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Abstract—In this work we consider an event-driven Wireless
Visual Sensor Network (WVSN) where each camera node trans-
mits a frame to the cluster-head only if an event of interest was
captured in the frame for energy and bandwidth conservation.
Specifically, we consider the scenario where each camera node
receives decision support from an independent but possibly
attacked (and hence error-prone) scalar-sensor regarding the
presence or absence of an event. We study the overall detection
performance achieved by various techniques that utilize the scalar
and image-based decisions. We conclude that in image sequences
involving extraneous lighting and background changes (such as
in the case of outdoor surveillance), the combination techniques
generally achieve a lower total probability of error.

I. INTRODUCTION

Wireless Visual Sensor Networks (WVSNs) equipped with
cameras are envisioned for a variety of innovative applications
ranging from surveillance and intelligent infrastructure mon-
itoring to wildlife data collection [1]. To realize this vision,
WVSN research must overcome the challenges associated with
the increased processing, transmission energy and bandwidth
required for image data compared with scalar data (such as
temperature readings) [2]. One interesting approach to address-
ing these challenges is to exploit the collaboration potential
between camera nodes and scalar sensor nodes, especially to
detect events of interest occurring in the environment [3].

In this work we examine an event-driven WVSN where
camera nodes transmit frames to a cluster-head (or base
station) only if the frames contain “relevant events” (as will
be discussed). The motivation for such selective transmission
based on local decisions stems from energy and bandwidth
considerations. Ideally, each camera node should make a
correct decision regarding a frame. Specifically, we wish to
achieve a high probability of event detection PD, otherwise
important frames will not be transmitted. Simultaneously we
wish to achieve a low probability of false alarm PFA, oth-
erwise non-event frames will be wastefully transmitted. Since
both probabilities are important and competing (lowering PFA

lowers PD), we aim to maximize PD for a fixed chosen PFA

which leads to a total probability of error Perr.
To achieve the local event-detection goal we may rely on

a variety of image processing algorithms that can be applied
to the image frames. Indeed a large body of research exists
detailing image change and shot change detection in off-line
and real-time settings [4]. Many of the techniques are not
particularly suitable for WVSNs because of their complexity
or assumptions about the availability and characteristics of

event and non-event statistics. In cases of limited node energy
we would ideally wish to retain a low probability of error
despite the selection of a simpler detection algorithm.

In this work we consider a scenario where each WVSN
camera node receives detection assistance from an independent
scalar-sensor node as depicted in Figure 1. The specific type
of scalar-sensor is not considered but rather the interaction
is examined in terms of the resulting probabilities of error.
Specifically, we consider the case where the scalar-sensors
may suffer from errors due to the presence of malicious
attacking nodes (shown as A in Figure 1) [5], [6]. We
consider three different methods of incorporating the detection
decisions of the scalar-sensors with the decisions available
from the image processing and study their performance in
terms of the probability of error on several test sequences.
The focus and contribution of this paper is thus a study of
the detection performance achieved by combining the scalar-
sensor decisions with local image processing. We do not
specifically focus on the development or improvement of
image processing algorithms for WVSNs. Rather we compare
the performance of three methods for utilizing the decisions
and discuss conditions under which they perform best.

Cluster
Head

frames

frames

s

s

s

sA

A

node

node

Fig. 1. A camera node receives a decision s from a scalar-sensor. Attacking
nodes A may cause errors in s. The cluster-head also receives the s data.

II. VISUAL EVENT-DETECTION IN WVSNS

An extensive body of research exists examining image
change and shot change detection in image sequences [4].
Much of this research focuses on the processing, segmentation
and classification of a stored movie or news-cast which is
already available in its entirety. As such, it is often possible to
obtain meaningful statistics via pre-processing of the frames.
These statistics can then be used in detection and segmentation
algorithms to distinguish between event and non-event frames.
It is important to note that the definition of event and non-event
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is largely application dependent, as is the domain in which the
processing is carried out (spatial-temporal or frequency-based
such as DCT, JPEG or MPEG).

