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Abstract—In this work we consider an event-driven wireless
visual sensor network (WVSN) comprised of untethered camera
nodes and scalar sensors deployed in a hostile environment. In the
event-driven paradigm, each camera node transmits a surveillance
frame to the cluster-head only if an event of interest was captured
in the frame, for energy and bandwidth conservation. We thus
examine a simple image processing algorithm at the camera nodes
based on difference frames and the chi-squared detector. We show
that the test statistic of the chi-squared detector is equivalent to
that of a robust (non-parametric) detector and that this simple
algorithm performs well on indoor surveillance sequences and
some, but not all, outdoor sequences. In outdoor sequences con-
taining significant changes in background and lighting, this simple
detector may produce a high probability of error and benefits
from the inclusion of scalar sensor decisions. The scalar sensor
decisions are, however, prone to attack and may exhibit errors that
are arbitrarily frequent, pervasive throughout the network and
difficult to predict. To achieve attack prediction and mitigation
given an attacker whose actions are not known a priori, we employ
game-theoretic analysis. We show that the scalar sensor error
can be controlled through cluster-head checking and appropriate
selection of cluster size . Given this attack mitigation, we employ
real-life sequences to determine the total probability of error when
individual and combined decisions are utilized and we discuss the
ensuing ramifications and performance issues.

Index Terms—Actuation, event-detection, game theory, scalar-
sensors, sensor network security, wireless visual sensor networks
(WVSNs).

I. INTRODUCTION

T HE general popularity of mobile devices and the lure of
innovative applications have continued to drive research

in the area of wireless multimedia. Indeed much focus has been
placed on the design of robust, efficient and secure schemes for
delivering multimedia content over error-prone wireless chan-
nels [1], [2]. Recent years have also brought developments in
another growing field of interest, that of wireless sensor net-
works (WSNs). Originally envisioned as simple devices for dis-
tributed environmental sensing, WSNs have continued to evolve
in complexity to include autonomous mobility and actuation of
elements in their surroundings [3], [4]. Visual-capability addi-
tions to WSNs are thus but a natural extension of this vibrant
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research and are in alignment with co-evolving mobile device
research interests.

Emerging from these ideas, the nascent field of wireless
visual sensor networks (WVSNs) considers battery-operated
wireless (untethered) nodes equipped with cameras [5], [6].
Among other applications, it boasts importance to rapid-deploy-
ment surveillance and monitoring [7]. As all ambitious research
ideas, WVSNs have many significant challenges to overcome.
The energy limitations already encountered in WSNs collecting
scalar data such as temperature are only exacerbated when
nodes are deployed to collect, process and transmit visual data
[8], [9]. The increased size of visual data also strains storage
buffers and places a further burden on system design through
increased transmission delay and bandwidth utilization [10].
Such challenges call for innovative solutions tailored to the
unique characteristics of WVSNs [5].

Among possible approaches, event-driven WVSNs have
emerged as an intriguing design possibility. In the event-driven
approach, camera nodes buffer and transmit an image frame
only if such a frame contains an event of interest as defined by
the application [10], [11]. The event-driven paradigm hence
aims to alleviate energy consumption and bandwidth use im-
plicitly, via the local selection of relevant image frames by the
nodes. This approach may be viewed as complementary to the
joint optimization of video encoding and wireless transmission
power [2], [8], or to efforts at providing higher bandwidth
channels [7] and allocating their use fairly and efficiently [1].
Overall, WVSN systems will undoubtedly benefit from the
incorporation of advances from the spectrum of these comple-
mentary strategies.

In this work we focus on event-driven WVSNs which criti-
cally rely on correct frame selection given the definition of an
event. For surveillance nodes where unknown objects may or
may not enter the camera’s field of view, this definition may
be largely motion-based, though in general the definition is
application-dependent [12], [13]. Based on the event definition,
a camera node should ideally achieve a high probability of
event detection to guarantee that important frames are
transmitted. The camera nodes should also achieve an accept-
ably low probability of false alarm to avoid the wasteful
transmission of non-event frames. Event detection in WVSNs
must thus meet critical accuracy and reliability requirements
while minimizing complexity and energy consumption. Though
approaches based solely on image processing at the camera
nodes are possible, they are generally expensive in terms of
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the computation required to achieve an acceptable probability
of error [8], [9]. In this work we show how collaborative
approaches exploiting available scalar data can be used in
conjunction with low complexity image processing algorithms
to achieve reasonable performance.

