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Traditionally, data hiding and compression have had contradictory goals. The former problem adds perceptually irrelevant infor-
mation in order to embed data, while the latter removes this irrelevancy and redundancy to reduce storage requirements. In this
paper, we use data hiding to help improve signal compression. We take an unconventional approach and consider “piggy-backing”
the color information on the luminance component of an image for improved color image coding. Our new technique essentially
transforms a given color image into the YIQ color space where the chrominance information is subsampled and embedded in the
wavelet domain of the luminance component. Our technique can be used as preprocessing to improve the performance of popular
image compression schemes such as SPIHT that are optimized for grayscale image compression. Simulation results demonstrate
the superior performance of the proposed technique in comparison to JPEG and straightforward SPIHT.
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1. INTRODUCTION

Data hiding within multimedia has received growing interest
in recent years due to its potential for signal captioning, main-
taining audit trails in media commerce, and copy protection
through the development of digital watermarking technol-
ogy. By embedding key information with the media itself, it
is safe from content separation. Data hiding is the general
process by which a discrete information stream is merged
within media content by imposing imperceptible changes on
the original host signal.

One of the main obstacles within the data hiding commu-
nity has been developing a scheme which is robust to percep-
tual coding. Perceptual coding refers to the lossy compression
of multimedia signals using human perceptual models; the

compression mechanism is based on the premise that mi-
nor modifications of the signal representation will not be
noticeable in the displayed signal content. These modifica-
tions are imposed on the signal in such a way as to reduce
the number of information bits required for storage of the
content. Human perceptual models are often theoretically
and experimentally derived to determine the changes on a
signal which remain imperceptible. A duality exists between
the problems of perceptual coding and data hiding; the for-
mer problem attempts to remove irrelevant and redundant
information from a signal, while the latter uses the irrele-
vant information to mask the presence of the hidden data.
Thus, the goals of data hiding and perceptual coding can be
viewed as being somewhat contradictory. As a result, several
papers have dealt with integrating perceptual coding with
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data hiding [1, 2, 3, 4, 5, 6, 7], and others have investigated
the theoretical relationship between both processes [8, 9]. In
[10], data hiding for media compression is investigated. The
method operates in the frequency domain and it is based on
linear projection, quantization, and perturbation.

The central theme of all the works cited above is that
there must be an appropriate compromise between data hiding
and compression to develop a method which performs both
reasonably. It is assumed that each process hinders, not helps,
the objective of the other. Specifically, data hiding decreases
the overall possible compression ratio and perceptual coding
tampers with the hidden information, so that extraction is
difficult.

In this paper, we take a different, perhaps even eccentric,
perspective. We try to identify how data hiding can be used
for improved practical compression.

1.1. Objectives of this paper

In this work we present an approach to improve the efficiency
of compression by incorporating data hiding principles. On
a larger scale, the presented work aims to, in part, investigate
the contradictory processes of data hiding and compression
in order to derive insights into effective means to merge them.

Specifically, we wish

• to design a compression scheme in which color infor-
mation is “piggybacked” on the grayscale component
to provide the option of viewing the information in
color or as a monochrome signal;

• to compare our proposed data hiding-based compres-
sion approach practically with JPEG, a popular color
image compression format, and SPIHT, an effective
wavelet-based compression algorithm.

2. HYPOTHESIS AND INTUITION

Consider the signal f0(x) which represents an audio signal,
image, or video sequence. There exists a family of functions in
the set P(f0) which are perceptually identical to f0(x). Thus,
if fk(x) ∈ P(f0) then we know that fk(x) is perceptually
identical to f0(x).

In ideal compression, every possible perceptually iden-
tical signal is mapped to the same representation. Thus, all
signals in the set P(f0) will be collapsed into one compressed
signal. In data hiding, information is embedded into a host
signal f0(x) by modifying it so that the resulting signal is per-
ceptually identical to the original; therefore this new signal is
also in the set P(f0). It then follows that ideal compression
applied to a signal containing hidden information has the
effect of annihilating the discrete data.

