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Abstract Wireless Image Sensor Networks (WISNs) consisting of untethered camera
nodes and sensors may be deployed in a variety of unattended and possibly hostile envi-
ronments to obtain surveillance data. In such settings, the WISN nodes must perform reliable
event acquisition to limit the energy, computation and delay drains associated with forward-
ing large volumes of image data wirelessly to a sink node. In this work we investigate the
event acquisition properties of WISNs that employ various techniques at the camera nodes to
distinguish between event and non-event frames in uncertain environments that may include
attacks. These techniques include lightweight image processing, decisions from n sensors
with/without cluster head fault and attack detection, and a combination approach relying on
both lightweight image processing and sensor decisions. We analyze the relative merits and
limitations of each approach in terms of the resulting probability of event detection and false
alarm in the face of occasional errors, attacks and stealthy attacks.

Keywords Image sensor networks · Lightweight event acquisition · Sensor network
security

1 Introduction

Wireless Image Sensor Networks (WISNs) are envisioned for a variety of innovative applica-
tions such as distributed surveillance, intelligent infrastructure monitoring and scientific data
collection (Akyildiz et al. 2007; Feng et al. 2001). To realize this vision, WISN research must
overcome challenges associated with the increased processing, transmission and bandwidth
costs required for image data compared with conventional sensor data (Basharat et al. 2005;
Soro and Heinzelman 2005; He and Wu 2006). A variety of interesting approaches have been
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Fig. 1 A general heterogeneous visual sensor network comprised of untethered camera nodes and supporting
sensors in the possible presence of a distributed attacker

proposed to address these issues including exploiting spatial and temporal data correlations
(Chow et al. 2007; Ma and Liu 2005) as well as utilizing collaboration between camera nodes
and sensors (Veeraraghavan et al. 2005). The latter approach has shown particular promise
for detecting events of interest occurring in the environment (He et al. 2006; Rahimi et al.
2005).

In this work we examine the event acquisition properties of WISNs pre-deployed ran-
domly or deterministically in unattended outdoor environments for the purpose of collecting
relevant surveillance data regarding an event of interest. As shown in Fig. 1, we consider a
heterogeneous WISN comprised of sensors and untethered camera nodes (battery operated
nodes with wireless data transmission to the sink; He et al. 2006). If the sensor and camera
node deployment is random, each camera may or may not find itself within a close range of
one or more supporting sensors. Such ad hoc arrangements may arise for example in rapid
deployment scenarios where sensors are dropped aerially into an area of possible danger.
Deterministic deployments on the other hand may allow for the arrangement of n sensors
within a desired radius around each camera to assist the camera in triggering and/or in
identifying events of interest. To offer such decision support, a variety of sensors such as
magnetometer or motion sensors might be chosen as dictated by the application. In this work
we only require that the sensor be capable of providing a binary “yes/no” output decision
regarding the presence of events given its sensory input. We also consider a general deploy-
ment where each camera node may or may not find itself in the vicinity of n supporting
sensors.

Whether with or without the assistance of supporting sensors, the camera nodes must
operate reliably under significant resource constraints and may thus require the use of light-
weight image processing (LIP) algorithms to perform event acquisition (Rahimi et al. 2005;
Veeraraghavan et al. 2005). Under the collaboration paradigm, camera nodes may receive
supporting decisions about the presence or absence of an event from the distributed sensors
(Veeraraghavan et al. 2005; Basharat et al. 2005). Due to their unattended deployment in
potentially hostile regions however, the sensors may experience errors due to an attack that is
perpetrated by a hostile entity (for example a distributed hostile network as depicted in Fig. 1;
Czarlinska et al. 2007; Raymond and Midkiff 2008; Buttyan and Hubaux 2002). In this work
we wish to investigate the detection and false alarm characteristics of such heterogeneous
WISNs in uncertain environments where outdoor conditions may present challenges for the
camera LIP algorithms while occasional faults and deliberate attacks may present a challenge
for the supporting sensors. In particular we wish to study the relative merits and limitations
of the following cases:

1. Lightweight Image Processing (LIP) Approach: preliminary results from real-world test-
beds of low-power low-computation wireless camera nodes suggest that LIP algorithms
may achieve a probability of detection and false alarm (PD − PFA) that may be acceptable
for certain applications (Rahimi et al. 2005; Veeraraghavan et al. 2005). Though we do
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not set out to improve any particular LIP algorithm, in this work we wish to understand
the underlying analytical properties of simple threshold based LIP algorithms and exam-
ine their PD − PFA performance for a variety of real world surveillance sequences. The
overarching goal is thus to understand the limits and suitability of LIP algorithms and to
provide a framework for enhancing their performance with sensors if required for a given
application.

2. Sensor Decisions Approach: in unattended outdoor settings, sensors may be prone to
occasional errors due to faults or may experience stealthy attacks (designed to avoid
detection; Czarlinska et al. 2007; Raymond and Midkiff 2008; Buttyan and Hubaux 2002).
Although quality testing may provide an estimate for the probability of a fault, an estimate
for the probability of an attack may not be generally available a priori. Without verification
mechanisms, the reliability of the sensor decisions may thus not be adequate for some
applications despite node redundancy. In this work we study and compare the PD − PFA

performance of different fault/attack verification mechanisms at the cluster head for the
case of occasional errors, attacks and stealthy attacks. We also comment on the level of
node redundancy (cluster size) required to achieve a desired event acquisition performance
under each scenario.

3. Combined Decisions Approach: camera nodes may rely on a combination of decisions
from the sensors and the LIP algorithm for event acquisition (Rahimi et al. 2005;
Veeraraghavan et al. 2005; He et al. 2006). We wish to study the characteristics of such
combined decisions for various levels of node redundancy to exploit the desirable quali-
ties of both approaches and avoid the degradation in performance that each method may
experience in certain settings.

The remainder of this paper is organized as follows. Section 2 provides important
motivation for the WISN event acquisition problem and overviews recent advances salient
to our work. Section 3 describes the details of the event acquisition problem in uncertain
environments. In Sect. 4 we focus on lightweight image processing (LIP) algorithms and
their performance. In Sect. 5 we focus on the reliability of sensor decisions and study the per-
formance of fault/attack detectors. In Sect. 6 we examine the combined decisions approach
with/without fault and attack detectors. Finally in Sect. 7 we summarize our findings and
conclusions.

2 Background and recent advances

For many applications, the viability of Wireless Image Sensor Networks (WISNs) depends
on the resolution of significant design issues centered around network reliability (Czarlinska
and Kundur 2008; Eltoweissy et al. 2006) longevity (Yu et al. 2007; Maniezzo et al. 2002)
and security (Eltoweissy et al. 2005; Chan et al. 2003). The specific issues include everything
from energy-efficient capture of images as well as their processing and routing (Chow et al.
2007; Veeraraghavan et al. 2005; Chow et al. 2006; Rodriguez 2003), to economical network
design relying on node heterogeneity with sleep/wake-up cycles (Bandyopadhyay and Coyle
2003; He et al. 2006), to the network’s robustness to attack and compromise of privacy (Olariu
et al. 2007). WISNs thus present a very wide range of timely challenges. In this section we
wish to briefly outline some recent advances most salient to the focus of our work.

In He et al. (2006) describe VigilNet, a prototype implementation of a heterogeneous
image sensor network for energy efficient surveillance missions. In the experimental setup,
70 Mica2 motes are deployed to detect and track the passing of a vehicle while triggering
cameras. The authors demonstrate how a multi-tier sleep/wake-up system consisting of motes
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and mote leaders called sentries can extend the lifetime of the network. Importantly, a sentry
decides whether an event of interest is occurring in the environment by counting the number of
“yes” votes it receives from the motes which are utilizing magnetometer sensors. To accurately
capture events, the probabilities of false positives and false negatives are balanced by carefully
selecting the detection threshold (i.e. the number of “yes” votes required to declare that an
event has occurred, referred to by the authors as the Degree of Aggregation DoA). Importantly,
the DoA is selected experimentally and as the authors suggest, a framework with adjustable
sensitivity for this selection could largely improve the system’s detection performance. In
comparison, in our work we study a framework that enables the cluster head (i.e. sentry) to
make optimal decisions based on sensor inputs with a flexible level of sensitivity.

