the case of watermarked sequences, , where

and . Due to as-
sumption 3), and are independent. Therefore, the entropy
of the watermark estimate from watermarked frames (denoted
as ) in relation to the entropy of the watermark estimate from
nonwateramrked frames (denoted as ) is given by

where we assume that and for the case of water-
marked sequences to ensure strict inequality.
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