Achieving reliability in WSN scalar sensors for event de-
tection is itself a challenging task due to the possibility of at-
tack, miscalibration or sensor failure [14], [15]. Many such con-
cerns regarding reliability may be addressed through compo-
nent testing, node redundancy and node security mechanisms.
The evolution of WSNs to include capabilities such as actuation
however, renders the last factor particularly onerous due to the
emergence of new attacks [15]. For instance, cryptographic and
signal processing based mechanisms largely protect WSNs from
false data injection due to node or key capture [16]. However,
actuation attacks which perturb sensor readings directly have
remained largely unexplored due to their physical nature [17].
Analysis of such attacks is generally complicated by considera-
tions of the type of scalar sensor involved, such as temperature,
sound or motion.

In this work, we describe a model which abstracts the de-
tails of the scalar sensor and focuses on the interaction between
a sensor network collecting scalar data and a hostile actuating
attacker. The effect of the attack is modeled as a change in a
sensor’s reported decision about the presence or absence of an
event [11]. By considering the interaction between the network
and the attacker as a competition, we are able to invoke the
game-theoretic concept of a Nash equilibrium to assess the sen-
sors’ reliability [15], [18]. In this respect, our work continues
the recent exploration of game-theoretic models for engineering
applications such as wireless networks and multimedia commu-
nications [1], [19].

This paper thus analyzes the detection performance of event-
driven WVSNs that utilize attack-prone scalar sensors in addi-
tion to low-complexity image processing. We now summarize
the main focus and contributions of this paper.

1) Image Processing at the camera nodes: we show the
mathematical equivalence between a known simple chi-
squared detector and a theoretically robust detector. This
is intended to illustrate that computationally simple algo-
rithms may have desirable detection properties in the theo-
retical sense. Through experiments on real surveillance se-
quences, we show that in practice the chi-squared detector
may perform well in indoor conditions and poorly in some,
but not all, outdoor conditions. This leads to the question
of when the low-complexity image processing should be
trusted to provide accurate detection and whether this per-
formance can be improved.

2) Attack-Prone Scalar Sensors: in contrast with occasional
errors caused by malfunction, errors due to attack may be
frequent and arbitrarily prevalent throughout the network.
They may also be difficult to predict and mitigate since
they are perpetrated by an active attacker whose actions are
unknown a priori. We show how a simple type (or count)
detector drives an attacker’s optimal attack probability to
be small in the game-theoretic sense. We show how the

Fig. 1. (a) Each camera node receives support from one scalar sensor labeled
“node” (1: 1 ratio). Attacking nodes denoted as A are also deployed by an op-
ponent and may cause scalar sensor errors. (b) A scalar sensor sends its decision
s to both the camera node and the cluster-head. Feedback from the cluster-head
may or may not exist.

number of nodes in a cluster and the probability of an event
affect this attack probability and show that cluster-head
feedback is not necessary for attack detection.

3) Collaborative performance: given attack-prone scalar
sensors, it is not clear that combining them with the
chi-squared detector improves detection performance. We
employ real-life surveillance sequences to determine the
total probability of error when individual and combined
decisions are used. We determine that utilizing the simple
chi-squared detector and combining its decisions with the
scalar ones is generally advantageous, with further gains
in performance when proper attack-mitigants are utilized.

The remainder of this paper is organized as follows. In
Section II, we detail the proposed event-driven WVSN, in
Section III, we discuss the image processing algorithm at the
cameras. In Section IV, we present the scalar-sensor attack
model, its analysis & mitigation. In Section V, we present
the performance of the collaborative approaches for utilizing
both the camera decisions and the scalar decisions. Finally, in
Section VI, we present our conclusions and discussion.

II. WVSN SYSTEM MODEL

In this work, we consider an event-driven WVSN where
camera nodes are deployed in an environment of interest for
general surveillance purposes as shown in Fig. 1. Each camera
node transmits image frames wirelessly to a collection center
referred to as the cluster-head. Importantly, image frames are
transmitted by a camera node to the cluster-head only if an event
of interest was detected in those frames. To perform the event
detection, each camera node utilizes a simple image processing
algorithm (detailed in Section III) and each camera node also
receives a detection decision from one supporting scalar-sensor
node as shown in Fig. 1.1 Each scalar sensor node transmits
its decision about the presence or absence of an event both to
its collaborating camera node and to the cluster-head (such as
by appending this decision to packets that it may already be
transmitting to these entities).