Although heterogeneous multi-tier systems greatly improve the longevity of the over-
all image network, practical designs must account for the substantial power consumption
of individual image-capture devices and of their image processing algorithms which han-
dle the acquired frames. Recent advances in CMOS imaging technology have produced a
new breed of low-power camera devices. Unfortunately these devices are generally intended
for higher-power hosts and are thus not suitable for sensor networks. To address this issue
(Rahimi et al. 2005), present a seminal camera device named Cyclops. Cyclops provides an
electronic interface between a low-power low-computation camera module based on CMOS
imagers and a lightweight camera host such as a mote. While providing a critical bridge
and enabling use in visual sensor networks, Cyclops still suffers from extreme constraints in
its computational power and processing delay, necessitating judicious use of its resources.
For instance, Cyclops’s complex programmable logic device (CPLD) can perform simple
operations on the frames at capture time, such as background subtraction and frame dif-
ferentiation. Performing such simple operations at capture time instead of post-processing
the frames greatly reduces the energy consumption and delay of the device. In our work,
we study how lightweight image processing (LIP) compatible with these ideas can improve
event detection performed by the cluster head and its associated sensors. Importantly cyclops
indeed possesses an asynchronous trigger input that can be connected to sensors (such as
a passive IR detector, microphone or magnetometer) to trigger the camera and improve the
overall system’s performance.

3 The WISN event acquisition problem in uncertain environments

Upon deployment, the goal of a typical image network is to capture relevant visual sur-
veillance pertaining to an event of interest and to forward this surveillance to a sink where
further analysis might be performed. To capture relevant surveillance, the network should
generally exhibit a high probability of event detection PD (true positive) and a low probability
of false alarm PFA (false positive). These probabilities not only affect the relevance of the
collected materials to the surveillance task, but also have an impact on the network’s energy
consumption and thus on its longevity. Specifically, the erroneous identification of “non-
event” frames as “significant” and their subsequent processing and transmission through a
(wireless) medium needlessly drains the nodes’ battery resources and burdens the sink with
non-content. On the other hand, the omission of “event” frames may significantly compro-
mise the quality of the surveillance mission. The PD − PFA characteristics of the image
network should also ideally exhibit the highly desirable property of being adjustable based
on the requirements of the application (such as its surveillance or energy requirements). The
detection performance should also ideally exhibit some optimality in the sense of being “the
best” achievable performance given the practical challenges of WISNs.
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Event acquisition challenges experiences by nodes in a WISN generally stem from more
than one source. The first such source originates from the hardware and energy limitations
of the camera nodes themselves (Rahimi et al. 2005). Specifically, the camera nodes may
not have the capability of applying advanced image processing to the captured frames. The
processing delay (per frame) as well as the energy and memory utilization generally render
such processing infeasible even when it is available at the camera nodes. However light-
weight image processing (LIP) is often feasible on such devices and provides very basic in
situ analysis of the frames’ content. Unfortunately the practical PD − PFA performance of
LIP varies widely depending on the specific environmental conditions (for example, lighting,
size and speed of the moving object(s) and movement of “background” objects such as trees).
The performance of LIP for any given arbitrary image sequence is consequently not truly
predictable or controllable, and thus not inherently “adjustable” to meet application require-
ments. Nevertheless, real-world experiments with Cyclops based on a LIP algorithm have
demonstrated an average PD ≈ 78% and a PFA ≈ 22%. While this level of PD − PFA per-
formance may potentially be acceptable for certain applications, it is important to investigate
whether this performance can be improved through the use of collaborating sensors.

Exploiting the information collected by sensors might generally improve the PD − PFA

performance of heterogeneous WISNs. The use of sensors however introduces two new
sources of error that must be considered. The first such source comes from occasional sensor
faults or errors that occur with some small but non-zero probability at each sensor. Aside
from quality testing prior to deployment (which might be selective or altogether absent due to
the large number of sensors), the general approach is to employ sensor redundancy to reduce
the chance of false reporting (Raymond and Midkiff 2008). Nevertheless it is not always
clear what level of redundancy (number of sensors) is required to achieve a given PD − PFA

performance, especially if the camera nodes are already performing a basic level of detection
via a LIP algorithm. The issue of redundancy becomes even more salient when we consider
the second possible source of sensor error, that is, error due to a persistent and distributed
attack. In particular, WISNs are intended for deployment in unattended and possibly hostile
regions. In such scenarios, an opponent can clearly gain physical access to the sensors with
the possibility of destroying them, capturing them for reprograming purposes, or interfering
with their readings via actuator devices (Czarlinska and Kundur 2008; Czarlinska et al. 2007).
Despite the possibility of tampering or error, the use of sensors to achieve reliable and energy
efficient image networks is highly enticing if these issues can be resolved (Akyildiz et al.
2007; Rahimi et al. 2005).

In this work we wish to study the WISN event acquisition problem in uncertain environ-
ments where the sensors are prone to either occasional faults or persistent attacks and where
the camera devices perform very basic event detection using lightweight image processing
(LIP) algorithms with unpredictable performance due to varying conditions. Specifically we
wish to understand how the role of sensor redundancy changes if uncertainty in the environ-
ment shifts from mere faults to hostile attacks. For instance we wish to understand if LIP
algorithms alone are sufficient in certain cases (such as the case of a severe sensor attack) or
if their performance should be augmented with that of sensors.

3.1 System model

In this section we wish to detail the specific system setup analyzed in this work. As shown in
Fig. 2, a camera node has the capability of performing lightweight image processing (detailed
in Sect. 4) to perform event acquisition. The camera node may however also rely on input
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Fig. 2 Each camera node may employ lightweight image processing (LIP) to determine if an event of interest
has occurred in a collected frame or it may rely on decisions from the sensor(s)/cluster head (CH) or a
combination of both (CH & LIP)

Table 1 Methods for marking a
frame as an “Event” at camera
node

Method Action for marking frame as an event

LIP Mark based on lightweight image processing (LIP)
CH Mark based on sensor(s) with/without Cluster Head

(CH) detection
CH & LIP Mark if either LIP or CH detects an event

from one or more (error or attack-prone) sensors regarding the presence or absence of an event
of interest (shown in Fig. 2 as binary “yes/no” decisions). Information from the sensor(s)
may be directly fed into the camera or it may first pass through a cluster head (CH) where
some form of attack/error detection is performed. In that case, the camera node receives a
decision about the presence or absence of an event from the cluster head instead of directly
from the sensor(s).

Based on this setup, a camera node may receive information about the presence or absence
of an event from more than one source (i.e. from the sensor(s)/cluster head and from its own
frame processing). Since it is not known a priori which source will be more reliable under
a given setting, the camera node faces several possible methods of utilizing the received
information. Specifically, the camera node must decide which source to trust when the sources
are in disagreement (i.e. one source reports an event of interest while the other reports no
event). As shown in Table 1, one possible approach to resolve a disagreement is for the
camera to trust its lightweight image processing (LIP) as the more “reliable” element which
is not prone to attack. Indeed such a strategy might be fruitful in favorable lighting and
background-motion conditions. Another obvious approach is for the camera node to trust the
sensor/cluster head decision (CH in Table 1) and treat the LIP as the more volatile element.
Finally the third approach listed in Table 1 instructs the camera to mark a frame as an “event” if
either of the two sources reports an event. This approach may prevent the missed detection of
certain events but could produce many false reports if at least one of the sources experiences
significant errors. Thus under arbitrary environmental conditions, it is not clear which of
the techniques will produce a better overall PD − PFA performance (with PD as close to 1
as possible and PFA as close to 0 as possible) and how sensor redundancy will affect this
performance.

3.2 Sensor error and attack models

As described in Sect. 3.1, in this work we assume that the sensors provide binary “yes/no”
decisions about the presence or absence of an event as a result of their sensed observations.
The abstraction is detailed in Fig. 3a where each sensor utilizes an adjustable threshold Th

(within technology limits of the sensor) to decide whether an event of interest has occurred
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Fig. 3 a Binary sensor model with sensing threshold Th and resulting probability of witnessing an event
0 ≤ p ≤ 1. b Basic bit error model due to fault or (unstealthy) attack where 0 ≤ q ≤ 1 is typically small for
faults but may be arbitrarily large for attacks

to produce a resulting decision bit of value 1/0. Decisions based on the use of a threshold
result in a given probability p of witnessing an event (bit of value 1). The output decision of
a sensor i is thus described by a Bernoulli random variable which we denote by Xi as shown
in Eq. 1.