However, in practice, compression is not completely effi-
cient; that is, there exists some irrelevant information which
has not been removed. The nonideality comes from the con-
straint that the coder have structure, and inadequate percep-
tual models to account for all masking characteristics [11].
In terms of our description above, for practical compression
not all signals in P(f0) are mapped to the same represen-
tation. Thus, there is a small bandwidth available for data

hiding. If this bandwidth could be used to transmit informa-
tion about the signal such as chrominance components, then
even greater practical compression may be achieved. This ap-
proach cannot help to improve the compression ratio in the
case of ideal perceptual coding, but can improve the situation
in the case of practical compression.

The approach can potentially provide improved perfor-
mance when we are restricted to use a coding scheme which
is not very efficient. For example, one of the most popu-
lar wavelet image compression schemes SPIHT [12] is opti-
mized for grayscale compression, and may not perform ac-
ceptably for color images. If the technique outlined above
could be applied to piggy-back the chrominance components
in a compressed version of the luminance image, then some
performance advantage may be established. Thus, we propose
our scheme as a possible improvement to existing approaches
which may not perform optimally. This also has the advantage
in that the color chrominance is embedded in the grayscale,
so that it may be viewed later even if color is not initially
important.

In Section 3, we present our approach for compressive
data hiding. Experimental results are provided in Section 4
in which we compare the proposed technique to SPIHT and
JPEG to demonstrate its superior performance. Discussion
and final remarks conclude the paper.

3. COMPRESSIVE DATA HIDING

3.1. The problem

As discussed in the introduction, we focus on the problem
of improving compression through the use of judicious data
hiding. Consider the situation in which we are restricted to
use a given compression algorithm. For example, we may be
using a specific web browser or media player that supports
only a limited number of image compression algorithms
or an online viewer for dynamic information swapping. It
would be valuable to be able to improve the quality of the
compressed information without interfering with the com-
pression algorithm. One approach would be to preprocess
the signal in order to improve upon potential compression
artefacts.

In this paper, we consider using robust data hiding at this
preprocessing stage in order to pass or tag signal informa-
tion reliably through the compression stage. The informa-
tion then can be used, after compression, in order to improve
signal fidelity or provide some other form of added-value.
As discussed in the introduction, many watermarking algo-
rithms have been proposed which are robust to specific forms
of compression, so we believe that this preprocessing stage is
possible to effectively design.

For this work,we specifically consider the case of color im-
age compression; we embed chrominance information into
the luminance component of the image to improve the sig-
nal fidelity upon post-compression reconstruction for a fixed
compression ratio. We make use of the popular wavelet-based
compression algorithm SPIHT, so that data hiding can also be
effectively accomplished in this multiresolution-like domain.
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Figure 1: Compressive data hiding scheme for color images.

3.2. Overview of the approach

A specific overview of the proposed compressive data hiding
scheme for color images is discussed in this section. Figure 1
provides a block diagram representation of the approach. Our
original color image to be compressed is denoted X[n1, n2].

Since the chrominance components of the signal are
piggy-backed on the luminance component of the image us-
ing data hiding it is important to judiciously select both the
color space and transform domain for this processing. Selec-
tion of these two components can affect the data embedding
capacity and, hence, the performance of the proposed ap-
proach.

As we see in Figure 1, the YIQ color space and the discrete
wavelet transform (DWT) domain [13] are incorporated into
our approach. Essentially, the color image X[n1, n2] is con-
verted to the YIQ color space where the chrominance (or
color) components are processed in the DWT domain and
are embedded in the wavelet domain of the luminance (or
grayscale) component of the original color image. After em-
bedding the information, an adaptive scheme is used to aid
in the compression process.

The next two sections discuss why the choice of the color
space and transform domain provide a good tradeoff between
imperceptibility and robustness of the embedded informa-
tion. Details of the embedding and adaptive compression
technique are also provided in the subsequent sections.

3.3. The YIQ color space

The choice of the color space where to perform the decom-
position of the given color image is relevant to the problem
we have addressed. In fact, since our goal is compression,
color spaces, such as the RGB space, where there is a signifi-
cant correlation between the three color components should
be avoided. On the contrary, the color spaces YIQ, YUV ,
and YCbCr nearly provide as much energy compaction as
a theoretically optimal decomposition performed using the
Karhunen-Loeve transform. Since they are equivalent for our
application, we have resorted to split the given color image
into its three components in the YIQ color space, where the
Y coordinate represents the luminance Y[n1, n2] and the I
and Q coordinates represent the chrominance components
I[n1, n2] and Q[n1, n2], respectively. The I and Q compo-
nents are used to jointly represent saturation and hue.