The scalar-sensors make their decisions based on readings
from the environment such as sound, temperature or motion.
For instance, a scalar sensor could collect audio input and alert

1The 1:1 ratio of scalar nodes to camera nodes can be seen as a worst-case
scenario. For a ratio of k : 1 where k > 1, the overall probability of error for
the scalar sensors might improve, but is still not guaranteed to be small since
each scalar sensor can be affected with non-zero probability by an attack.
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TABLE I
KEY NOTATION

its corresponding camera node when this input crosses an (ap-
plication-dependent) threshold due to the presence of a moving
object of interest. For generality and tractability, in this work the
specific type of sensor is not considered but rather modeled in
terms of its error probability. Specifically, we consider the case
where a scalar-sensor may suffer from errors due to the presence
of a hostile attacking node, shown as in Fig. 1, [14], [15]. In
contrast with occasional malfunctions, errors caused by a hostile
attack may occur with arbitrary probability. This error proba-
bility must thus be analyzed and controlled to guarantee reliable
decision support for the camera nodes as detailed in Section IV.

We employ the following notation in our discussion of event
detection as summarized in Table I. A camera node’s decision
based on image processing techniques is denoted by , where

such that denotes the camera node decision
“event is present” and denotes “event is absent”. We as-
sume that the largest source of error affecting stems from
the selection of a simpler or more general image processing al-
gorithm (i.e., one that is not tailored to the detection of specific
objects and backgrounds). This assumption stems from the ob-
servation that attacks on camera nodes typically require phys-
ical tampering or proximity to the node which render the attack
detectable (i.e., not stealthy as considered in this work). We em-
ploy the notation to denote a scalar sensor decision based on
environmental readings, where such that de-
notes the scalar decision “event is present”. We assume that the
main source of scalar sensor error is attack rather than harsh en-
vironmental conditions, miscalibrations or component defects.
Unlike in the case of camera nodes, the decisions of scalar sen-
sors may be attacked (i.e., perturbed or disrupted in a stealthy
manner) by a hostile network co-deployed in the environment.

Each camera node thus faces a scenario where for each cap-
tured frame it has access to an image processing-based decision

and a scalar-sensor decision .2 The probability that is
in error may not be equal to the probability that is in error.
For changing outdoor conditions and attack strategies, and
may be unknown to the camera node at any given time and fur-

2In this work, we consider the overall detection decision at each time. Since
objects may enter and exit a frame abruptly from frame to frame, the temporal
relationships between decisions are currently not examined.

TABLE II
DECISION METHODS AT THE CAMERA NODES

thermore, the relationship between them may be unknown (i.e.,
which error is smallest). In our analysis we thus consider dif-
ferent scenarios for using the and decisions at a camera
node. As shown in Table II, the first approach is to always trust
the scalar sensor (including when a disagreement between
and occurs). This approach may yield an acceptable perfor-
mance if the scalar sensor is reliable, that is, if the predominant
source of scalar sensor error is restricted to occasional malfunc-
tions. The detection performance may however be unacceptable
if the scalar sensors are also exposed to a hostile attack due to
their unattended physical deployment in a given environment.
In such a scenario, the number of incorrect scalar decisions is
not restricted and depends on the varying actions of the attacker.
Thus in the general case, it is difficult to assess the reliability of
Method 1. In Section IV, we analyze the probability of scalar
sensor error due to an attack and state some conditions under
which this probability may be acceptably small to render the
scalar sensors more reliable. Method 2 shown in Table II takes
a more conservative approach by always marking a disputed
frame as an “event”. Thus, if either or , a frame
will be sent to the cluster-head. Finally, in approach 3, we al-
ways trust the decision obtained through image processing,
even if it differs from the scalar sensor decision.