In contrast, a WVSN camera node collects incoming images
containing unknown objects which may or may not enter into
the frame at any time [7]. Since we do not know ahead of time
what objects will be encountered and under what lighting and
changing background conditions, it is not possible to assume
that we know the statistics of an event frame. Rather we
make the weaker assumption that an event frame is one where
“significant” motion has occurred. Under certain deployment
scenarios however, it may be reasonable to assume that we
know the approximate statistics of a non-event frame (called
the “null hypothesis” statistics). For instance, in this work we
assume that a visual-node is deployed or activated during a
non-event time. The visual-node is thus able to process the
initial frames it collects and determine some approximate null-
hypothesis statistics.

The specific statistics utilized by the visual-nodes are largely
application and energy-use dependent [4]. The latter con-
straint is particularly worthy of mention in WVSNs since
more sophisticated (and hence possibly more energy-intensive)
processing might yield a lower total probability of detection
error [7]. This translates into transmission energy savings
since fewer irrelevant (non-event) frames are sent. However
allocating more energy to visual event-detection (i.e. process-
ing) may drain the nodes too quickly, limiting their lifetime.
The trade-offs between various energy-allocation schemes for
event-detection are a subject of ongoing study. In this work
we focus on achieving a lower total probability of error given
the use of scalar-sensors for a fixed visual event-detection
algorithm.

We consider a relatively simple and general event-detection
algorithm (i.e. the detection statistics employed are not tailored
to the detection of any specific object). The choice of algorithm
is based in part on processing simplicity and in part on
observations regarding the real-world image sequences used in
our testing as shown in Figures 2, 3, 4, and 5. The sequence
of Figure 2 is an idealized indoor test where the lighting and
background conditions do not change appreciably over time.
The only significant change comes from the event of interest
in the form of a test subject entering the camera’s field of
view. The dominant source of noise in this case is internal
camera noise and flicker.

The sequence of Figure 3 shows outdoor parking-lot surveil-
lance on a windy day, where the event of interest is the
passing of an unidentified car. The detection task in this
sequence is complicated by the presence of a nearby shrub
which experiences significant swaying of its branches over
time. Furthermore the background lighting changes visibly
with cloud movement (between frames 3(a) and 3(b) for
example). The sequence of Figure 4 also experiences changes
due to swaying trees and variable light conditions. The event
of interest is the appearance and movement of a test subject
which temporarily disappears behind a tree in frames 4(c) and
4(e). Finally Figure 5 shows a truncation of sequences 2 and

3 where the camera’s field of view now excludes the shrub
and trees.

Statistical analysis of image sequences 2 and 3 (such as
Levine’s Test and the t-test) reveal that the mean and standard
deviation are not reliable indicators of an event of interest
occurring even after various DCT-domain filtering mechanisms
are employed. This can be seen intuitively from the fact that
the subjects of interest (person walking and car driving-by)
do not occupy a much larger percent of a frame’s pixels
than the other randomly moving objects (shrub and trees).
Hence the mean and variance of the frames do change based
on the appearance of the subject, but these differences are
not statistically distinguishable. In essence, the pixels cor-
responding to the person and car are getting dwarfed by
the presence of many shrub and tree pixels which are also
changing over time. Truncating the frames as shown in Figure
5 to exclude the vegetation does indeed improve the statistical
difference between an event and non-event frame. However for
the general WVSN deployment case (with cameras facing in
various directions), we do not wish to select an event-detection
technique which relies on the truncated assumption.