Xi =
{

1 w.p. p
0 w.p. 1 − p

(1)

Yi =
{

1 w.p. q
0 w.p. 1 − q

(2)

Zi = Xi ⊕ Yi (3)

Zi =
{

1 w.p. r
0 w.p. 1 − r where r = q + p − 2pq

(4)

The notion of an occasional sensor fault is captured through the familiar bit error model
depicted in Fig. 3b. In the model, a bit may be reported erroneously with a probability q . The
error at sensor i is thus modeled by another Bernoulli random variable which we denote by
Yi as shown in Eq. 2. The decision bit produced by a sensor i in the presence of possible
errors is thus given by the Bernoulli random variable Zi as shown in Fig. 3b and given by
Eqs. 3 and 4.

Importantly we note that the probability q of an error due to an occasional sensor fault
might be small and may possibly be estimated or upper-bounded from experimental setups.
If however the sensor error is caused by a hostile attack in an unattended environment, we
may no longer conclude anything specific regarding the probability q a priori. Indeed if no
verification mechanisms are in place, the value of q at a given sensor may take on any value
in the permissible range of 0 ≤ q ≤ 1 (a value of q = 1 at a given sensor indicates that
the sensor always gives a decision opposite from the real sensed event such as for instance
in the case when a node is captured). This possibility leads back to the question of the level
of redundancy (number of sensors) that should be utilized to support a camera node. The
issue is further complicated if the attacker utilizes a distributed attack approach through
sensor-actuator nodes (Akyildiz and Kasimoglu 2004). Sensor-actuator nodes deployed in
an environment interfere with the readings taken by other sensors in their vicinity without the
need to physically “capture” the sensor and break its physical/cryptographic mechanisms for
the purposes of reprograming (Czarlinska et al. 2007). Depending on the effectiveness of such
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a hostile deployment, many sensor nodes might be affected and produce erroneous readings
with some non-negligible probability. A form of verification against occasional errors as well
as wide-spread errors (due to attack) is highly desirable.

In Sect. 3.1 we described a system model that may include a cluster head (CH) which
collects individual sensor decisions as in many proposed systems and practical implemen-
tations (Akyildiz et al. 2007; He et al. 2006; Rahimi et al. 2005). In such systems the
cluster head requires that a specified number of sensors c reports an event before decid-
ing that an event has most likely occurred and passing this information to the camera
node. The requisite number of sensors c [also known as the “weight” (Czarlinska et al.
2007) or the degree of aggregation DoA (He et al. 2006)] may be determined experimen-
tally, approximated based on expectations or obtained theoretically (Sect. 5). For instance
to perform an approximation, if there are n sensors and each sensor has a probability p
of witnessing an event (based on its threshold Th), then the average expected number of
sensors that report an event is c ≈ np ± ε where ε may be determined experimentally.
The cluster head thus receives decisions from n sensors which for the case of no errors is
denoted in vector form by X = [x1, x2, . . . , xn] and under the case of possible errors by
Z = [z1, z2, . . . , zn]. If we denote by w the weight (number of 1’s) contained in the vector
received by the cluster head, then the cluster head computes w(Z) (or w(X) if there are no
errors) and compares it to the expected weight c. Based on this simple form of error/attack
filtering, the cluster head is effectively deciding between two hypotheses regarding the
received sensor data as shown in Eq. 5. The H0 or null hypothesis is that the received
data Z comes from the Bern(p) distribution and is thus error free (in this case Z is really
X). The H1 or alternative hypothesis is that the received data contains errors due to attack or
fault.

H0 : normal operation, Z ∼ Bern(p)

H1 : attack (or fault), Z ∼ Bern(r) (5)

The preceding consideration of sensor error due to attack effectively treats the attack
as a regular fault with the difference that the fault may possibly be unrestricted in value
due to the attacker’s choice of action. However an attacker that wishes to effectively mis-
guide the event acquisition process of a WISN may possibly take the cluster head detector
into account. Specifically, the attacker may wish to determine the optimal probability of
attack q∗ that causes erroneous decisions while minimizing the chance of being detected
by the cluster head. This problem which we refer to as a stealthy attack is captured by
Eq. 6. The attacker wishes to choose an optimal value of attack parameter q∗ such that the
weight of the attacked data (which depends on probabilities p and q) generally matches
(in terms of the probability of occurrence) the weight of the unaltered data (which depends
on the probability p alone). In general the attacker need not know the probability p (since
it depends on the sensor threshold Th) and the optimization might be performed through
game theoretic optimization where the sensors with unknown parameter p are treated as
an opponent (the attacker is treated as the other player with unknown parameter q). In
this work we wish to consider the effect of occasional errors, unconstrained attacks and
stealthy attacks on the WISN event acquisition process and determine what level of sensor
redundancy is required to support the lightweight image processing available at the camera
nodes.

q∗ = max 0≤q≤1 Pr{w(Xp) = w(Zp,q)} (6)
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Fig. 4 Seq. 1 with frames (a–f) from top left to bottom right: indoor test conditions with constant lighting
and no background changes

Fig. 5 Seq. 2 with frames (a–f) from top left to bottom right: outdoor variable lighting due to clouds. Ex: The
light intensity changes by 70% between frames (a) and (b). Additional background movement due to shrub

4 Lightweight image processing in WISNs for event acquisition

4.1 Lightweight image processing and sequence characteristics

In the spirit of lightweight image processing (LIP) (Rahimi et al. 2005; Rosin 2002; Wu and
Chen 2007), we consider a relatively simple and general event acquisition algorithm (i.e.
the approach is not tailored to the detection of any specific type of object). Examination of
the proposed algorithm is intended to provide more insights into the properties of simple
visual algorithms and serve as an illustration of their performance in the context of energy
and computation-limited camera nodes. To assess this generic algorithm for WISNs we
consider its properties in analytic form and obtain the algorithm’s PD − PFA performance for
surveillance sequences under varying conditions (Sect. 4.3). The real-world image sequences
used in our testing are shown in Figs. 4–7. The characteristics of these sequences are important
in understanding the suitability of the proposed algorithm for event acquisition in WISNs.
We thus describe the test sequences prior to outlining the visual event acquisition algorithm
and its properties.

The sequence of Fig. 4 is an idealized indoor test where the lighting and background
conditions do not change appreciably over time. The only significant change comes from
the event of interest in the form of a test subject entering the camera’s field of view. The
dominant source of noise in this case is internal camera noise and flicker. The sequence of
Fig. 5 shows outdoor parking-lot surveillance on a windy day, where the event of interest is
the passing of an unidentified car. The event acquisition task in this sequence is complicated
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Fig. 6 Seq. 3 with frames (a–f) from top left to bottom right: changing outdoor light and background (swaying
trees). The subject temporarily disappears behind a tree in frames (c) and (e)

Fig. 7 a Seq. 4a showing Seq. 2 modified to remove the shrub. b Seq. 4b showing Seq. 3 modified to remove
the swaying trees

by the presence of a nearby shrub which experiences significant swaying of its branches over
time. Furthermore the background lighting changes visibly with cloud movement (between
frames 5a, b for example). The sequence of Fig. 6 also experiences changes due to swaying
trees and variable light conditions. The event of interest is the appearance and movement
of a test subject which temporarily disappears behind a tree in frames 6(c) and 6(e). Finally
Fig. 7 shows a truncation of the sequences of Figs. 5 and 6 where the camera’s field of view
now excludes the shrub and trees.

Statistical analysis of the image sequences in Figs. 5 and 6 [such as Levine’s Test and
the t-test (Ott and Longnecker 2001)] reveal that the mean and standard deviation are not
reliable indicators of an event of interest occurring even after various filtering mechanisms
are employed. This can be seen intuitively from the fact that the subjects of interest (person
walking and car driving-by) do not occupy a much larger percent of a frame’s pixels than
the other randomly moving objects (shrub and trees). Hence the mean and variance of the
frames do change based on the appearance of the subject, but these differences are not
statistically distinguishable. In essence, the pixels corresponding to the person and car are
getting dwarfed by the presence of many shrub and tree pixels which are also changing
over time. Truncating the frames as shown in Fig. 7 to exclude the vegetation does indeed
improve the statistical difference between an event and non-event frame. However for the
general WISN deployment case (with cameras facing in various directions), we do not wish
to select an event acquisition technique which relies on the truncated assumption. Based on
the observed statistical similarity of event and non-event frames, we wish to determine an
event detector suitable for WISNs. In addition to its generality (detection not tailored to a
specific type of object) and good detection performance, the chosen event detector should
be implementable in the simple WISN devices. In addition to their hardware and general

123



Multidim Syst Sign Process (2009) 20:135–164 145

processing limitations, WISNs process a large volume of surveillance frames which must
in turn be transmitted wirelessly to the sink if they contain an event of interest. Analysis of
frames at the small block or pixel level may consequently not always be a suitable or possible
approach for event acquisition.