III. EVENT-DETECTION IN WVSN CAMERA NODES

A. Event-Detection and Sequence Characteristics

An extensive body of research exists examining image change
and shot change detection in image sequences [20], [21]. Much
of this research focuses on the processing, segmentation and
classification of a stored movie or news-cast which is already
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Fig. 2. Sequence 1 with frames (a)–(f) from top left to bottom right: indoor test conditions with constant lighting and no background changes.

Fig. 3. Sequence 2 with frames (a)–(f) from top left to bottom right: outdoor variable lighting due to clouds. Ex: The light intensity changes by 70% between
frames (a) and (b). Additional background movement due to shrub.

available in its entirety [22] or which obeys certain statistical
assumptions. For instance, given an entire image sequence, it is
often possible to obtain meaningful statistics via pre-processing
of the frames [23]. The obtained statistics can then be utilized
in detection and segmentation algorithms to distinguish between
event and non-event frames. We note that the definition of event
and non-event is largely application-dependent, as is the domain
in which the processing is carried out (spatial, temporal or fre-
quency-based) [24].

In contrast, a WVSN camera node collects incoming images
containing unknown objects which may or may not enter into
the frame at any time [6], [25]. Since we do not know ahead of
time what objects will be encountered and under what lighting
and changing background conditions, it is not possible to as-
sume that we know the statistics of an event frame. Rather we
make the weaker assumption that an event frame is one where
“significant” motion has occurred [26]. Under certain deploy-
ment scenarios however, it may be reasonable to assume that
we know the approximate statistics of a non-event frame (called
the “null hypothesis” statistics) [12]. For instance, in this work
we assume that a camera node is deployed or activated during a
non-event time. The visual-node is thus able to process the ini-
tial frames it collects and determine some approximate null-hy-
pothesis statistics.

The specific statistics utilized by the camera nodes may be
dictated by the application and by the need to conserve en-
ergy [20]. The latter constraint is particularly worthy of men-
tion in WVSNs since more sophisticated (but potentially more
energy consuming) image processing might yield a better detec-
tion probability for a given false alarm rate [6]. Such improved
performance translates into savings in transmission energy since
fewer irrelevant (non-event) frames are sent [27]. However allo-

cating more energy to image processing may drain the nodes too
quickly, limiting their lifetime. The tradeoffs among various en-
ergy-allocation schemes for event-detection are a subject of on-
going study. In this work, we focus on achieving a lower proba-
bility of error given the use of scalar-sensors for a fixed chosen
low-complexity image processing algorithm.

We consider a relatively simple and general event-detection
algorithm (i.e., the detection statistics employed are not tailored
to the detection of any specific object). The choice of algorithm
(detailed below) is based in part on processing simplicity and in
part on observations regarding the real-world image sequences
used in our testing as shown in Figs. 2–5. The sequence of Fig. 2
is an idealized indoor test where the lighting and background
conditions do not change appreciably over time and where the
subject occupies most of the camera view. The only significant
change comes from the event of interest in the form of a test
subject entering the camera’s field of view. The dominant source
of noise in this case is internal camera noise and flicker.

The sequence of Fig. 3 shows outdoor parking-lot surveil-
lance on a windy day, where the event of interest is the passing of
an unidentified car. The detection task in this sequence is com-
plicated by the presence of a nearby shrub which experiences
significant swaying of its branches over time. Furthermore, the
background lighting changes visibly with cloud movement (be-
tween frames 2(a) and 2(b), for example). The sequence of Fig. 4
also experiences changes due to swaying trees and variable light
conditions. The event of interest is the appearance and small
movement of a test subject which temporarily disappears be-
hind a tree in frames 3(c) and 3(e).

Statistical analysis of image sequences 2 and 3 (such as
Levine’s Test and the t-test [28]) reveal that the mean and
standard deviation are not reliable indicators of an event of
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Fig. 4. Sequence 3 with frames (a)–(f) from top left to bottom right: changing outdoor light and background (swaying trees). The subject temporarily disappears
behind a tree in frames (c) and (e).