The simple algorithm we selected is based on difference
images, similar to the technique found in the image change
detection literature [8]. In essence, a difference image reveals
all the pixels that have changed from the previous frame
(containing both relevant and irrelevant changes such as the
tree swaying). The Mean Squared Error (MSE) of the dif-
ference image is computed as the relevant statistic, and it
is compared to a theoreticaly-obtained robust threshold T
based on the chi-squared test (please refer to Appendix I
for the details). In this technique we rely on the assumption
that the standard deviation of the null hypothesis (non-event
following deployment) can be estimated. Since the “alternative
hypothesis” (event) statistics remain unknown, we employ a
composite-hypothesis test. It is important to emphasize that a
variety of other visual event-detection algorithms could have
been selected for testing with the scalar-sensors. In this work
we are interested in evaluating the improvement in detection
performance of the WVSN due to the addition of the scalar-
sensors rather than the merits of various image processing
algorithms.

III. RELIABILITY OF SCALAR DATA

As explored extensively in the Sensor Network literature,
there are many security attacks capable of rendering the data
observed by the network unreliable [6]. For instance, we
may consider the presence of a rival network with malicious
nodes depicted as nodes A in Figure 1. These nodes may
perform standard sensor network attacks or a new type of
attack referred to as an actuation attack where rival nodes
directly perturb the observations collected by the legitimate
network from the environment [6]. In addition to these attacks,
scalar sensors may occasionally malfunction due to compo-
nent failure, miscalibration or harsh environmental conditions.
Whether in the face of attack or failure, it is thus crucial to
guarantee a level of scalar-data reliability if such data is to be
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Fig. 2. Frame Seq. 1 with frames (a)-(f) from top left to bottom right: indoor test conditions with constant lighting and no background changes.

Fig. 3. Frame Seq. 2 with frames (a)-(f) from top left to bottom right: outdoor variable lighting due to clouds. Ex: The light intensity changes by 70%
between frames (a) and (b). Additional background movement due to shrub.

Fig. 4. Frame Seq. 3 with frames (a)-(f) from top left to bottom right: changing outdoor light and background (swaying trees). The subject temporarily
disappears behind a tree in frames (c) and (e).

Fig. 5. (a) Frame Seq. 4a) showing Seq. 2 modified to remove the shrub.
(b) Frame Seq. 4b) showing Seq. 3 modified to remove the swaying trees.

used for event-detection in WVSNs. For the purposes of this
work we assume that errors may be caused solely by a hostile
attack. In [6] and [9] we showed how the interaction between a
sensor network collecting scalar data and a malicious attacker
may be modeled. As shown in Figure 1, we consider a sensor
network where each node sends its scalar decision s to a
cluster-head. Specifically, upon taking a measurement of the
environment, each scalar sensor decides whether an event of
interest is present (the “alternative hypothesis” H1) or absent
(the “null hypothesis” H0), and sends this decision to the

cluster-head. The cluster-head in turn uses information about
the average number of events likely to occur during one time
interval to decide whether an attack has occurred. We use the
notation n to denote the number of nodes reporting to the
cluster-head. The notation p is used to denote the probability
that a node detects an event of interest, and q denotes the
probability that a node is attacked. The effect of the attack is
modeled as “flipping” a node’s decision from s = 1 (event is
present) to s = 0 (event is absent) or vice versa. This model
abstracts away the specific type of scalar-sensor (motion or
pressure) and focuses on the effect of changing the sensor’s
reported decision.

We may consider the sensor network and the attacking
network as rivals, each vying for control of attack detection
at the cluster-head. Based on such competition we are able
to use the game theoretic concept of a Nash equilibrium to
determine each network’s best strategies. Indeed in [6] and
[9] we showed that given that the cluster-head performs the
check, the malicious network is generally forced to attack with
a small probability q. This result is important because it can
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TABLE I
OPTIMAL q VALUE FOR CLUSTER SIZE n AND PROBABILITY OF EVENT p

n Best q for p = 0.5 Best q for p = 0.1
100 0.031 0.022
50 0.062 0.044
40 0.0780 0.055
30 0.103 0.074
20 0.152 0.110
10 0.990 0.205
5 0.505 0.405
3 0.655 0.655
2 0.999 0.999
1 0 0

be shown that if no check is performed at the cluster-head, the
malicious nodes may employ any value of q. The optimal value
of q selected by the malicious network depends on the specific
value of n and p. Table I shows the optimal value of q for
p = 0.5 and p = 0.1 (event of interest occurs with probability
of 50% and 10% in any given frame respectively) for various
n. We observe that with few exceptions, as the cluster-size
increases, the optimal value of q decreases. Furthermore, a
smaller value of p also tends to force a lower value of q. For
a cluster-size of approximately 20 to 30 nodes, we can expect
a probability of attack of q ≈ 0.1 while other cases of n and
p are shown in Table I and the general case is detailed in [6].

