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ABSTRACT
In event-driven wireless Visual Sensor Networks (wVSNs),
video nodes have access to additional data from scalar-sensors
such as temperature or motion. The scalar-data may be
used locally by the nodes instead of (or in conjunction with)
vision technologies to control the potentially energy-costly
transmission and storage of video frames and must thus be
reliable. In this work we focus on the detection of occasional
errors in such scalar-data sensors under both the scenario
of harsh environmental conditions, and the scenario of hos-
tile conditions involving an attacker. In the hostile case,
the attack statistics may not be known to the cluster-head
performing the error detection. We hence propose the use
of a count detector in conjunction with Nash equilibrium
analysis for the hostile case. We compare the detection per-
formance of the count detector in hostile conditions to the
performance of the optimal Neyman-Pearson (NP ) detector
which may be used under harsh conditions (scenario where
the error statistics may be estimated). Through analysis and
simulations we conclude that in this severe regime of attack
with missing statistics, the count detector performs reason-
ably well compared with the optimal NP detector with sig-
nificance for reliable event-driven wVSN.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.4 [Performance of Systems]: Reliability, availability,
and serviceability

General Terms
Reliability, Security

Keywords
Wireless Visual Sensor Networks, Event-Driven, Error De-
tection, Attack
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1. INTRODUCTION
Ongoing improvements in miniaturized video technology,

proof-of-concept testbeds and the lure of innovative appli-
cations have all continued to fuel interest in Visual Sensor
Networks (VSNs) both within wired and wireless settings
(wVSNs) [8]. Indeed the riveting technical challenges of such
networks and the appeal of their possible applications have
led some researchers to name wVSNs as the next evolution-
ary step in sensor and ad-hoc networks [6]. Possible applica-
tions of wVSNs include intelligent infrastructure monitoring,
scientific and wildlife data collection, health and safety mon-
itoring in child-care and retirement centers, and a variety of
homeland-security related applications [1], [7].

To realize the potential of such wVSN applications, a va-
riety of technical challenges must be addressed. Some of
these challenges are particularly onerous in the case of a
wireless setup involving multimedia, and a variety of ap-
proaches have recently been proposed in hopes of realizing
the wVSN vision [6]. Any such effective approach must nec-
essarily address the issues of limited energy, bandwidth and
storage at the nodes, as well as the need for sophisticated
image processing (context-based fusion, filtering, and/or ag-
gregation of various video feeds) which may be taxing for
certain large-scale wireless setups [8]. Furthermore, various
trade-offs between computation and communication in mul-
timedia networks and between power consumption in video
encoding and wireless transmission must be understood [10],
[7]. Ideally, a wVSN framework would also aim to minimize
the time delay caused by the transmission of images and
by their processing (for real-time applications, especially in-
volving security monitoring) [1].

One possible approach is to develop wVSNs which are
fully or partially event-driven [1]. According to this model,
the wireless video nodes are equipped with additional scalar-
valued sensors (i.e. sensors that collect temperature/pressure
readings or detect motion). Such additional sensors could ei-
ther be integrated directly into the nodes to form one unit
as depicted in Figure 1a, or be deployed as separate devices
that form their own network as in Figure 1b. Such aug-
mentation of video data with scalar readings may be used
in a variety of data fusion approaches [13]. In this scenario
however the scalar readings are used by the nodes to deter-
mine whether recorded video frames should be transmitted
wirelessly to a base station (or cluster head), stored for a
period of time in memory, or be discarded if no event of in-
terest occurred (they could also be used to control the nodes’
sleep-mode). The motivation for such an approach is based
on the observation that scalar-data might be easier to pro-
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cess for the nodes in terms of computational time, battery
energy and algorithm complexity.

Base
Station

Base
Station

Figure 1: Even-driven wVSN setup (a) Nodes
equipped with cameras and sensor(s) (b) Sensors
form a separate support network for the cameras.