Fig. 5. (a) Sequence 4(a) showing Sequence 2 modified to remove the shrub.
(b) Sequence 4(b) showing Sequence 3 modified to remove the swaying trees.

interest occurring even after various filtering mechanisms are
employed. This can be seen intuitively from the fact that the
subjects of interest (person walking and car driving-by) do
not occupy a much larger percent of a frame’s pixels than
the other randomly moving objects (shrub and trees). Hence,
the mean and variance of the frames do change based on
the appearance of the subject, but these differences are not
statistically significant. In essence, the pixels corresponding
to the person and car are getting dwarfed by the presence of
many shrub and tree pixels which are also changing over time.
Truncating the frames of sequences 2 and 3 as shown in Fig. 5
to exclude the vegetation does indeed improve the statistical
difference between an event and non-event frame. However for
the general WVSN deployment case (with cameras facing in
various directions), we do not wish to select an event-detection
technique which relies on the truncated assumption.

Based on the observed statistical similarity of event and non-
event frames, we wish to determine an event detector suitable for
WVSNs. In addition to its generality (detection not tailored to
a specific type of object) and good detection performance, the
chosen event-detector should be implementable in the simple
WVSN devices. In addition to their hardware and general pro-
cessing limitations, WVSNs process a large volume of surveil-
lance frames which must in turn be transmitted wirelessly to
the cluster-head if they contain an event of interest. Analysis of
frames at the small block or pixel level is thus not a first-choice
alternative for WVSNs.

Instead we seek a simple form for the detector where a single
frame statistic is compared to a threshold in order to determine
the presence or absence of an event. However as discussed,
event and non-event frames from real-world surveillance se-
quences have similar statistics. Furthermore it can be shown
(Appendix I) that a difference image computed

from two consecutive frames and is not perfectly Gaussian
but rather contains significant outliers (this is shown for both
event and non-event frames). An optimal non-parametric (ro-
bust) detector is thus more appropriate for this case of statis-
tical similarity and presence of outliers. However we show that
a simple chi-squared detector (relying on a comparison of a
frame statistic to a threshold) is equivalent in form to the ro-
bust detector and can thus be used in WVSNs (Section III-B).
Furthermore, through the use of composite hypothesis testing
(Section III-C), we show that the chi-squared detector can be
made uniformly most powerful (UMP) through proper threshold
selection. The UMP property signifies that the detector achieves
a probability of detection higher or equal to the detection
of all other detectors given the worst-case scenario probability
of false alarm . In other words, no detector performs better
given the same probability of false alarm.

B. Chi-Squared Detector

We describe the chi-squared detector as a simple adaptation
of the detector proposed by Aach and Kaup [12], [29], where we
use entire difference frames instead of blocks. We now overview
the technique. In essence, a difference image be-
tween two consecutive frames and reveals all the pixels
that have changed between these frames (containing both rele-
vant and irrelevant changes such as the tree swaying). The mean
squared error (MSE) of the difference image is computed as the
relevant statistic, and it is compared to a theoretically-obtained
robust threshold . We now present the specific details of this
detector.

In Aach and Kaup [12], [29] (and in Radke et al. [26]), the dif-
ference image is computed and divided into smaller blocks.
Importantly, each pixel of the difference image is modeled as a
Gaussian random variable with 0 mean and variance , where

corresponds to a non-event frame and corresponds
to an event frame. In order to conserve computational energy,
in this work we use the entire difference image instead of the
block-based solution. The resulting detector hypothesis test can
be summarized as

(1)

(2)

with and where is the th difference pixel in
. Since the entire difference image is utilized in
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the detection, instead of considering individual pixels we may
consider a new random variable defined as

(3)

where has distribution chi-squared with degrees of freedom
and where is the total number of pixels in the difference frame.
The new detection hypothesis test is thus given by

(4)

(5)

where is the probability density function (pdf) of the
chi-squared distribution with degrees of freedom. Hence the
hypothesis test is given by (6) for false alarm rate not exceeding

where is the inverse of the chi-squared distribution and
the threshold is

(6)

C. Detector Properties

We first show that the simple chi-squared detector can be
made uniformly most powerful (UMP) [30]. We begin by
showing that if there exists a real positive number , such that

and , where the actual are unknown, then
there exists a UMP detector where a realization from (3) is
compared to a threshold , such that the probability of false
alarm is given by

(7)

Proposition 1: Suppose there exists a , such that
and in (4) and (5). Then there exists a UMP test of

the form

(8)

for false alarm rate not exceeding . Proposition 1 is a com-
posite hypothesis test in which the parameters for the null and
alternate hypotheses are unknown, but the regions for these pa-
rameters are divided by a threshold . The proposition says that
if the parameter space is divided as thus, then a test that com-
pares the actual in (3) to a threshold achieves optimal detection
when the worst case false alarm is considered [the use of in
(7)].