Instead we seek a simple form for the detector where a single frame statistic is compared to
a threshold in order to determine the presence or absence of an event. However as discussed,
event and non-event frames from real-world surveillance sequences have similar statistics.
Furthermore it can be shown that a difference image D = B − A computed from two
consecutive frames A and B is not perfectly Gaussian (as often assumed) but rather contains
significant outliers for both event and non-event frames. An optimal non-parametric (robust)
detector is thus more appropriate for this case of statistical similarity and presence of outliers.
However we show that a simple “chi-squared” detector (relying on a comparison of a frame
statistic to a threshold) is equivalent in form to the robust detector and can thus be used in
WISNs (Sect. 4.3). Furthermore, through the use of composite hypothesis testing, we show
that the chi-squared detector can be made uniformly most powerful (UMP) through proper
threshold selection. The UMP property signifies that the detector achieves a probability of
detection PD higher or equal to the detection of all other detectors given the worst-case
scenario probability of false alarm PFA. In other words, no detector performs better given
the same probability of false alarm.

4.2 Lightweight image processing detector

The simple algorithm we selected is based on difference images, similar to the techniques
found in the image change detection literature (Radke et al. 2005). We describe this detector,
which we refer to as the “chi-squared” detector, in relation to the detector proposed by Aach
and Kaup (1993, 1995), where we use entire difference frames instead of blocks (noting that
the technique is also applicable to blocks of any size). We now overview the basics of the
technique. In essence, a difference image D = B − A between two consecutive frames A
and B reveals all the pixels that have changed between these frames containing both relevant
and irrelevant changes (such as the tree swaying). The Mean Squared Error (MSE) of the
difference image is computed as the relevant statistic, and it is compared to a theoretically-
obtained robust threshold T . We now present the specific details of this detector.

In Aach and Kaup (1993, 1995) [and in (Radke et al. 2005)], the difference image
D is computed and divided into smaller blocks. Importantly, each pixel of the difference
image is modeled as a Gaussian random variable with 0 mean and variance σ 2

i , where i = 0
corresponds to a non-event frame and i = 1 corresponds to an event frame. In order to con-
serve computational energy, in this work we use the entire difference image instead of the
block-based solution. The resulting detector hypothesis test can be summarized as:

H0 : no event, Dk ∼ N (0, σ 2
0 ) ∀k (7)

H1 : event, Dk ∼ N (0, σ 2
1 ) ∀k (8)

with σ 2
0 < σ 2

1 and where Dk is the kth difference pixel in D = B − A. Since the entire
difference image is utilized in the detection, instead of considering individual pixels we may
consider a new random variable defined as:

X =
n∑

k=1

D2
k = σ 2

j

n∑
k=1

D2
k

σ 2
j

= σ 2
j Y, for J ∈ {0, 1} (9)
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where Y has distribution chi-squared with n degrees of freedom and where n is the total
number of pixels in the difference frame. The new detection hypothesis test is thus given by:

H0 : X ∼ 1

σ 2
0

fχ2,n

(
x

σ 2
0

)
(10)

H1 : X ∼ 1

σ 2
1

fχ2,n

(
x

σ 2
1

)
(11)

where fχ2,n(x) is the probability density function (pdf) of the chi-squared distribution with
n degrees of freedom.1 Significantly, the hypothesis test to distinguish between an event and
non-event is given by the comparison of a single statistic (x) to a threshold T as shown in
Eqs. 12 and 13, where σ 2

0 is the variance of a null frame, F−1
χ2,n

is the inverse chi-squared

cumulative distribution function (cdf) and α is the desired probability of false alarm.2

x
H1
>
<
H0

T (12)

T = σ 2
0 F−1

χ2,n
(1 − α) (13)

4.3 Lightweight detector properties

In this Section we wish to analyze some of the properties of the simple chi-squared detector
of Eqs. 12 and 13. We begin by showing that the simple chi-squared detector can be made
uniformly most powerful (UMP) (Van Trees 2001). To achieve this we show that if there
exists a real positive number γ , such that σ 2

0 < γ and σ 2
1 > γ , where the actual σ 2

0 , σ 2
1 are

unknown, then there exists a UMP detector where a realization x from Eq. 9 is compared to
a threshold T , such that the probability of false alarm PFA = α is given by:

α = sup
σ 2

0 <γ

∞∫
T

1

σ 2
0

fχ2,n

(
x

σ 2
0

)
dx (14)

Proposition 1 Suppose there exists a γ > 0, such that σ 2
0 < γ and σ 2

1 > γ in Eqs. 10 and
11. Then there exists a UMP test of the form

x
H1
>
<
H0

γ f −1
χ2,n

(1 − α) (15)

for false alarm rate not exceeding α. Proposition 1 is a composite hypothesis test in which
the parameters for the null and alternate hypotheses are unknown, but the regions for these
parameters are divided by a threshold γ . The proposition says that if the parameter space
is divided as thus, then a test that compares the actual x in Eq. 9 to a threshold, achieves
optimal detection when the worst case false alarm is considered (the use of sup in Eq. 14).

1 We note that σi appears in the detector as σ 2
0 while it appears as 1

σ2
0

and 1
σ2

1
in the distributions of the two

hypotheses.
2 The threshold T is obtained directly by writing α = Pr{announceH1|H0} which results in an integration
of the null hypothesis pdf 1

σ2
0

fχ2,n( x
σ2

0
) over the interval from T to ∞.
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Proof If we can show that the likelihood ratio is monotonically increasing in x for σ 2
1 > σ 2

0 ,
then the UMP test of the form in Eq. 15 follows from a theorem on composite hypothesis
testing (Van Trees 2001). It can easily be shown that the log-likelihood ratio is given by
1
2

(
1
σ 2

0
− 1

σ 2
1

)
x + n

2 ln

(
σ 2

0
σ 2

1

)
. Since σ 2

1 > σ 2
0 , this ratio is strictly increasing in x . To show

that T is as given on the left side of Eq. 15, we note that the probability of false alarm is
given by 1 − fχ2,n(T/σ 2

0 ) by applying an integration change of variable in Eq. 14. To get
the sup in Eq. 14, it suffices to set σ 2

0 = γ .

Having established that the simple detector of Eqs. 12 and 13 can be made uniformly
most powerful, we next show that the form of the detector is equivalent to that of a robust
(non-parametric) detector. This is an important property given that the statistical similarity
of event and non-event frames along with difference-frame distributions that are not quite
Gaussian render H1 and H0 almost indistinguishable when the entire frame is used. Thus
we would like to maximize the event detection assuming that σ 2

1 ≈ σ 2
0 rather than assuming

that the statistics are significantly different. This can be re-phrased as

max
∂β

∂σ 2
1

|σ 2
1 =σ 2

0
(16)

where β = Pr{declare H1 | H1 occurs} is the probability of detection.

Proposition 2 The test

x
H1
>
<
H0

T (17)

maximizes Eq. 16 for a false alarm rate not exceeding α, i.e. T is chosen so that

α >

∫ ∞

T

1

σ 2
0

fχ2,n

(
x

σ 2
0

)
dx . (18)

Proof By the proof of the Neyman-Pearson lemma (Van Trees 2001), the optimal test can
be shown to be of the form

∂ 1
σ2

1
f
χ2,n

(
x

σ2
1

)

∂σ 2
1

∣∣∣
σ 2

1 =σ 2
0

1
σ 2

0
fχ2,n

(
x
σ 2

0

) H1
>
<
H0

T̃ , (19)

which is equivalent to

x − nσ 2
0

2σ 4
0

H1
>
<
H0

T̃ . (20)

Letting T = 2σ 4
0 T̃ + nσ 2

0 proves the proposition.