A variety of complimentary approaches to even-driven
wVSNs have also been proposed, offering interesting trade-
offs. One school of thought is to focus on energy-efficient
compression and/or power trade-offs between encoding and
transmission at the nodes [7], [10], [11]. The advantage of
these approaches is that all the video/image feeds are trans-
mitted to the base station (though possibly compressed in
a lossy way) and are hence available for later audits (such
as following a security incident when previous, seemingly in-
nocent footage must be reviewed). Another complimentary
proposal to facilitate the wireless transmission of video data
is the use of free-space optical transmission, which consumes
less energy than traditional radio transmission and which of-
fers very high bandwidth [8].

These approaches alone however may not be fully opti-
mized for low security, extended-duration applications where
events of interest may occur sparsely in time (for example,
wildlife monitoring where animals may be out of camera
range for long periods of time) [2]. In particular, these ap-
proaches do not exploit the possibility of eliminating irrel-
evant or non-interesting frames at the source (i.e. at the
nodes). Such selection of frames may be possible using
context-based information processing where nodes employ
basic vision technologies to discern motion in the video or
to pick out relevant objects [13]. One challenge of this ap-
proach is to tailor the vision technology to the low-energy,
low-computation, low-storage paradigm of wireless nodes.
In comparison, the event-driven wVSN approach attempts
to achieve the objective of selective recording/transmission
based on relevant scalar data. In practice, the event-driven
approach may ultimately be used in conjunction with other
techniques. In this work however we focus on the reliability
of the event-driven approach depicted in Figure 1.

A key element in unlocking the potential of the event-
driven approach is to understand, and ultimately control,
the probability of erroneous event-reporting by the scalar-
sensors (especially if the event-driven approach is used with-
out vision-based information processing). Such erroneous
readings in the scalar-sensors might result in the dismissal
of a relevant image, or conversely, in the transmission of an
irrelevant image, hence wasting limited energy and band-
width. Scalar-sensors deployed in harsh or hostile envi-
ronments may be prone to occasional Byzantine-like errors.
Unlike permanent defects, such occasional errors are much
harder to detect during network operation. For instance,
harsh environments of interest might include infrastructure
in seismically active areas, or wildlife monitoring in remote
rainforests [1], [2]. In hostile environments on the other
hand, faulty sensor reporting may be caused by a mali-

cious opponent engaged in false-packet injection, actuation
of sensed-data or other sensor network attacks [4]. Some
critical applications such as battle-field surveillance may ex-
perience both harsh and hostile conditions.

Importantly, occasional errors caused by harsh or hostile
elements may occur with vastly different frequency than
wireless transmission errors [4]. Whereas coded wireless
transmission and decoding might produce a bit error with
probability between 10−6 to 10−9, the erroneous reporting
rate of a particular scalar-sensor is not as easy to ascertain.
Depending on the conditions of the harsh or hostile envi-
ronment, we might expect a probability of sensor error that
changes largely over time and over a wide range of values
[5]. Furthermore, whereas we may be able to estimate the
probability of sensor error due to harsh conditions, such es-
timation may not be possible in the case of an attacker who
changes the attack statistics to avoid detection [5]. Hence
whether deployed in normal, harsh or hostile conditions, it
is imperative to prevent and detect errors in scalar-reporting
in order to achieve a reliable event-driven wVSN operation.

1.1 Focus and Contribution of Paper
In this paper we examine the probability of detecting occa-

sional errors in the scalar-sensors that support event-driven
wireless Visual Sensor Networks (wVSNs). Our specific fo-
cus is on comparing the detection performance achieved un-
der a hostile scenario (i.e. attack) versus the detection per-
formance achieved under a harsh-environment scenario. The
key detection-related difference between these two cases is
that in a hostile scenario, we assume that information about
the probability distribution function (PDF) of the attacker
is not available to the detector (e.g. the attacker may keep
changing his attack statistics to avoid detection). In this
case we propose the use of a count (or type) detector at the
cluster-head (or base station). We employ the game theo-
retic concept of a Nash equilibrium to determine the best
strategy of the attacker and it’s resulting impact on detec-
tion when the count detector is employed by the cluster-
head. We perform simulation experiments to determine the
resulting probability of detecting the attack and compare it
to the harsh-environment case where we assume the error
PDF information is available (such as through estimation).