It is worth noting that the luminance component Y con-
tains a large component of the visual content, whereas the two
chrominance components, I and Q, contain less perceptual
information. Thus, due to the human visual system’s lower
sensitivity to color information, it is possible to subsample
the chrominance information and then integrate it back into
the overall color image without any loss of perceptual quality
[14].

This color space division is useful as the overall signal
can be separated into a high volume luminance component
which can act as the host image for data hiding, and two
lower volume color information-bearing signals which can
act as the payload. In addition, the luminance component is
essentially the grayscale component of the signal which allows
us to incorporate well-established grayscale image data hiding
principles for our embedding procedure.

3.4. The compressive data hiding procedure

3.4.1 The transform domain

The chrominance components I[n1, n2] and Q[n1, n2] are
subsampled and hidden in the luminance component (see
Figure 1). For robust grayscale image data hiding, the em-
bedding is performed in a specific transform domain which
is selected to be suitable for a specific application or attack on
the hidden information. It has been shown [9, 15] that differ-
ent domains have significantly different data hiding channel
capacities. Selection of a suitable transform can significantly
improve the robustness and imperceptibility of the hidden
information.

In this work, we incorporate the DWT domain. The spa-
tial and frequency localization of this transform suits the be-
havior of the human visual system (HVS) to visual stimuli
[16]. Embedding information in this domain allows the hid-
den information to be appropriately shaped for reduced dis-
tortion. In particular, we have the flexibility to judiciously
select DWT subbands of the luminance component in which
to hide the chrominance information imperceptibly. In addi-
tion, recent work by Fei et al. [9] demonstrates the advantage
of this domain for wavelet-based compression. Furthermore,
for the adaptive compression approach shown in Figure 1
and discussed in Section 3.4.3, decomposition of the image
to compress into multiresolution-like components is con-
venient and saves unnecessary complexity to transform the
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signal into this form for more effective compression.
We next provide the specifics of our proposed data em-

bedding technique. We make use of an unconventional two-
level multiresolution-like wavelet decomposition on the lu-
minance component. With reference to Figure 2, the first
level of the multiresolution decomposition is obtained by
performing a DWT on Y[n1, n2]. In particular, an 8 tap
Daubachies filter is used:

Y
[
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{
YLL

[
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]
, YHH
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YHL
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]}
,

(1)

thus obtaining the subbands YLL[n1, n2], YLH[n1, n2],
YHL[n1, n2], and YHH[n1, n2], which take into account the
image at a coarser resolution plus the “horizontal,”“vertical,”
and “diagonal” details of the image also at this resolution,
respectively.

The subbands YLH[n1, n2] and YHL[n1, n2] are chosen
to host the chrominance information. The rational behind
this choice relies on the observation that, in order to obtain a
good tradeoff between robustness and transparency, many
watermarking techniques (cf. [17, 18] and the references
therein) use “middle frequency” coefficients. This makes the
subbands YLH[n1, n2] and YHL[n1, n2] suitable to host the
data, whereas the subband YHH[n1, n2] is not.

The next step of the method consists in further decom-
posing the subbands YLH[n1, n2] and YHL[n1, n2] in the
wavelet domain thus leading to the subbands:1
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In particular, Yll,HL[n1, n2] and Yll,LH[n1, n2] represent
the low-pass subbands, at coarser resolution, obtained from
the high frequency subbands YHL[n1, n2] and YLH[n1, n2],
respectively. It is expected that their energy contribution
is relatively small compared to the energy of the remain-
ing subbands of the set Yα,β[n1, n2] (α ∈ {ll, hl, lh,hh},
β ∈ {HL,LH}).

Thus, they can be neglected introducing a very low mean
square error (MSE) that takes into account the variations
occurred in the image details, which however do not affect
the image in a perceptual sense.

This conjecture has been experimentally verified upon a
wide range of images’ typology using both subjective evalua-
tion criteria such as visual perceptibility measures and objec-
tive ones like the Peak Signal to Noise Ratio (PSNR), given by

1This is the unconventional part of the scheme. Usually the YLL[n1, n2]
is further decomposed instead of its details. However, this decomposition is
necessary for the imperceptibility of our embedding stage as we will discuss
later in this section.