In summary, given the actual statistics of the difference image, a non-parametric (robust)
detector is appropriate to perform event detection. However the simple chi-squared detector
is equivalent in form to the robust detector and can be made uniformly most powerful through
threshold selection. The simple image difference test may thus be used at the camera nodes
with acceptable performance within its class of algorithm complexity.
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Table 2 Event detection based on lightweight image processing (LIP) organized in order of decreasing
detection performance PD

Image sequence Description PD PFA

Seq. (1) Indoor walking 1.0 0.13
Seq. (4a) Outdoor car (no trees) 0.98 0.17
Seq. (2) Outdoor car (with trees) 0.87 0.26
Seq. (4b) Outdoor walking (no trees) 0.50 0.03
Seq. (3) Outdoor walking (with trees) 0.05 0.23

4.4 Lightweight detector performance

Given these desirable properties, we would like to examine how the visual event acquisition
algorithm performs on the real-world surveillance sequences described in Sect. 4.1. Table 2
shows the performance results obtained for these sequences arranged in order of decreasing
performance. We make several key observations regarding these results. The first observation
is that the median performance result (corresponding to Seq. 2) is quite similar to the results
obtained in Rahimi et al. (2005) despite differences in the form of the exact LIP algorithm
that is utilized [in (Rahimi et al. 2005) the average reported PD = 0.78 compared with our
PD = 0.87 and the average reported PFA = 0.22 compared with our PFA = 0.26]. This
result is encouraging in that Seq. 2 corresponds to an unknown object moving in difficult
outdoor conditions with significant lighting changes and the presence of extraneous motion.
Thus despite their simple nature, LIP algorithms for event acquisition do hold some promise.
The second observation from Table 2 is that the actual PD − PFA performance varies greatly
depending on the specific image sequence. It is thus very difficult to guarantee a given level
of performance in the camera node for an arbitrary sequence.

If we classify the image sequences into broad categories based on their characteristics, a
coarse level of performance prediction may be possible. For instance, sequences with minimal
levels of extraneous motion achieve a better overall performance than sequences afflicted with
such motion. Sequences where an object occupies a larger portion of the overall frame (such
as a car rather than a person) also show improved PD − PFA performance. Though intuitive,
these observations do not provide much assistance for the general WISN case where camera
nodes may encounter conditions that vary appreciably over time. We thus seek a collaborative
approach between camera nodes equipped with LIP algorithms and sensors to help capture
the value of visual detection while addressing the large variability in its performance.

5 Reliability of sensor decisions in uncertain environments

In Sect. 4 we examined the properties and performance of a generic lightweight image
processing algorithm (LIP) and determined that although promising, the performance
exhibited considerable variability depending on conditions. To tap into the promise of LIP
algorithms and address this variability, we wish to investigate the role of sensors to improve
the event acquisition performance. As discussed in Sect. 3.1, sensor decisions regarding the
presence or absence of an event can be made available to the camera nodes directly. This
simple augmentation may result in a performance improvement (Sect. 6.1) with the caveat
that sensors may themselves be prone to fault or attack in unattended environments. An
alternative approach is to employ an intermediate mechanism where an entity (such as a
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cluster head) receives readings from one or more sensors as shown in Fig. 2 and performs
attack/fault detection. In this Section we wish to investigate the form and performance of
such a cluster head (CH) detector in the face of both occasional errors (faults) and in the face
of deliberately stealthy attacks (Sect. 3.2). We proceed by obtaining the form of the optimal
Neyman-Pearson (NP) detector in Sect. 5.1, analyzing the effects of a stealthy attack in Sect.
5.2 and finally obtaining the performance of the CH detector in Sect. 5.3.

5.1 Cluster head (CH) detector

In detection problems we are generally faced with the task of deciding between two or
more hypotheses based on received data. The Neyman-Pearson (NP) is an optimal detector
appropriate for cases where a priori probabilities of the hypotheses are not available, and for
cases where the probability of detection PD and the probability of false alarm PFA may not be
of equal significance to the application (otherwise a Bayesian detector may be appropriate).
According to the NP approach, we obtain a detector by maximizing PD for a desired false
alarm rate PFA = α. The resulting optimal detector is a likelihood ratio detector �(z) given
by Eq. 21, where z is the received data vector and where the comparison threshold T is
chosen according to Eq. 22.

�(z) = p(z; H1)

p(z; H0)

H1
>
<
H0

T (21)

PFA =
∫

z:�(z)>T
p(z; H0) d z ≤ α (22)

For the case of n binary sensors of Sect. 3.2, the data vector z consists of Bernoulli
random variables from a distribution which is Bern(p) (hypothesis H0) or a distribution
Bern(r) (hypothesis H1). By applying Eq. 21 it can easily be shown that the NP detector for
this case is given by Eq. 23, where w(z) is the weight (the number of 1 s) in the data vector z.

�(z) = rw(z)(1 − r)n−w(z)

pw(z)(1 − p)n−w(z)

H1
>
<
H0

T (23)

∑
z:�(z)>T

pw(z)(1 − p)n−w(z) ≤ α (24)

The threshold T is chosen to satisfy a desired α based on Eq. 24, where the summation is
over all the possible data vectors z such that �(z) exceeds T . However this is equivalent to
summing over all possible weights w for w ∈ [0, n] as shown in Eq. 25. The notation IP

denotes the indicator function which is equal to 1 if the proposition P is true and is equal to 0
otherwise. Finally, the probability of detection β resulting from the use of the �(z) detector
is given by Eq. 26.

n∑
w=0

(n
w)pw(z)(1 − p)n−w(z) I �(z)>T ≤ α (25)

β =
n∑

w=0

(n
w)rw(z)(1 − r)n−w(z) I �(z)>T (26)
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To distinguish between normal operation and an attack/fault, the cluster head must there-
fore employ the detection statistic (likelihood ratio �) of Eq. 23 and compare it to the
threshold T that is set based on Eq. 25 with the resulting probability of detection given by
Eq. 26. Importantly, the detection statistic �(p, r) depends on the value of p and r . Hence in
the case of an attack or fault with unpredictable probability, the detection statistic depends on
the unknown underlying parameter q . The detection statistic’s dependence on q also trans-
lates into difficulties in determining the probability of false alarm and detection based on
the dependence of Eqs. 25 and 26 on �. Thus although we have determined an optimal
attack/fault detector for the cluster head, it is not implementable in its current form unless
the parameter q is known. Fortunately we can re-arrange the likelihood ratio � as shown in
Eq. 27 where (1−r)n

(1−p)n is equal to some positive constant k > 0 for all values of 0 ≤ r ≤ 1,
0 ≤ p < 1 and n.

�(z) = rw(z)(1 − r)n−w(z)

pw(z)(1 − p)n−w(z) = ( r
1−r )w(z)

(
p

1−p )w(z)

(1 − r)n

(1 − p)n
= k

(
r

p

)w(z) (
1 − p

1 − r

)w(z)

(27)

Let us for the moment assume that r > p in Eq. 27. Then it can easily be seen that

�(w) = k
(

r
p

)w (
1−p
1−r

)w

is monotonically increasing in w where we have written � in

terms of w to simplify the notation and emphasize the role of the “aggregate” statistic
(the weight w) in lieu of the original data vector z. Based on the monotonicity of �, we
may now invoke the Karlin-Rubin theorem (Van Trees 2001) to obtain an alternative form
for the CH detector with the same PD − PFA performance. The alternative form for the
CH detector is given by Eqs. 28–30 where p′ is a probability of mixing between the two
hypotheses if w is precisely equal to T (the mixing probability p′ is set based on Eq. 29
for a desired α). As shown in Eq. 31, based on the assumption that r > p, these equations
are valid for the interval where p < 1

2 . When p ∈ [ 1
2 , 1], the hypotheses in Eq. 28 are

switched.

w
H1
>
<
H0

T if w = T then declare H1 w.p p′ (28)

α =
n∑

w>T

(n
w

) (
p

1 − p

)w

(1 − p)n + p′ (n
T

) (
p

1 − p

)T
(1 − p)n (29)

β =
n∑

w>T
(n
w)

(
r

1 − r

)w

(1 − r)n + p′(n
T )

(
r

1 − r

)T
(1 − r)n (30)

r > p ⇒ p + q − 2pq > p ⇒ p <
1

2
(31)

We make a few key observations regarding this result. The detection statistic w and the
comparison threshold Th in Eq. 28 no longer require the cluster head to know the value
of q and thus the detector is implementable at the cluster head. We note however that in
order to determine the resulting probability of detection PD , the value of r (and thus q) is
still required in Eq. 30. Thus for the case of an attack, analysis of the optimal attack q is
beneficial in determining the detector’s performance and we address this issue in Sect. 5.2.