2. EXISTING WORK
Given the breadth of work relevant to wVSNs and given

our focus on sensor error detection in the harsh/hostile set-
ting, we delimit our overview to relevant wVSN frameworks
and implementations, as well as to pertinent detection con-
cepts.

Feng et al. present a vision for massively scalable video-
based sensor networks (VBSN) [6]. The authors identify
and overview key technical issues that must be addressed in
order to accommodate video feeds from possibly thousands
of nodes. In their vision, wireless battery-run video nodes
pass their data feeds directly to a higher-powered “base sta-
tion”(or cluster-head) where the data aggregation and filter-
ing first occur. Alternatively, the nodes are equipped with
context-based vision technologies (i.e. using objects in the
video data) to track objects or to filter information at the
nodes. Basharat et al. propose and implement an event-
driven framework for using wireless sensor nodes with wired
video cameras to monitor the structural health of bridges
[1]. The approach is aimed at eliminating vast amounts of
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unnecessary data intelligently, at prolonging the system’s
life and rendering the system robust to errors and flexible
to deploy. Scalar-data nodes collect temperature and vibra-
tion readings on the bridge at different sampling rates. In
the system’s Passive Mode, only a few select nodes do the
sensing. Elevated readings however trigger the remaining
scalar nodes to enter Active Mode to increase the spatial-
coverage and detail of the sensing. If abnormal readings
are detected while in Active Mode, the wired cameras begin
their operation, otherwise the nodes return to Passive Mode.

Liu and Sayeed examine the use of a general type of detec-
tor called the type detector, with a special focus on wireless
sensor networks [9]. In their setup, each sensor node collects
a sequence of observations of length n. Based on the Method
of Types, this approach does not require the nodes to use
PMF (or PDF) information to select a hypothesis (though
this information is known at the Base Station). For a dis-
crete alphabet of observations (for example binary-valued
observations), the nodes act as simple counters, recording
the relative frequencies with which each symbol (1 or 0 for
binary alphabets) occurred in the sequence. After deter-
mining the count of each symbol, a node transmits this in-
formation to the Base Station which then performs a joint
“type” detection to select a final hypothesis about the data.
It is shown that for the case of binary i.i.d observations, the
method approaches the performance of optimal centralized
detection, while reducing the communication of the nodes
(as well as possibly the storage and computation required
by the nodes).

3. PRELIMINARIES

3.1 Notation
Throughout this paper we use the notation PD to denote

the probability of detection and PF A to denote the proba-
bility of false alarm. The notation PD = β and PF A = α
where α ∈ [0, 1] and β ∈ [0, 1] is also used to denote specific
values of PD and PF A. The notation PM is used to denote
the probability of miss, where PM = 1− PD. The probabil-
ity mass function (PMF) of a random variable X is denoted
by pX(x) or p(x) for short. For a binary-valued vector x of
length m, we use the notation w(x) or w for short, where
w{0, . . . , m}, to denote the weight of the vector (the number
of 1s contained in the vector). The notation IP denotes the
indicator function which is equal to 1 if the proposition P
is true and is equal to 0 otherwise.

3.2 Neyman-Pearson and Count Detectors
In detection problems we are generally faced with the task

of deciding between two or more hypothesis based on re-
ceived data. The Neyman-Pearson (NP ) is an optimal de-
tector appropriate for cases where a priori probabilities of
the hypotheses are not available, and for cases where PD and
PF A may not be of equal significance (otherwise a Bayesian
detector may be appropriate).