IV. VISUAL-SCALAR EVENT-DETECTION MODEL

In this work we consider an event-driven WVSN where
camera nodes record frames and send these frames to a
cluster-head only if an event of interest was captured. As
shown in Figure 1, each camera node receives support from a
scalar-sensor that makes an independent decision s based on
its readings (such as temperature, pressure etc). Each scalar
sensor has a probability q of being in error due to attack, while
each camera has a probability q′ of being in error (depending
on the specific image detection algorithm employed).

Each camera node thus faces a scenario where for each
captured frame it has access to an image processing-based
decision IP and a scalar-sensor decision s. The probability
q′ that IP is in error may not be equal to the probability q
that s is in error. The ultimate goal of the camera node is to
maximize PD for a fixed error PFA. This leads to an overall
Perr which is given by Eq. 1. We examine three techniques of
incorporating the IP and s decisions. As shown in Table II, the
first approach is to always trust the scalar sensor s (including
when a disagreement between IP and s occurs). This approach
is motivated by the results of Section III which state that
cluster-head checking of the scalar data forces an attacker to
use a small value of q. The assumption of a small q may
of course not hold if cluster-head checking is not performed
(i.e. the attacker may use any q). Method 2 shown in Table
II takes a more conservative approach by always marking a
disputed frame as an “event” (i.e. a disputed frame will always
be sent to the cluster-head). Finally in approach 3 we always
trust the decision obtained via visual event-detection (image

TABLE II
METHODS

Method Action
Method 1 Trust scalar-sensor s
Method 2 Always mark as “event” if disputed
Method 3 Trust Image Processing IP

TABLE III
VISUAL DETECTION BASED PERFORMANCE (IP )

Image Sequence PD PFA Perr

Seq. 1. Indoor walking 1.0 0.13 0.03
Seq. 4a. Outdoor car, no trees 0.98 0.17 0.11

Seq. 4b. Outdoor walking, no trees 0.50 0.03 0.17
Seq. 2. Outdoor car, with trees 0.87 0.26 0.20

Seq. 3. Outdoor walking, with trees 0.05 0.23 0.90

processing).

Perr = PFA · P (H0) + (1 − PD) · P (H1) (1)

V. RESULTS AND DISCUSSION

The visual event-detection algorithm described in Section II
and Appendix I was implemented in Matlab and tested on the
image sequences shown in Figures 2, 3, 4 and 5. The detection
performance of this algorithm is shown in Table III where
the results are listed in order of degrading event-detection
performance. In addition to showing the total probability of
error Perr (given by Eq. 1), we also show the underlying
probability of detection PD (which ideally should be as close
to 1 as possible) and the probability of false alarm PFA (which
ideally should be as close to 0 as possible). As expected, the
image processing algorithm performs best on image sequences
with the least amount of lighting and background changes
or where the subject occupies a significant portion of the
frame. For certain image sequences (such as Seq. 3), Perr

is unacceptably high (0.9). The methods incorporating scalar-
sensor data into the decision process (listed in Table II) were
implemented using Matlab. The Perr results obtained for
each image sequence are shown in Figures 6 and 7 where
algoi refers to method i in Table II. We make the following
two observations. First, incorporating and trusting the scalar
sensor decisions as in Method 1 greatly reduces Perr for
most sequences, as long as the scalar error q does not exceed
the image processing error q′. This is especially true for the
more difficult sequences (Seq. 2 and 3) containing lighting
and background changes such that q′ is large. Furthermore
the condition for q < q′ may be met if q is due to a sensor
network attack as outlined in Section III. Second, in the regime
of larger sensor error q, Method 3 (IP ) is superior. Method 2
is generally not optimal, but for certain sequences, it performs
close to Method 1. Method 2 thus becomes important for cases
where we do not know the relationship between q and q′