We also note that the detection statistic is now a simple weight and thus the cluster head
must merely count the number of 1’s that it has received from the n sensors and compare
this count to a threshold. The optimal NP detector at the cluster head is thus identical in

123



Multidim Syst Sign Process (2009) 20:135–164 151

form to the detectors commonly used in practice as discussed in Sect. 3.2 (where the weight
was set based on experimental trials or based on an expected average count of c ± ε).
The optimal NP detector however makes use of a threshold T that is set based on a de-
sired probability of false alarm α and based on the probability p of an event. Setting the
threshold based on Eq. 29 thus provides a greater level of control and flexibility to meet
the PFA requirements of the application. Furthermore, this detector is guaranteed to pro-
vide the best probability of detection PD for a chosen PFA = α (a property of Neyman-
Pearson detectors). In Sect. 5.3 we examine the actual performance of this cluster head (CH)
detector and compare it to the performance of a detector based on the expected average
c ± ε.

5.2 Attack analysis results

As discussed in Sect. 3.2, sensors deployed in unattended environments may experience
errors due to occasional faults or distributed (stealthy or unstealthy) attacks (Buttyan and
Hubaux 2002; Czarlinska and Kundur 2008). In the case of occasional faults, the probability
of error q for sensor i may be quite small while in the case of a general attack, this proba-
bility may be arbitrarily large and unknown a priori. Instead of proceeding with an arbitrary
attack strategy however, an intelligent attacker may take into account the presence of an
attack/fault detection mechanism such as the NP-based detector or the c ± ε detector at the
cluster head. In this case the attacker wishes to select a probability of attack q that minimizes
the probability of attack detection. This requirement translates into a stealth condition where
the attacker wishes to select q such that Pr{w(Xp) = w(Zp,q)} is maximized. Through
combinatorial analysis (Czarlinska et al. 2007), this probability can be expressed as shown
in Eqs. 32 and 33 where we have generalized the stealth condition to allow a deviation of
εr ∈ Z away from perfect stealth and where a, b and c are binomial coefficients defined
in Eq. 33.

Pr
{∣∣w(Zp,q) − w(Xp)

∣∣ < εr
}

=
� l+εr

2 �∑
m= l−εr

2 �

n∑
k=1

n∑
l=1

a (k, m) b (k, l, m) c(k) · pk(1 − p)n−k · ql(1 − q)n−l (32)

a(k, m) =
{ ( k

m

)
if k ≥ m

0 o.w
(33)

b(k, l, m) =
{ (n−k

l−m

)
if n − k ≥ l − m

0 o.w
(34)

c(k) =
{ (n

k

)
if n ≥ k

0 o.w
(35)

The stealth condition of Eq. 32 is unfortunately cumbersome to inspect. Plotting Eq. 32
for different values of cluster size n and probability of an event p nevertheless yields a unique
value of probability q that maximizes the equation (i.e. it is the global peak of Eq. 32). The
results of such plotting are summarized in Table 3 which shows the optimal value of attack
probability q∗ for each pair (n, p) (the stealth condition is symmetric in p and thus the effect
of p is the same as the effect of 1 − p and we only consider p ∈ [0, 0.5]). We make a
few key observations regarding this result. For a given value of cluster size n (i.e. a row in
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Table 3 Optimal q∗ value for cluster size n and probability of event p

n p = 0.01 p = 0.05 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

1 0 0 0 0 0 0 0
2 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990
5 0.4050 0.4050 0.4050 0.4550 0.5050 0.5050 0.5050
10 0.2050 0.2050 0.2050 0.2550 0.2550 0.9990 0.9990
20 0.1010 0.1050 0.1100 0.1220 0.1350 0.1470 0.1520
30 0.0670 0.0700 0.0740 0.0820 0.0910 0.0990 0.1030
40 0.0500 0.0530 0.0550 0.0620 0.0680 0.0750 0.0780
50 0.0400 0.0420 0.0440 0.0490 0.0550 0.0600 0.0620
100 0.0200 0.0210 0.0220 0.0250 0.0280 0.0300 0.0310

Table 3), q∗ is almost constant to within one significant digit irrespective of the value of
probability p. Thus if the attacker knows the cluster size n, he can determine the optimal
value of attack without having to know the probability p. This is significant since the value
of p depends in part on a sensor’s threshold selection Th and may not always be available to
the attacker.

Importantly, the results of Table 3 can also be obtained analytically from Eq. 32 by applying
game theoretic analysis where the attacker is treated as one “player” who does not know the
value of p and by treating the sensor network as the other “player” who does not know the
value of attack q (Czarlinska et al. 2007). Such analysis also reveals that the optimal value
of p for p ∈ [0, 0.5] is p∗ small (the optimal value of p for p ∈ [0.5, 1] is p∗ large). This
suggests that to improve the attack detection, the sensors should be calibrated to have a small
(or large) value of p through threshold Th selection if such selection is possible (depending
on the underlying technology of the sensor). Indeed if we examine more significant digits in
the results of Table 3, the optimal value of q∗ does indeed appear to decrease with decreasing
p with possible ramifications for attack detection as will be shown in Sect. 5.3.

Examination of Table 3 also yields important insights regarding the relationship between
the cluster size n and the optimal attack parameter q∗. We observe that as n increases, q∗
decreases for all values of p. This result can be understood in the context of typical sets if
we consider the n sensor decisions as a string of length n. The typical set is usually a small
set but with probability of occurrence close to 1. When n is small, the typical set is small
but relatively large compared to the set of all possible strings of length n. When n increases,
the set of all possible strings of length n grows to be very large and the size of the typical
set is relatively much smaller. Thus it becomes more difficult for the attacker to attack the
“string” and still remain in the typical set. This implies that the chance of attack on the sensors
decreases but this decrease may also carry ramifications for the detection of such an attack
as we will explore in Sect. 5.3.

Finally we make an observation regarding the optimal strategy for the n = 1 case.
When there is only one sensor and there is no attack detection mechanism, intuitively the
attacker should always attack. However if an attack detection mechanism is present and
the attacker wishes to be stealthy, the optimal value of attack is q∗ = 0 (with only 1 bit,
the attacker has a very low probability of fooling the detector and should avoid an attack
altogether). The situation changes dramatically for n > 1 due to the underlying combi-
natorics in Eq. 32 which dictate that the probability of attack should be high but decreas-
ing with increasing n. The implications of these results for attack detection are examined
in Sect. 5.3.
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Fig. 8 a n = 50, p = 0.01 and q = 0.1. b n = 50, p = 0.1 and q = 0.1

5.3 Cluster head detector performance

As discussed in Sect. 5.1, a detector for attack/fault identification at the cluster head may be
based on the Neyman-Pearson design or on an average expected count c where c ≈ np ± ε

for a cluster size of n sensors with probability of event p. In this section we wish to compare
the performance of these two approaches and also obtain some general insights into the
PD − PFA performance curve for different values of p and n as well as for various attack
probabilities q .

In Figs. 8 and 9, the PD − PFA performance of the NP and c ± ε detectors are depicted
for n = 50 sensors, various (p, q) pairs and various values of ε “slack” in the c detector. As
can be seen from these figures, the performance of the average expected c detector follows
the general trend of the NP detector although it typically does not achieve the same overall
performance. Nevertheless, by choosing a different value of ε, it is possible to achieve a
desired trade-off between the probability of detection PD (vertical axis) and the probability
of false alarm PFA (horizontal axis). The average expected c detector may thus be useful
for certain applications, in particular ones where the probability of an event p is expected
to be small (based on the phenomenon of interest and the selection of the sensor threshold
Th) as in Fig. 8a. As a side note, we observe that the performance of the NP detector based
on Eqs. 23, 25 and 26 which we denote by “NP” is the same as the performance of the NP
detector based on the Karlin-Rubin simplification of Eqs. 28–30 which we denote by “KR”
in Figs. 8 and 9. Thus we are justified in utilizing the simplified form of the NP detector to
obtain the same performance.