Table 1: PSNR.

PSNRzeroed PSNR embed

Baboon 33.4 32.1
Biked 35.3 33.4
Lena 36.2 35.3
GoldHill 34.6 32

PSNR = 10 log10

(
2552

MSE

)
[dB], (3)

where

MSE = 1
N2

N−1∑
n1=0

N−1∑
n2=0

(
Y
[
n1, n2

]− Ymod
[
n1, n2

])2 (4)

is the mean square error between the original image Y[n1,
n2], of N×N pixels, and a modified replica Ymod[n1, n2]. To
assess the general perceptual irrelevance of the Yll,HL[n1, n2]
and Yll,LH[n1, n2] bands, we consider a series of test im-
ages with widely varying characteristics. For each image, a
modified replica is produced by zeroing only the subbands
Yll,HL[n1, n2] and Yll,LH[n1, n2] and keeping the remaining
perfectly intact. The PSNRs of the resulting images (denoted
by PSNRzeroed) are presented in the first column of Table 1.
The values are reasonably high; in addition, there is no percep-
tual change in the quality of the modified signal Ymod[n1, n2]
in each test case.

3.4.2 Subsampling of the chrominance information
for embedding

After having thus verified that the subbands Yll,HL[n1, n2]
and Yll,LH[n1, n2] are perceptually negligible, we use a very
straightforward and computationally simple approach to em-
bed the chrominance components: direct replacement of
the Yll,HL[n1, n2] and Yll,LH[n1, n2] information with the
chrominance content. However, the chrominances need to be
preprocessed in order to obtain a perceptually lossless par-
simonious representation. This can be performed through
subsampling of the color information.

Specifically, the components undergo a two-level wavelet
decomposition using, as for the luminance analysis, an 8 tap
Daubachies filter. As already outlined, their perceptual con-
tribution is much smaller than the luminance’s and thus, their
size may be reduced without significant distortion [19]. The
subbands, I2LL[n1, n2] andQ2LL[n1, n2], which are the low-
pass chrominance replicas at the coarsest resolution of the
performed pyramidal decomposition, can be used to recon-
struct the color image without any perceptual quality loss.
Experiments have verified this conjecture.

Therefore, we can replace the subbands Yll,HL[n1, n2]
and Yll,LH[n1, n2] with information from I2LL[n1, n2] and
Q2LL[n1, n2] to obtain Yemb[n1, n2] as shown in Figure 2.
However, before the embedding, the energies of I2LL[n1, n2]
and Q2LL[n1, n2] have to be normalized to the values of
the corresponding host subbands, as not to impair the per-
ceptual appearance of the reconstructed image. It should be
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Figure 2: Multiresolution-like wavelet decomposition and data embedding scheme.

noted that the normalization values, say NI and NQ, have
to be transmitted to the decoder since they are necessary to
properly reconstruct the color information. To this end they
can be embedded in the header of the image.

We have experimentally verified that the aforementioned
embedding procedure causes no perceptual degradation to
the luminance component of the signal. Some of these re-
sults are reported in Figure 3 where Yemb[n1, n2], the lumi-
nance image component with the embedded chrominance
information, is shown for different test cases.

It is worth noting that, the chrominance information
(2 ∗ (64 ∗ 64) bytes) represented by I2LL[n1, n2] and
Q2LL[n1, n2] is embedded into the luminance ((256 ∗
256) bytes), having assumed to use a true color 24-bit repre-
sentation for the color images used in our experiments (i.e.,
8-bit representation for each component). Nevertheless, the
luminance after the embedding appears perceptually indistin-
guishable from the host image. Also a quantitative evaluation
is performed by calculating the PSNR, denoted PSNR embed,
whose values for different test images, are presented in the
second column of Table 1.

The reader should note that the embedding procedure
proposed for our implementation is based on replacement of
perceptually irrelevant bands which is distinct from popular
methods such as Spread Spectrum (SS) watermarking pro-
posed by Cox et al. [17] and Quantization Index Modulation
(QIM) proposed by Chen and Wornell [20]. SS watermark-
ing suffers from host signal interference which limits the data
hiding capacity necessary for our application. Replacement
embedding as performed in the paper is a form of informa-
tion hiding termed “Low Bit Modulation (LBM)” in [20].