We consider the case where the data vector z consists of n
i.i.d Bernoulli random variables coming either from a PMF
Bern(p) (hypothesis H0) or a PMF Bern(r) (hypothesis
H1). For this case it can be shown that the NP detector is
given by Eq. 1, where w(z) is the weight (the number of 1s)
in the data vector z.

Λ(z) =
rw(z)(1 − r)n−w(z)

pw(z)(1 − p)n−w(z)

H1
>
<
H0

T (1)

The threshold T is chosen to satisfy a desired α based on
Eq. 2, where the summation is over all the possible data
vectors z such that Λ(z) exceeds T . However this is equiva-
lent to summing over all possible weights w for w ∈ [0, n] as
shown in Eq. 3, where Λ(w) = rw(1−r)n−w ÷pw(1−p)n−w.
Finally, the probability of detection β resulting from the use
of the Λ(z) detector is given by Eq. 4.∑

z:Λ(z)>T

pw(z)(1 − p)n−w(z) ≤ α (2)

n∑
w=0

(n
w)pw(1 − p)n−w

I Λ(w)>T ≤ α (3)

β =
n∑

w=0

(n
w)pw(1 − p)n−w

I Λ(w)>T (4)

In cases where the PMF under different hypotheses is not
available at the sensors (only at the cluster-head), a count
or type detector may be appropriate as described in Section
2 pertaining to reference [9]. For cases where PMF infor-
mation is missing altogether, such as in the case of a chang-
ing attacker, game theoretic analysis may yield insights into
best-response PMFs.

3.3 Game Theory Nash Equilibria
Game Theory (GT ) is generally concerned with “decision-

making” (optimization of one’s choice) in the case of mul-
tiple players whose choices affect the outcomes achievable
by other players. In the basic “strategic” form, the game
theoretic concept of a Nash equilibrium allows a player to
determine which action she should select to achieve her best
possible outcome given that she knows all the players’ pref-
erences for all the outcomes (but not which actions they
actually choose in that instance of play). The concept of
Nash equilibrium proves useful in determining the best ac-
tions of an attacker (worst-case scenario for the wVSN) who
must select a distribution Bern(q) with which to carry out
the attack. Given such information, the attack detection
performance may be better understood.

4. PROBLEM FORMULATION
In this paper we consider an event-driven wireless Visual

Sensor network (wVSN) and focus on the detection of occa-
sional scalar-sensor errors caused by either harsh or hostile
conditions. Specifically, we consider n wireless battery-run
cameras, each of which is supported by a scalar-data sen-
sor as depicted in Figure 1 (the type of scalar-data sensor is
application-dependent). We adopt the configuration shown
in Figure 1a (a study of the benefits and challenges of 1b
is beyond the current scope, as is the inclusion of vision-
processing).

The model of event-detection at the scalar-sensors is largely
sensor and application-dependent (i.e. the detection model
of underground optical pressure sensors would differ from a
model of temperature-collecting sensors). For purposes of
generality and tractability we therefore choose to model the
scalar-sensor event-detection via a sensor’s ultimate output
decision, ‘event present’ (bit 1) or ‘event absent’ (bit 0).
Specifically, the detection of an event of interest in the en-
vironment at node i is modeled as a random variable Xi

according to the Bernoulli distribution Bern(p) of Eq. 5.
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Hence a realization xi = 1 denotes a scalar-sensor i having
detected an event of interest.

Xi =

{
1 w.p. p
0 w.p. 1 − p

(5)

Each scalar-sensor transmits its binary data to the cluster-
head (or base station), reporting whether an event-of-interest
occurred at the location of the node. This binary data may
be appended to packets (such as in the header) that are al-
ready being sent to the cluster-head for other purposes. Due
to delays it is important for these packets to be synchro-
nized (or ordered in time) through appropriate techniques
[12]. Hence we assume that after some time the cluster-head
receives a data vector z of length n which corresponds to the
n sensors’ decisions for a specific observation period. This
data vector is used by the cluster-head for fault and attack
detection. Feedback from the cluster-head regarding the sta-
tus of the scalar-data (valid or faulty/attacked) is used by
a node to control whether a given frame in its short-term
storage should be transmitted to the cluster-head or dis-
carded. For scope reasons, in this work we do not elaborate
on the local frame control and delay aspects but focus on
the detection task at the cluster-head.