Finally based on Figs. 8 and 9, we observe that the NP detector performs better for smaller
values of probability p for p ∈ [0, 0.5] (by symmetry for p ∈ [0.5, 1] it performs better for
values of p closer to 1). This result is consistent with the results of Sect. 5.2 where based on
analysis of the stealth condition of Eq. 32 we noted that it was best to calibrate the sensors
to a small value of p or to a large value of p. Indeed based on Figs. 8 and 9 and the results
of Table 3, the worst PD − PFA performance is obtained for values of p closest to p = 0.5.
This can be understood from Eq. 31 where r = p + q − 2pq . When p = 0.5, r = 0.5 and
thus the detector is not able to distinguish between the H0 and H1 hypotheses. At an intuitive
level, when p = 0.5, the probability of obtaining a decision of value 1 is the same as the
probability of obtaining a sensor decision of value 0. This situation corresponds to the largest
level of uncertainty that the cluster head can experience and makes it easier for an attacker
to fool the detector.
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Fig. 9 n = 50, p = 0.47 and
q = 0.47
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Fig. 10 The PD − PFA performance curves for various values of n and the optimal value of q∗ corresponding
to that n for a p = 0.05 and b p = 0.1

Having compared the performance of the NP and c detectors for various values of p, we
now wish to investigate the performance of the NP detector for an optimal attack parameter
q∗. Fig. 10a depicts the PD − PFA performance of the NP detector for p = 0.05 and for
various values of cluster size n. Crucially, each performance curve is obtained assuming the
value of attack parameter q that is optimal for the given (p, n) pair as obtained in Table 3.
Figure 10b is obtained similarly but for a value of p = 0.1. Based on these two figures, we
make the important observation that the PD − PFA performance decreases as the number of
sensors n is increased. This somewhat surprising result is an outcome of the stealth condition
of the attacker. That is, if the attacker is not stealthy, increasing the number of sensors will
increase the detection performance. If however the attacker is stealthy, then he selects an
optimal value of q∗ based on Eq. 32 or Table 3. As discussed in Sect. 5.2, this optimal value
of q decreases with increasing cluster size n. Thus the attack becomes more rare (which is a
desirable property) but by the same token becomes more difficult to detect when it does occur.

Based on the performance of the NP detector in the face of an optimal attack q∗, we are
brought back to the question of the level of sensor redundancy that should be employed to
detect the attack and to suitably complement the event acquisition already provided through
lightweight image processing.
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6 Performance of combined approach for event acquisition

As discussed in Sect. 4, lightweight image processing (LIP) may offer a suitable PD − PFA

performance for event acquisition in WISNs. This performance however exhibits significant
variability depending on the conditions experienced during image capture. To exploit the
potential of LIP algorithms while reducing their variability, we wish to augment the event
acquisition process with sensors. As explored in Sect. 5 however, sensors are prone to occa-
sional faults or deliberate and stealthy attacks. We may thus consider a variety of methods at
the camera nodes for exploiting the sensor decisions and the LIP algorithm to improve relia-
bility as discussed in Sect. 3.1. In this section we wish to explore the implications of utilizing
a cluster head fault/attack detector mechanism before making the sensor decisions available
to the camera nodes. Based on this input, the camera nodes may trust the sensor decisions,
the LIP decision or rely on a combination of both (Sect. 6.2). For perspective, we wish to
compare this scenario with the case where sensor decisions are made available directly to
the camera nodes without a cluster head fault/attack detection mechanism (Sect. 6.1).

6.1 Direct sensor decisions approach

In this Section we focus on the PD − PFA performance of a camera node augmented with
a single sensor decision that is made directly available to the camera node as depicted in
Fig. 11. Thus to perform event acquisition under this scenario, a camera node has access
to two sources of information regarding the possible occurrence of an event. As shown in
Fig. 11, if there is disagreement between the two sources regarding the presence of an event,
the camera node may trust the lightweight image processing (LIP) over the potentially faulty
or attack-prone sensor. Alternatively, the camera node may trust the sensor decision (SN) in
lieu of the variability-prone LIP algorithm or may take the “safe” strategy of declaring an
event if either of the sources reports an event.

PD = No.(event | event frame)

No.(total frames)
(36)

PFA = No.(event | non-event frame)

No.(total frames)
(37)

Figures 12 and 13 show the simulation results obtained for this scenario where we use the
notation LIP to denote lightweight image processing, SN to denote the sensor decision and
“SN & LIP” to denote use of the combination. Figure 12a depicts the results obtained for the
image sequence of Fig. 6 where an unidentified individual walks through an environment with
substantial background movement and is periodically obscured due to the presence of trees.
Figure 12b shows the results for a truncated version of this sequence corresponding to Fig. 7b
where the camera’s field of view largely excludes the trees. Figure 13a shows the results for

yes/no
LIP

sensor (SN)

SN
SN & LIP

camera node

attack

fault
PD

PFA

Fig. 11 For event acquisition, each camera node may utilize lightweight image processing (LIP), a sensor
decision (SN), or rely on both to determine the presence or absence of an event
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Fig. 12 Probability of detection PD versus probability of sensor error q for the LIP, SN and SN & LIP
approaches for image sequence a walking with trees from Fig. 6 b walking without trees from Fig. 7b
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Fig. 13 Probability of detection PD versus probability of sensor error q for the LIP, SN and SN & LIP
approaches for image sequence a car with trees from Fig. 5 b car without trees from Fig. 7a

the image sequence of Fig. 5 where the passing of an unknown vehicle is captured in the
presence of significant background variability. Finally Fig. 13b shows the results obtained
for a truncated version of the passing car and corresponds to the image sequence depicted in
Fig. 7a. Importantly, the horizontal axes in Figs. 12 and 13 correspond to the probability q
of sensor error (due to attack or fault) and the vertical axes correspond to the probability of
detection PD . The resulting probability of false alarm for the sensor αs is also shown in the
figures for each PD segment along with the probability of false alarm for the LIP algorithm
αI M . These probabilities are obtained experimentally based on Eqs. 36 and 37 where No.
denotes the number of frames where a certain type of decision was made.

Based on Figs. 12 and 13 we confirm that the PD − PFA performance of the lightweight
image processing exhibits great variability from sequence to sequence. As expected, this
performance tends to improve for image sequences with better characteristics (such as less
background variability). The level of improvement itself however experiences variability as
can be seen by comparing Fig. 12a, b with Fig. 13a, b. We also note the inherent result that the
probability of detection PD and the probability of false alarm PFA for the image processing
algorithm remain constant over the entire range of q . This is fully expected since the visual
algorithm at the camera node is independent of the sensor readings. The lack of predictability
and control in the LIP algorithm for an arbitrary sequence is a visible disadvantage. However
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the constancy of the performance over the range of q is a clear advantage as can be seen by
comparing the SN and SN & LIP curves in Figs. 12 and 13.

Specifically, the PD − PFA performance of the single sensor is excellent for a small
probability of error q . However if this probability of error is caused by an attack, it may
become arbitrarily large and dramatically decrease the event acquisition performance (the
performance decreases linearly with increasing q). Indeed in this setup the sensor does not
perform a fault/attack detection and therefore an attacker need not be stealthy in the attack, but
rather choose any implementable probability of attack q . The combined SN & LIP approach
however inherits the best of both approaches; the good performance of the sensor given a
small q and the invariance of the LIP approach over the range of q . Thus we observe that the
PD − PFA performance of the combined approach is always better than or equal to the best
performance from among the other two methods. Specifically, for a fixed probability of false
alarm PFA, the probability of detection PD of the combined approach is described by Eq. 38.
It is important to note that the probability of false alarm of the sensor αs varies depending on
q . Thus for a direct comparison of PD with the LIP, we have to locate the point on the SN &
LIP curve where αs ≈ αI M in order to obtain the result of Eq. 38 (as can be seen from the
figures however, the SN & LIP curves lie above the LIP curve for all values of q).

PDcombined ≥ max(PDLIP , PDSN ) (38)

Since combining the LIP with a single sensor decision without cluster head checking
improves the performance in uncertain environments, it is important to determine if including
cluster head checking and increasing the number of sensors results in a justifiably improved
level of performance. Indeed the performance achieved with the “direct sensor approach”
may be sufficient for certain applications.

6.2 Cluster head aided event acquisition

In this Section we wish to investigate the role of cluster head checking based on the CH
detector of Sect. 5 and sensor redundancy n in improving the PD − PFA performance in
uncertain environments.

We begin by comparing the relative performance of the LIP algorithm with the perfor-
mance of the CH detector (based on decisions from n sensors). Figures 14–17 show the event
acquisition performance of multiple sensors with cluster head detection. Figure 14 corre-
sponds to the image sequence of an individual walking with the presence of trees while Fig. 15
corresponds to the image sequence of the individual without the background trees. Figure 16
corresponds to the car sequences with the presence of trees while Fig. 17 corresponds to the
car sequence without background trees. As before the horizontal axis represents the proba-
bility of attack q while the vertical axis corresponds to the probability of detection PD . The
probability of detection PD of the LIP algorithm for each sequence is also shown in the figures
for comparison and all probabilities are determined experimentally from Eqs. 36 and 37. As
before, the notation IM denotes the image processing (LIP) based performance. The number
of sensors n reporting their decisions to the cluster head is varied from n = 1 to n = 40.