Chen and Wornell show that using coding theory measures
such as minimum distance and information capacity that
LBM and SS are inferior to QIM in certain contexts.

However, the QIM method is not appropriate for the pro-
posed data hiding application presented in the paper. One
problem is that robust QIM implementations require error
correction coding which increases bandwidth and makes it
impractical to embed the necessary volume of color informa-
tion in the luminance component. A second problem is that
the QIM method is designed to reliably embed data bits, not
perceptually viewable information such as logos or chromi-
nance image bands. With perceptual information, some er-
rors can be tolerated unlike with data and hence our data
hiding problem is less restricted than that formulated in [20],
and hence their solution is not as appropriate. We attempt to
clarify in the next paragraph.

The natural redundancy of many forms of perceptual in-
formation, such as images, often makes it robust to errors.
Specifically, when viewed, the received signal is of better per-
ceptual quality if it is transmitted in raw form through certain
nonideal channels than it would be if the information was first
source and channel coded [21]. Intuitively, the degradation
on the embedded information which characterize our effec-
tive attack channel are from quantization for compression.
This process is designed to be applied on raw data and leave
perceptually salient information in tact. Thus, sophisticated
high bandwidth error correction codes are not necessarily
required. Our embedding scheme of simple replacement is
analogous to transmitting the chrominance bands in the raw.

Overall, the low bandwidth requirements, natural robust-
ness to quantization distortions, and low complexity makes
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Figure 3: Left column: original grayscale images. Right column:
images with the chrominance components I and Q embedded.

our embedding technique more appropriate than other pop-
ular schemes such as SS and QIM.

3.4.3 Adaptive compression

A compression algorithm such as SPIHT optimized for
grayscale image compression may be applied to the result-
ing signal in order to produce a coded image. However, we
find that further preprocessing can be applied for improved
compression by taking into account the diverse nature of the
luminance signal component at the different subbands. Our
approach follows.

The first step consists of obtaining the subbands
Y(e)HL [n1, n2] and Y(e)LH [n1, n2], after having performed the
embedding, by calculating the inverse discrete wavelet trans-
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Figure 4: Adaptive compression scheme.

form (IDWT) on the subbands of (5):{
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Therefore, the luminance and the embedded chrominance
components are represented, in a perceptually lossless man-
ner, by the subbands:{
YLL

[
n1, n2

]
, YHH

[
n1, n2

]
, Y (e)HL

[
n1, n2

]
, Y (e)LH

[
n1, n2

]}
.
(6)

In order to preserve the information embedded,each subband
of (6) is coded, according to the scheme shown in Figure 4,
separately. Specifically, a wavelet-based coder is used instead
of a DCT-based coder; it has been proven that wavelet based
coders provide better rate-distortion performance than the
DCT-based JPEG and also allow a progressive coding ap-
proach [22]. The method of set partitioning in hierarchi-
cal tree (SPIHT) [12] has been employed in the proposed
scheme. It is well known that the magnitude of the wavelet
coefficients varies from band to band; in particular, lower fre-
quency subbands usually have a higher magnitude than the
coefficients in the higher frequency subbands. This suggests
that different bit rates must be used according to the specific
subband. Consider,{

bLL, bHH, bHL, bLH
}

(7)



158 EURASIP Journal on Applied Signal Processing

Table 2: Compressive data hiding procedure.

Compressive Data Hiding

Embedding steps
(1) The color image X[n1, n2] is split into its three color

components in the YIQ color space.
(2) The luminance Y undergoes a multiresolution-like

wavelet decomposition:

Y DWT−−−−→ (
YLL, YHH, YHL, YLH

)
,

YHL
DWT−−−−→ (

Yll,HL, Yhh,HL, Yhl,HL, Ylh,HL
)
,

YLH
DWT−−−−→ (

Yll,LH, Yhh,LH, Yhl,LH, Ylh,LH
)
.

(3) The chrominance components I and Q undergo a
two-level wavelet decomposition and only the “low-
pass” subbands at the coarsest resolution I2LL and
Q2LL are kept.

(4) I2LL and Q2LL are normalized to the energy of Yll,HL
andYll,LH , respectively, thus obtaining I(e)2LL andQ(e)2LL.