(i.e. which of the two errors is smaller). For instance, though
both sequences in Figure 6a) and 6b) were obtained outdoors
in variable conditions, the image processing error q′ varies
dramatically between them.
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TABLE IV
TOTAL ERROR PROBABILITY Perr FOR q = 0.1

Image Sequence Meth. 1 Meth. 2 Meth. 3
Seq. 1. Indoor walking 0.1515 0.0573 0.03

Seq. 4a. Outdoor car, no trees 0.1238 0.1531 0.11
Seq. 4b. Outdoor walking, no trees 0.11 0.09 0.17

Seq. 2. Outdoor car, with trees 0.12 0.20 0.20
Seq. 3. Outdoor walking, with trees 0.05 0.23 0.90

Finally, recalling the competitive network results discussed
in Section III, we assume a cluster size n of approximately
20 to 30 nodes which subsequently guarantees an attack q
restricted to q ≈ 0.1. These results also apply to larger clusters
since an increase in n lowers q [6]. Table IV summarizes
the improvement in total error probability Perr obtained by
utilizing the scalar sensors over the purely image processing
(IP ) case. It can be seen that in this regime of small q, Method
1 usually performs better than Method 2 but that the IP
method is superior for the indoor sequence since q′ < q in
this case.
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Fig. 6. Comparison of the Perr for the three methods (a) Seq. 3 (Outdoor
walking with trees) (b) Seq. 2 (Outdoor car with trees)
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Fig. 7. Comparison of the Perr for the three methods (a) Seq. 4b (Outdoor
walking no trees) (b) Seq. 4a (Outdoor car no trees)

VI. CONCLUSION

In this work we examine the detection performance of event
driven Wireless Visual Sensor Networks (WVSNs) where
image frames are transmitted back to a cluster-head only if the
frame contains an event of interest. The decision regarding a
frame can be made purely based on image processing tech-
niques or it can be made using assistance from independent
scalar-sensors which may themselves contain errors due to
hostile attack. We show through simulation of various image
sequences that combining the scalar-sensor decisions with
the image processing yields a smaller total probability of
error. This is especially true for outdoor surveillance frames
containing extraneous changes where the scalar-sensor error

due to attack is forced to be small through cluster-head
checking.

VII. DETAILS OF VISUAL EVENT-DETECTOR

The detector we consider is based on the method proposed
by Aach and Kaup [8] which we summarize here for reference.
Let Di be the ith difference pixel between two frames. We take
the entire difference image as one large block instead of using
several smaller blocks to lessen the energy consumption. Thus
the random variable of interest is given by

X =
n∑

i=1

D2
i = σ2

j

n∑
i=1

D2
i

σ2
j

= σ2
j Y, for j = 0 or 1 (2)

where Y has distribution chi-squared with n degrees of
freedom, and n is the total number of pixels in the difference
frame. The hypothesis test can thus be summarized as:

H0 : event (motion),X ∼ 1
σ2

0

fχ2,n

(
x

σ2
0

)
(3)

H1 : no-event,X ∼ 1
σ2

1

fχ2,n

(
x

σ2
1

)
(4)

where fχ2,n(x) is the probability density function (pdf) of the
chi-squared distribution with n degrees of freedom. Hence the
hypothesis test is given by for false alarm rate not exceeding
α. Fχ2,n is the cumulative distribution function of the chi-
square distribution with n degrees of freedon, and F−1

χ2,n is its
inverse.

x
H1
>
<
H0

σ2
0F−1

χ2,n(1 − α) (5)
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