An error at a scalar-sensor i due to a fault (harsh condi-
tions) or an attack (hostile conditions) may be modeled in
a variety of ways. For tractability and generality we model
the error as a random variable Yi distributed according to
a Bernoulli distribution Bern(q). The effect of the error
is modeled as changing the reading of a scalar-sensor, from
declaring a 1 (event occurred) to declaring a 0, or vice-versa.
This bit-flipping affects both the local frame control and the
binary information zi sent by each node to the cluster-head.
The overall effect of the error on each bit sent to the cluster-
head is given by Eq. 6, where Xi is the true event in nature,
Yi is the sensor error and Zi is the resulting bit reported to
the cluster-head. It can be shown that the distribution of
the random variable Zi is given by Bern(r) where r is given
by Eq. 7.

Zi = Xi ⊕ Yi (6)

r = (1 − p)q + (1 − q)p = q + p − 2pq (7)

Hence at any given time, the cluster-head receives a data-
vector z of length n that it uses to ascertain whether the
network is functioning correctly. The cluster-head must de-
cide between two alternative hypothesis:

H0 : normal operation, PMF ∼ Bern(p)

H1 : erroneous operation, PMF ∼ Bern(r)

In the case of a harsh environment, prior sensor quality
testing may yield a reasonable estimate for the probability
of sensor error q. If additionally a similar probability es-
timate can be obtained for the occurrence of an event of
interest (which realistically may not be available), then the
probability p may also be obtained. In such a case, the op-
timal NP binary-data detector described in Section 3.2 may
be used to distinguish between the hypotheses H0 and H1.

In the case of hostile conditions however, it may not be
possible to obtain an estimate for q given that it is controlled
by an attacker who is free to change his attack statistics
over time. Indeed the reason why an attacker may employ
a random attack in lieu of a deterministic one is precisely
to thwart attempts by the wVSN to estimate its attack pat-
terns. Assuming that an average count np is available (the

average number of sensors that report a bit 1 based on the
weak law of large numbers for n large), we propose the use of
a modified count detector described in Section 2 and refer-
ence [9]. The simple modification is based on the observation
that in practice the sequence of observations collected by a
single node over time is most likely not truly i.i.d (i.e. p may
not be i.i.d over time). Furthermore, we wish to detect an
attack or malfunction early (otherwise video frames may be
mishandled by the nodes) and hence do not wish to collect a
relatively long sequence of observations. Instead we assume
that in a given time interval, p is i.i.d spatially within a
cluster of nodes and q (which is unknown) is also i.i.d spa-
tially within this cluster. Hence we propose the use of the
detector D(z) given in Eq. 8, where c = np is the average
number of 1s the cluster-head expects to receive from the
n sensors (for n large, by the weak law of large numbers),
w(z) is the actual count (number of 1s) received in the data
vector z, and ε is a variance-related “slack-factor” allowing
the cluster-head to relax or tighten the detection constraint.

D(z) = |w(z) − c|
H1
>
<
H0

ε (8)

5. ANALYSIS
In the rest of this paper we wish to understand 1 - how

an attacker should choose his attack parameter q if he knew
(but did not control) p, such that he maximizes the prob-
ability of evading the detection that is performed by the
cluster-head using Eq. 8, and 2 - how the detection per-
formance in the hostile case (using Eq. 8) compares to the
harsh conditions case (using Eqs. 1, 3 and 4).