Proof: If we can show that the likelihood ratio is monoton-
ically increasing in for , then the UMP test of the form
in (8) follows from a theorem on composite hypothesis testing
[30]. It can easily be shown that the log-likelihood ratio is given
by .
Since , this ratio is strictly increasing in . To show
that is as given on the left side of (8), we note that the prob-
ability of false alarm is given by by applying

an integration change of variable in (7). To get the in (7), it
suffices to set .

The statistical similarity of event and non-event frames along
with difference-frame distributions that are not quite Gaussian
(Appendix I) render and almost indistinguishable when
the entire frame is used. Thus we would like to maximize the
event detection assuming that rather than assuming that
the statistics are significantly different. This can be re-phrased
as

(9)

where is the probability of
detection.

Proposition 2: The test

(10)

maximizes (9) for a false alarm rate not exceeding , i.e., is
chosen so that

(11)

Proof: By the proof of the Neyman-Pearson lemma [30],
the optimal test can be shown to be of the form

(12)

which is equivalent to

(13)

Letting proves the proposition.
In summary, given the actual statistics of the difference

image, a non-parametric (robust) detector is appropriate to per-
form event detection. However the simple chi-squared detector
is equivalent in form to the robust detector and can be made
uniformly most powerful through threshold selection. The
simple image difference test may thus be used at the camera
nodes with acceptable performance within its class of algorithm
complexity.

IV. SCALAR NODE RELIABILITY

A. System Model

To serve as a reliable mechanism for event-driven WVSNs,
scalar sensor decisions must not be prone to errors caused by
failure, miscalibration or attack [10]. Component testing (pre or
post-deployment) may guarantee an acceptable measure of con-
fidence in the sensor components. Furthermore, cryptographic
and signal processing based techniques may thwart a variety
of sensor network attacks where nodes or their cryptographic
keys are captured [16]. Such techniques thus largely eliminate
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the possibility of false data injection by a malicious entity. The
envisioned extension of WSNs to include mobility and actua-
tion however, opens up the possibility of new and largely unex-
plored attacks [15]. As we will discuss, at least one new form
of attack is particularly relevant to sensor nodes performing
event-detection.

We consider the presence of a rival network with hostile nodes
as depicted in Fig. 1 and as studied in our prior work on sensor
network attacks in [11], [15] and [17]. The rival network may
be deployed by a foreign entity for seemingly legitimate data
collection. Its very presence in the environment hence does not
raise an initial alarm. We consider the scenario where the hostile
nodes directly perturb the observations collected by the legiti-
mate network from the environment. We refer to this type of at-
tack as an actuation attack to distinguish it from cryptographic
attacks. The type of perturbation is largely dependent on the type
of scalar sensor, such as temperature, motion or sound.3

For purposes of generality and tractability we therefore model
the scalar-sensor event-detection via a sensor’s ultimate output
decision, “event present” or “event absent” . In
the absence of an attack, the detection of an event of interest in
the environment at scalar node is modeled as a random vari-
able . Given our assumption that the sensor decisions are hard
and not soft (i.e., or only), is modeled using
a Bernoulli distribution for all as shown
in (14). This model emerges out of the physical proximity of
the nodes within a cluster. Based on such proximity, we assume
that each node in a cluster experiences the same phenomenon
probability mass function (PMF). Importantly, nodes within a
different cluster may experience a different PMF. If additionally
the nodes within the same cluster are homogeneous (configured
with the same detection thresholds), then the resulting proba-
bility of event is the same for each node within a cluster. We
thus obtain the model shown in (14) where a realization
denotes a scalar-sensor having detected an event of interest

(14)

An error at scalar-sensor due to an actuation attack is corre-
spondingly modeled as a random variable distributed with
a Bernoulli distribution . In this model corre-
sponds to an attack at node while corresponds to the
case of no attack. The effect of the error due to attack is modeled
as changing the decision of a scalar-sensor, from declaring a 1
(event occurred) to declaring a 0, or vice-versa. This effect is
given by (15), where is a decision based on the true event in
nature, is the attack and is the resulting bit reported to the
cluster-head. It can be shown that the distribution of the random
variable is given by with