(5) The subbands Y(e)HL and Y(e)LH are obtained as follows:

(I(n)2LL, Yhh,HL, Yhl,HL, Ylh,HL)
IDWT−−−−→ Y(e)HL ,

(Q(n)2LL, Yhh,LH, Yhl,LH, Ylh,LH)
IDWT−−−−→ Y(e)LH .

Compression steps
(6) The global bit rate btot and the bit rate bLL, for the

subband YLL, are chosen by the user.
(7) The bit rates bHH,bHL, bLH corresponding to the re-

maining subbands are evaluated according to (8) and
(9).

(8) Finally each subband is compressed using the SPIHT
coder and the bit stream Ycomp is generated.

the bit per pixel (bpp) for each of the subbands in (6), respec-
tively. Moreover, letbtot be the desired bpp for the compressed
color image, which is related to the bpps in (7) as follows:

btot = bLL + bHH + bHL + bLH. (8)

The proposed criterion for adaptive compression consists in
specifying the global bit rate btot and the bit rate bLL for the
subband YLL[n1, n2], since this latter value plays the most
significant role in the decoded image appearance. The re-
maining bpps bHH,bHL, bLH are automatically assigned by
the coder in such a way that a higher bit rate is assured to the
subbands having higher energy. Therefore,

bLH = ELH
EHH

· bHH, bHL = EHL
EHH

· bHH, (9)

where Eγ (γ ∈ (LH,HL,HH)) are the energy of the different
subbands. After having chosen btot and bLL, according to the
user’s needs, the bit rates for each subband are obtained from
(8) and (9).

As a rule of thumb we have chosen for our experiments a
bit rate bLL that is half the global bit rate btot. As pointed out

in Section 4, this choice, with no claim of optimality, shows
the potentialities of our approach.

Finally each subband is compressed, at the rates previ-
ously evaluated, using the SPIHT coder. The so obtained
compressed subbands along with the energy normalization
values generate the bit stream Ycomp. The compressive data
hiding procedure is summarized in Table 2.

3.5. Color information retrieval

At the receiver, the color image is reconstructed, from the
compressed bit streamYcomp[n1, n2], by performing dual op-
erations of those of the coding stage. The first step consists of
extracting the single subbands from the bit stream and then
decoded, thus obtaining an estimate (denoted bŷ)

{
ŶLL

[
n1, n2

]
, ŶHH

[
n1, n2

]
, Ŷ (e)HL

[
n1, n2

]
, Ŷ (e)LH

[
n1, n2

]}
(10)

of the corresponding quantities in (6). The estimated chromi-
nance information Î2LL[n1, n2] and Q̂2LL[n1, n2] is ex-
tracted from Ŷ (e)HL [n1, n2], Ŷ

(e)
LH [n1, n2] by performing the

DWT as follows:

Ŷ (e)HL
[
n1, n2

]
DWT−−−−→

{
Ŷll,HL

[
n1, n2

] = Î2LL[n1, n2
]
, Ŷhh,HL

[
n1, n2

]
,

Ŷhl,HL
[
n1, n2

]
, Ŷlh,HL

[
n1, n2

]}
,

Ŷ (e)LH
[
n1, n2

]
DWT−−−−→

{
Ŷll,LH

[
n1, n2

] = Q̂2LL
[
n1, n2

]
, Ŷhh,LH

[
n1, n2

]
,

Ŷhl,LH
[
n1, n2

]
, Ŷlh,LH

[
n1, n2

]}
.

(11)

After having zeroed Ŷll,HL[n1, n2] and Ŷll,LH[n1, n2], the
subbands ŶHL[n1, n2] and ŶLH[n1, n2] are reconstructed by
performing a one level IDWT{
Ŷll,HL[n1, n2] = 0, Ŷhh,HL

[
n1, n2

]
,

Ŷhl,HL
[
n1, n2

]
, Ŷlh,HL

[
n1, n2

]} IDWT−−−−→ ŶHL
[
n1, n2

]
,{

Ŷll,LH
[
n1, n2

] = 0, Ŷhh,LH[n1, n2],

Ŷhl,LH
[
n1, n2

]
, Ŷlh,LH

[
n1, n2

]} IDWT−−−−→ ŶLH
[
n1, n2

]
.