In assessing the relative performance of the LIP algorithm and the CH detector with n
sensors in Figs. 14–17 we maintain the same probability of false alarm α. That is, we set
αs = αI M

.= α. This is made possible through the adjustability of the CH detector from
Sect. 5 through Eq. 29. In contrast, in Sect. 6.1 a single sensor was used instead of a CH
detector. Thus the probability of false alarm αs was not adjustable but rather varied with the
attack parameter q .
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Fig. 14 PD versus q for walking with trees from Fig. 6. a ps = 0.01. b ps = 0.1. c ps = 0.4

Furthermore in Figs. 14–17 we use the notation ps to denote the probability p of an
event as witnessed by a sensor (the subscript s is used to emphasize that this probability
corresponds to the conditions experienced by the sensor). We use the notation pIM to denote
the probability that a frame in a given image sequence contains an event. In Sect. 6.1, ps was
implicitly set to pIM , however in this section we relax this constraint to investigate the role
of the probability of an event at a sensor ps as well as the role of cluster size n.

We make some key observations based on the results of Figs. 14–17. The first key point is
that use of the CH detector fundamentally changes the relationship between the probability
of detection PD and the probability of sensor error q . Specifically, use of the CH detector
eliminates the linear decrease in sensor performance with increasing q . Indeed the sensors
achieve a better detection performance for higher values of q which also results in a relatively
good PD over a much wider range of q . This result is an inherent outcome of the properties of
detectors which perform better when there is a significant difference between the hypotheses
(in this case the values of probabilities ps and q). Use of the detector will thus increase the
detection performance for the case of unstealthy attacks (i.e. attacks with a large probability q
relative to the cluster size n). This is in contrast with the results of Sect. 6.1 where an increase
in q degraded the detection performance. Unfortunately use of the detector alone (without
LIP) for the case of very small q (such as due to stealthy attacks or occasional errors) may
not be sufficient, and as evidenced in the plots of Figs. 14–17, may necessitate the use of a
higher value of n.

The second key observation is that choosing a threshold Th that results in a smaller
probability of event ps results in a better sensor performance (in accordance with the results
of Sect. 5.2). Indeed for a small value of ps , it may be possible to obtain the desired PD − PFA
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Fig. 15 PD versus q for walking without trees from Fig. 7b. a ps = 0.01. b ps = 0.1. c ps = 0.33

performance with a smaller number of sensors n. As can be seen by comparing parts (a), (b),
and (c) of Figs. 14–17, choosing ps = 0.01 (part a) offers a better performance than setting
ps = 0.1 (part b). Thus in general we do not wish to set ps = pIM (part c) since pI M may
be arbitrarily large depending on the image sequence. Finally we observe that for certain
values of ps and n, the lightweight image processing algorithm (LIP) still achieves a better
detection performance for certain values of q .

Based on these results we now wish to investigate the performance of a camera decision
that is based on combining the CH detector with the LIP algorithm. Figure 18a shows the PD

versus q performance for the image sequence of an individual walking in the presence of trees
(from Fig. 6) while Fig. 18b depicts this performance for the truncated walking sequence
(from Fig. 7b). Figure 19a shows the performance for the image sequence of a vehicle in the
presence of trees (from Fig. 5) while Fig. 19b depicts this performance for the truncated car
sequence (from Fig. 7a).

In the figures, the dashed lines represent the performance based on the CH detector alone
while the solid lines represent the performance of the combined decisions. As can be seen
from these figures, the combined decisions achieve a better (or equal) detection performance
PD (for the same probability of α) than the CH decisions or the LIP decisions alone. This is
consistent with the results obtained in Sect. 6.1 (where a single sensor decision was utilized
without CH detection). However by utilizing the CH detector, we avoid the degradation of the
detection performance for large q while by utilizing the LIP algorithm we avoid degradation
of detection for small q . Thus based on the selection of a suitably small ps and/or the selection
of a suitably large cluster size n, we are able to adjust the PD − PFA performance to suit the
application requirements over the entire range of error q due to error or attack.
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Fig. 16 PD versus q for car with trees from Fig. 5. a ps = 0.01. b ps = 0.1. c ps = 0.44

7 Summary and conclusions

Wireless Image Sensor Networks (WISNs) consisting of untethered camera nodes and sensors
may be deployed in a variety of unattended and possibly hostile environments to obtain
surveillance data. In such settings, the WISN nodes must perform reliable event acquisition
to limit the energy, computation and delay drains associated with forwarding large volumes
of image data wirelessly to a sink node.

In this work we investigated the event acquisition properties of WISNs that employ var-
ious techniques at the camera nodes to distinguish between event and non-event frames in
uncertain environments that may include attacks. These techniques include lightweight image
processing, decisions from n sensors with/without cluster head fault and attack detection, and
a combination approach relying on both image processing and sensor decisions. In closing,
we summarize the resulting properties and observations for event acquisition in WISNs:

1. Lightweight Image Processing (LIP) Approach in Uncertain Environments:

a. LIP algorithms are generally compatible with low-power, low-complexity camera
nodes (Rahimi et al. 2005). Indeed analysis demonstrates that through proper thresh-
old selection (Sect. 4.3), simple LIP algorithms (such as based on the comparison of a
single frame statistic to a threshold) can be made robust and achieve the best detection
performance for a given worst-case probability of false alarm.

b. The typical probabilities of detection and false alarm obtained in our experiments were
consistent with the average probabilities reported in the literature with our PD = 0.87
and our PFA = 0.26.
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Fig. 17 PD versus q for car without trees from Fig. 7a. a ps = 0.01. b ps = 0.1. c ps = 0.44
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Fig. 18 a PD versus q for walking sequence with tree from Fig. 6 for ps = 0.01. b PD versus q for walking
sequence without tree from Fig. 7b for ps = 0.33

c. While achieving an average PD − PFA performance that may be suitable for some
applications, the LIP algorithm exhibited large variability in its performance from
sequence to sequence depending on environmental conditions. LIP algorithms alone
thus may not offer the level of performance control and flexibility required in many
applications.

2. Sensor Decisions Approach in Uncertain Environments:
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Fig. 19 PD versus q for car sequence with tree from Fig. 5 for (a) ps = 0.01 (b) ps = 0.44

a. Sensors deployed in unattended outdoor environments may be prone to occasional
faults or deliberate attacks that may be carried out in a stealthy manner (i.e. such as to
avoid detection). Although quality testing may provide an estimate for the probability
of a fault, an estimate for the probability of an attack may not be generally available
a priori. Without verification mechanisms, the reliability of the sensor decisions may
not be adequate for some applications.

b. An optimal Neyman-Pearson (NP) fault/attack detector based on the comparison of
a single statistic to a threshold can be implemented at the cluster head to verify the
sensor decisions. A detector where the comparison threshold is based on the average
expected weight (i.e. the count or degree of aggregation) can also be implemented.
This detector follows the performance of the NP detector closely, especially for small
values of the probability of an event p.

c. For the case of stealthy attacks, use of a cluster head (CH) detector forces the attacker
to select a smaller probability of attack q , especially for a larger cluster size n. This
has the dual effect of rendering attacks more rare but also harder to detect despite the
ability to predict the optimal attack parameter as given in the analysis of Sect. 5.2.

3. Combined LIP and Sensor Approach:

a. For the case of no cluster head attack/fault verification, combining a single sensor
decision with a decision based on a LIP algorithm does provide an improved event ac-
quisition performance. Specifically, for a fixed probability of false alarm, the combined
decision achieves a probability of detection PD higher than or equal to the PD of LIP
and SN over the entire range of the probability of sensor error q . Although better than
LIP or SN alone, the detection performance does decrease with increasing q , which
without cluster head detection, may be arbitrarily large depending on the attacker.

b. Combining decisions from n sensors with cluster head verification and LIP decisions
provides the best overall performance over the entire range of attack probability q .
Specifically, by utilizing the CH detector we avoid the degradation of the detection
performance for large q while by utilizing the LIP algorithm we avoid degradation of
detection for small q .

c. Choosing a sensor threshold Th that results in a smaller probability of event ps (depend-
ing on the underlying sensor technology) results in a better sensor performance and
allows the use of a smaller cluster size n to achieve the desired PD − PFA performance.
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Importantly we note that in this work we have focused on the sensor-camera collabora-
tion paradigm under different error and attack scenarios. Paradigms that additionally exploit
spatial correlations among the cameras may further improve the overall event detection per-
formance of the network. Although such paradigms may require additional setup information
to determine the visual correlation among the camera nodes, a study of the trade-offs of such
systems is of great interest for future work.
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