. We note that although we started with the practical
notion of an actuation attack, the abstract model reduced to the
well-known binary symmetric channel model. This simplifica-
tion brings the new problem into a well-understood framework

3For example, hostile nodes may utilize micro-actuators to raise the acoustic
readings of surrounding scalar sensors thus causing a false alarm regarding the
presence of an object of interest to the WVSN.

and becomes a key enabler in the subsequent use of game-the-
oretic analysis

(15)

Assuming that there are scalar sensors reporting to a
cluster-head, the latter receives a data-vector of length
which it uses to verify the reliability of the scalar sensors.
The cluster-head must thus decide between two alternative
hypotheses, as follows:

where PMF stands for probability mass function. If the error
was caused by component failure instead of attack, prior quality
testing may establish a reasonable estimate for . Additionally if
a similar probability estimate can be obtained for the occurrence
of an event of interest (which realistically may not be available),
then the probability may also be obtained. In such a case, an
optimal Neyman-Pearson (NP) binary detector may be used to
distinguish between the hypotheses and at the cluster-
head.4 In the case of hostile conditions, however, it may not be
possible to obtain an estimate for given that it is controlled by
an attacker who is free to change the attack statistics over time.
Indeed the reason why an attacker may employ a random attack
in lieu of a deterministic one is precisely to thwart attempts by
the WVSN to estimate its attack patterns.

Without information about the cluster-head faces a diffi-
cult task in distinguishing between and . However, for an
event of interest (such as a person walking-by) occurring with
some probability and a fixed deployment of the nodes, we may
expect that an average number of nodes will record the event.
For example, the object may appear in approximately out
of the 20 cameras in the cluster at any given time (which spe-
cific cameras capture the object depends on the subject’s trajec-
tory into the sensor field and is unknown). If is the underlying
probability of an event and is the number of nodes, then
may be approximated as (this approximation improves
as increases). We thus propose the use of a count or type de-
tector modified from [31]. The modification is based on the ob-
servation that in practice the sequence of observations collected
by a single node over time is most likely not truly i.i.d (i.e.,
may not be i.i.d over time). Furthermore, we wish to detect an
attack early and to conserve storage space in a node’s buffer.
Thus we do not wish to collect a relatively long sequence of ob-
servations. Instead we assume that in a given time interval,
is i.i.d spatially within a cluster of nodes and (which is un-
known) is also i.i.d spatially within this cluster. Hence we pro-
pose the use of the detector given in (16), where
is the average number of 1s the cluster-head expects to receive
from the sensors, is the actual count or weight (number
of 1s) received in the data vector , and is a variance-related

4The NP detector forms the likelihood ratio of the two PMF’s and compares it
to a threshold determined by the desired probability of false alarm. If the likeli-
hood ratio exceeds the threshold, the detector chooses hypothesisH , otherwise
it chooses H .
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“slack-factor” allowing the cluster-head to relax or tighten the
detection constraint

(16)

B. Game-Theoretic Analysis of Error Probability

Having established a model for the attack and its detection (at
the cluster-head) via (15) and (16), respectively, we would like
to determine the resulting probability of error for the scalar
sensors due to attack. We consider the case where the attacker’s
goal is to cause errors while minimizing the chance of getting
detected (detection would prevent the attacker from continuing
to misguide the network).

Given that attack detection is performed via the detector
in (16), to avoid detection the attacker wishes to maximize the
probability where is the actuation
vector. In other words, the attacker wishes to modify the sensor
observations while remaining within of the data weight ex-
pected by the cluster-head on average for a given deployment.
We thus denote the above probability by or probability of
stealth (attack avoidance). Through the use of combinatorial
analysis based on our previous work in [15], we obtain the fol-
lowing expression for the probability of attack stealth , which
is also detailed in Appendix II.

Result 1: The attacking network wishes to maximize the
probability of a stealthy (thus successful) attack where
is given by (17) and where, , and are binomial coefficients
given by (22), (23), and (24) in Appendix II

(17)

Having obtained an expression for in terms of the prob-
ability of attack and the probability of an event , we now
wish to determine the optimal that maximizes for a given
cluster-size and for a that is not known a priori. Given the
combinatorial form of (17), the best response of the attacker in
terms of the selection of is performed using asymptotic ap-
proximations as shown in Appendix III. We now state the result
of this analysis.