5.1 Performance in Hostile Environment
We consider the case where the attacker’s goal is to cause

occasional errors in the scalar-sensors while minimizing the
chance of getting detected by the cluster-head (detection
would prevent the attacker from continuing to misguide the
network). An alternative goal for the attacker may be to
sacrifice some of the detection-evasion if it allows for more
nodes to be attacked. This interesting alternative scenario
is the study of ongoing work and is not considered in this
paper. Based on the D(z) detector and the outlined goal,
the attacker wants to maximize the condition given by Eq.
9, where we have used basic combinatorics as in [5] and
where w(Z) = w(X ⊕ Y) is based on Eq. 6. The binomial
coefficients a, b and c are defined in Eq. 10.

Pr{|w(X ⊕Y) − c)| < ε}

=

� l+ε
2 �∑

m=� l−ε
2 �

n∑
k=1

n∑
l=1

a (k, m) b (k, l, m) c(k)

·pk(1 − p)n−kql(1 − q)n−l (9)

a(k, m) =

{ (
k
m

)
if k ≥ m

0 o.w

b(k, l, m) =

{ (
n−k
l−m

)
if n − k ≥ l − m

0 o.w

c(k) =

{ (
n
k

)
if n ≥ k

0 o.w
(10)

It can be shown that the condition in Eq. 9 is concave in p
with peak at p = 1

2
and semi-concave in q in the asymptotic
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case of large n. Recalling that p ∈ [0, 1] and q ∈ [0, 1], the
Nash equilibria of Eq. 9 in the asymptotic n case can be
shown to exist for (p, q) = (δp, δq) and (p, q) = (1 − δp, δq)
where δp and δq are small numbers approaching 0. From this
result we conclude that in order to minimize the probability
of being detected, the attacker should choose a small value of
q (i.e. δq). We also notice that the detector should perform
best for either small p (i.e. δp) or for large p (i.e. 1 −
δp). That is, the count detector D(z) should perform best
when the event of interest is either rare (small probability
of occurrence) or very common. This result agrees with the
intuition that it is easier for an attacker to fool the cluster-
head if the latter is expecting a bit of value 1 or 0 with equal
probability (i.e. p = 1

2
). Figure 2a shows a plot of Eq. 9

over the range of p and q with ε = 0 and n = 50 nodes.
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Figure 2: (a) PM for various p and q, ε = 0, n = 50.
(b) D(p ‖ r) over the range of p and q.

5.2 Performance in Harsh Environment
Generally we expect that the detection performance in the

harsh conditions case (using the NP detector of Eqs. 1, 3
and 4) will be superior to the hostile conditions case where
information about probability q is missing (using the count
detector of Eq. 8). We wish to understand however if and
how the difference in performance between the two cases
varies with the values of p and r where r is given by Eq. 7.

In the case of i.i.d random variables used for a hypothesis
test between two alternative PMFs p and r (such as in our
case), we may use the Kullback Leibler (KL) distance D(p ‖
r) viz. Stein’s Lemma [3]. According to Stein’s Lemma, the
larger the KL distance between the distributions, the better
the detection performance. It must be noted that the KL
distance is not a true measure and is an asymptotic distance
(for a large number of i.i.d samples n). The KL distance
between two Bernoulli PMFs p and r is given by Eq. 11.

D(p ‖ r) = p log2

p

r
+ (1 − p) log2

1 − p

1 − r
(11)

Table 1 shows D(p ‖ r) for various values of p and q, ar-
ranged in order of an expected (relative) decrease in per-
formance. For instance, we expect that detection in the
(p, q) = (0.1, 0.99) case will be better than detection for the
(p, q) = (0.1, 0.1) case since the KL distance in the former
case is larger. Figure 2 b) shows a plot of D(p ‖ r) over the
entire range of p and r.