(12)

An estimate of the luminance Ŷ [n1, n2] is achieved according
to the following formula:{

ŶLL
[
n1, n2

]
, ŶHH

[
n1, n2

]
,

ŶHL
[
n1, n2

]
, ŶLH

[
n1, n2

]} IDWT−−−−→ Ŷ
[
n1, n2

]
.

(13)

Finally, the chrominance components are upsampled to the
image dimension and combined with the estimated lumi-
nance thus obtaining the color image. Experimental results
are presented in the next section.
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Figure 5: For each row from left to right: original color image (24 bits/pixel), compressed image using the proposed approach (0.15 bits/pixel),
compressed image using SPIHT (0.15 bits/pixel), and compressed image using the JPEG method (0.25 bits/pixel (maximum compression
rate allowed by the JPEG coder)). First row: “Baboon,” second row: “Biked,” third row: “Lena,” fourth row: “GoldHill.”

Table 3: Bit rates employed for the different subbands with a global
compression rate of 0.30 bpp.

btot bLL bHH bHL bLH
Baboon 0.30 0.15 0.5 0.5 0.5
Biked 0.30 0.1625 0.055 0.0425 0.04

Lena 0.30 0.15 0.0375 0.0575 0.055

GoldHill 0.30 0.15 0.05 0.04 0.06

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

In this section the effectiveness of the proposed method is
discussed.

In Figures 5, 6, and 7, the compressed color images, ob-
tained using the proposed approach are shown. The employed

bpps values for the different subbands of the images under
examination are reported in Table 3 for the case of compres-
sion at 0.30 bpp. For the sake of comparison, in Figures 5, 6,
and 7, along with the original color images and their com-
pressed replicas obtained using our approach, their JPEG and
SPIHT compressed versions at different bit rates (0.15 bpp,
0.30 bpp, and 0.45 bpp), are also provided. It is worth point-
ing out that in Figure 5 the JPEG displayed images have been
compressed at 0.25 bpp, instead of 0.15 bpp like the others in
the same figure, since the JPEG coder does not allow further
compression.

The assessment of the performance of our method re-
quires the quantification of the perceptual error between two
color images. To this end, it is crucial to adopt color spaces
which are related to the perceptual characteristic of the hu-
man visual system thus allowing the definition of simple
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Figure 6: For each row from left to right: original color image (24 bits/pixel), compressed image using the proposed approach (0.30 bits/pixel),
compressed image using SPIHT (0.30 bits/pixel), and compressed image using the JPEG method (0.30 bits/pixel). First row:“Baboon,”second
row: “Biked,” third row: “Lena,” fourth row: “GoldHill.”

metrics capable of properly measuring the perceptual dis-
tance between two colors. As is well known in literature
[23], the RGB space, although widely used for different ap-
plications, is not suitable for accurate perceptual computa-
tions. More appropriate color spaces are the L∗u∗v∗ and
L∗a∗b∗, standardized by the Commission Internationale de
L’Enclairage (CIE) in 1976 as perceptually uniform. They are
both equally good in providing a quantitative estimation of
the perceptual distance between two colors. For our perfor-
mance evaluations, we resort to use the L∗a∗b∗ color space
where the L∗ coordinate corresponds to the luminance, a∗

corresponds to the red-green channel, and b∗ to the blue-
yellow channel. The conversion from the RGB space to the
L∗a∗b∗ space is given in the appendix. The main property
of the L∗a∗b∗ space is that color points at the same Eu-
clidean distance are perceptually indistinguishable. On the
other side, the perceptive distance between two colors is well

approximated by

∆E =
√(
∆L∗

)2 + (∆a∗)2 + (∆b∗)2, (14)

where∆E is the color error and∆L∗,∆a∗, and∆b∗ the differ-
ence between the components L∗, a∗, and b∗ components,
respectively, of two colors under consideration.