6. RESULTS AND DISCUSSION
We wish to determine and compare the detection perfor-

mance of the NP detector of Eqs. 1, 3 and 4 and of the
count detector of Eq. 8. Based on the analysis of Section
5.1 for the hostile environment, we expect the count detec-
tor to perform worst in cases where the attacker chooses a
small value of q, and/or when the event of interest occurs

Table 1: KL-Distance
Value of p Value of q D(p ‖ r)

0.1 0.99 2.44
0.1 0.1 0.0361
0.6 0.3 0.0105
0.47 0.47 0.0023
0.5 0.5 0

with probability p close to 1
2
. On the other hand, in the case

of a harsh environment as examined in Section 5.2, the NP
detector need not perform poorly for small values of q as
long as the KL distance between p and r is relatively large.

Figures 3 and 4 show the probability of detection PD ver-
sus the probability of false alarm PF A for the NP detector
corresponding to the values of p and r shown in Table 1. As
expected, the performance of the NP detector is best for
cases where D(p ‖ r) is largest and the relative performance
follows that of Table 1. For instance, in Figure 3a where
D(p ‖ r) is largest, we see excellent performance where a
high PD is achieved for all PF A. In contrast, in Figure 4a
where the D(p ‖ r) = 0, we see the worst possible (PD, PF A)
performance.

Superimposed on these plots, is the PD versus PF A for the
corresponding count detector. As expected, its performance
is lower than that of the optimal NP detector. Interestingly,
altering the value of ε, which may be thought of as a slack
factor, has the effect of moving the (PD, PF A) performance
of the count detector along the PD − PF A curve of the NP
detector. For instance, setting ε = 0 increases PD in the
count detector close to its maximum value of 1, but it also
produces an undesirable PF A close to its maximal value of
1. For certain cases, selecting a value of ε equal to 2 or 3
produces a more desirable (PD, PF A) pair.

Finally, we examine the effect of cluster-size on detec-
tion performance. It is known that for any optimal NP
(or Bayesian) detector, the performance generally increases
with an increase in the number of samples. This implies that
a larger number of nodes n reporting their scalar-data read-
ings to a cluster-head should perform better for the harsh
conditions case. We obtain a similar result for the hostile
conditions case. Figure 4b shows a plot of PM (obtained
from Eq. 9) for ε = 0, p = 0.1 and various q and n. The plot
shows that the probability of attack success (corresponding
to PM ) decreases as the size of the cluster n increases.

The implication of these results for reliable event-driven
wVSNs is that detection of occasional errors due to hostile
attacks is possible even though the attack parameter may
not be known. Harsh conditions generally yield better de-
tection performance than hostile conditions. If the resulting
reliability of the scalar-data is suitable for a given wVSN
application, feedback from the cluster-head regarding the
scalar-data may be used to perform local filtering and selec-
tion of video frames in lieu of more energy-consuming image-
based processing. For general wVSN applications with dif-
fering security requirements, a combination of techniques
involving efficient image-processing, compression and scalar-
data assistance will likely yield the best overall trade-offs. A
study of such trade-offs under hostile and harsh conditions
is the subject of ongoing study.
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Figure 3: NP vs. C detectors for n = 50, (a) p = 0.99, q = 0.1. (b) p = 0.1, q = 0.1. (c) p = 0.6, q = 0.3. (d)
p = 0.47, q = 0.47. Vertical Axis: PD, Horizontal Axis: PF A. The C detector is varied over a range of ε.
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Figure 4: (a) NP vs. C for n = 50, p = 0.50, q = 0.50
and various ε. (b) PM for p = 0.1, various q and n.

7. CONCLUSIONS
In this work we examine event-driven wireless Visual Sen-

sor Networks (wVSNs) with a focus on the detection of oc-
casional errors in the scalar-data sensors under harsh vs.
hostile conditions. The significant difference between the
harsh and hostile detection case is that in the latter, PMF
information required for detection may not be known or es-
timated. To address this unknown, we propose a modified
count detector for use at the cluster-head of a wVSN. We
compare the detection performance of the count detector
against the optimal Neyman-Pearson (NP ) detector which
may be used in the harsh conditions case. We determine
that though it does not perform as optimally as the NP ,
for many cases the count detector performs reasonably well,
with its PD-PF A adjusted through selection of the ε param-
eter.
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