Thus, the perceptive uniformity of L∗a∗b∗ is here ex-
ploited to evaluate the perceptual similarity between two
color images, of dimension N1 ×N2, by computing the nor-
malized color distance (NCD) [14] according to the following
formula:

NCD =
∑N1−1
n1=0

∑N2−1
n2=0 ∆E

[
n1, n2

]∑N1−1
n1=0

∑N2−1
n2=0 E

[
n1, n2

] , (15)
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Figure 7: For each row from left to right: original color image (24 bits/pixel), compressed image using the proposed approach (0.45 bits/pixel),
compressed image using SPIHT (0.45 bits/pixel), and compressed image using the JPEG method (0.45 bits/pixel). First row:“Baboon,”second
row: “Biked,” third row: “Lena,” fourth row: “GoldHill.”

where∆E[n1, n2] is given by (14) particularized to the colors
of the two pixels in position [n1, n2] of the two images under
analysis and

E[n1, n2]=
√
(L∗[n1, n2])2+(a∗[n1, n2])2+(b∗[n1, n2])2

(16)

is the Euclidean norm of the pixel in position [n1, n2] be-
longing to the uncompressed image.

This quantitative performance evaluation, at different bit
rates (0.15 bpp, 0.30 bpp, and 0.45 bpp), is performed on
the images obtained by applying our compressive data hiding
approach, JPEG and SPIHT with respect to the original image
and the results are shown in Table 4.

The quantitative evaluation of the performance of our
method in comparison with JPEG and SPIHT is in agree-
ment with a subjective evaluation performed on the images

displayed in Figures 5, 6, and 7, from which it is evident that
the proposed method better performs than JPEG and outper-
forms SPIHT.

The pyramidal wavelet-like decomposition described in
Section 3.4.1 also provides a tool to device a progressive cod-
ing strategy. In fact, in some applications such as supervised
human retrieval from still images databases, it is not always
necessary to retrieve, in one shot, a fully detailed color im-
age because the user can decide at a first glance, from a rough
gray-scale reproduction of the image, whether it is of interest.
Therefore, the progressive approach could lead to dramatic bit
saving in critical applications such as progressive display over
a bandwidth limited wireless channel. Using our approach
a first sketch of the image is obtained by transmitting only
the YLL[n1, n2] component; further details can be added by
means of the YHH[n1, n2] subband. Moreover, the transmis-
sion of Y(e)HL [n1, n2] and Y(e)LH [n1, n2] allows, not only to add



162 EURASIP Journal on Applied Signal Processing

Table 4: NCD evaluation for the compression rates 0.15 bpps,
0.30 bpps, 0.45 bpps.

Bit rate Data hiding SPIHT JPEG

0.15 0.1492 0.1985 0.19

Baboon 0.30 0.1368 0.1932 0.1793

0.45 0.1225 0.1896 0.1545

0.15 0.0859 0.1213 0.1202

Biked 0.30 0.0713 0.1112 0.0938

0.45 0.0661 0.1052 0.0780

0.15 0.0932 0.1650 0.1753

Lena 0.30 0.0807 0.1595 0.1504

0.45 0.0695 0.1563 0.0881

0.15 0.1076 0.1725 0.1630

GoldHill 0.30 0.0893 0.1030 0.1385

0.45 0.0798 0.0963 0.0930

more details to the reconstructed image but even to recover
the color information.

To summarize, in this paper, a progressive data hiding-
based compression scheme, properly designed in order to
trade off between the goals of data hiding and perceptual cod-
ing, is proposed. After having performed an unconventional
two level wavelet decomposition of the luminance compo-
nent of a color image, the perceptually irrelevant subbands
are properly selected, zeroed, and replaced with a parsimo-
nious representation of the chrominance components. This
leads to a gray scale image in which the color information is
piggybacked without impairing the overall perceptual quality
of the embedded image. This gives the opportunity of view-
ing the image progressively from a monochrome version, at
different details level, to a color one according to the user’s
needs. Moreover, our method allows to achieve better qual-
ity with respect to well consolidated coding schemes such as
JPEG and SPIHT at low bit rates.

APPENDIX

L∗a∗b∗ COLOR SPACE

The transform from the RGB space to the L∗a∗b∗ space is
as follows [19]:

X = 0.607R + 0.174G + 0.200B,

Y = 0.299R + 0.587G + 0.114B,

Z = 0.000R + 0.066G + 1.116B.

L∗ = 25
(

100Y
Y0

)1/3
− 16 1 ≤ 100Y ≤ 100,

a∗ = 500
[(

X
X0

)1/3
−
(
Y
Y0

)1/3]
,

b∗ = 200
[(
Y
Y0

)1/3
−
(
Z
Z0

)1/3]
,

(A.1)

with reference to the white tristimulus values X0, Y0, Z0.
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