Result 2: Given that the cluster-head performs a check on
the scalar sensors utilizing the detector, the optimal attack
probability for a that is unknown a priori is forced to be small
for larger clusters . For smaller clusters (such as 10 nodes or
less), this result does not hold and the attacker’s optimal may
be quite large.

Finally, we wish to determine how the optimal is affected by
the probability of an event for some fixed , utilizing a best
response analysis and asymptotic approximations as shown in
Appendix IV. We now state the obtained result.

Result 3: The attacker’s optimal is affected by the true prob-
ability of an event . Specifically, is forced to be smaller for

(rare events) or for (very common events).

TABLE III
OPTIMAL q FOR CLUSTER SIZE n AND PROBABILITY OF EVENT p

Unlike Result 2 which has ramifications for choosing a cluster
size , Result 3 impacts WVSN design in a less direct way,
since cannot be controlled. However it provides an indication
of conditions under which a scalar sensor’s decision may be
less reliable and the camera decision should be favored.

We now illustrate the above results with some specific exam-
ples. Table III shows the optimal value of for and
for (event occurring with probability of 10% and 50%,
respectively). We see that for and above, the attacker’s
optimal value of is actually quite small for both

’s, in agreement with Result 2. However, for smaller clusters,
such as and below, the optimal value of is quite large
indicating that the scalar sensors are not reliable. In the degen-
erate case of a cluster of size 1, the only way for an attacker to
evade detection is to actuate with a probability of 0 as we would
expect. These results are depicted visually in Fig. 6 where the
optimal value of corresponds to a peak in the plot of (
corresponds to the cluster-head not having detected the attack).
We observe that for large as in Fig. 6(d), the peak of nar-
rows and the optimal becomes quite small. For small clusters
such as in Fig. 6(b), the optimal can be surprisingly large due
to the combinatorial nature of [(17) based on Result 1]. Fi-
nally, the behavior of probability is also detailed in Table IV
for and . Again for clusters larger than

decreases, especially for away from 0.5 in agreement with
Result 3.

Importantly, we note that a small value of as the optimal
for the attacker for large emerges purely from the maximiza-
tion of . Thus achieving a small does not actually require
feedback from the cluster-head to the scalar nodes regarding the
result of the test. Rather, it is achieved by the mere fact of
having a test at the cluster-head and further controlled via the
selection of cluster size . From the point of view of commu-
nication energy and delay, this is an advantageous property for
wireless networks.
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Fig. 6. Probability of attack success P versus probability of attack q for cluster size n and probability of event p. (a) n = 5 and p = 0:5. (b) n = 10 and
p = 0:5. (c) n = 10 and p = 0:1 (d) n = 100 and p = 0:1.

TABLE IV
PROBABILITY OF ATTACK SUCCESS P

V. EVENT-DRIVEN WVSN PERFORMANCE RESULTS

The performance of event-driven WVSNs depends critically
on correct frame selection based on the definition of an event.
The camera nodes perform event detection based on a simple
image processing algorithm with a resulting probability of error

. To attain a high for a chosen , a camera node relies
on support from a scalar sensor node. The scalar sensor node
may itself however be in error due to attack with probability .
Since and may not be equal or known, we are interested in
determining how the camera nodes should utilize the decisions

and in various scenarios.

TABLE V
VISUAL DETECTION BASED PERFORMANCE (I )

The image processing algorithm described in Section III
was implemented in Matlab and tested on the image sequences
shown in Figs. 2–5.5 The detection performance of this algo-
rithm is shown in Table V where the results are listed in order
of degrading event-detection performance. Table V shows
the probability of detection (which ideally should be as
close to 1 as possible) and the probability of false alarm
(which ideally should be as close to zero as possible). Since
both probabilities are important to the correct functioning
of the WVSN, Table V also shows the total probability of
error which is defined in (18). We see that the simple
image processing algorithm performs best on image sequences
with the least amount of lighting and background changes
such as Sequence 1. It also performs well for cases where the
subject occupies a significant portion of the frame such as in

5We note that the test sequences contain a single object of interest and as
such, are a worst-case scenario for the event-detection algorithm. The presence
of multiple moving objects increases the probability of detection by increasing
the percent of relevant change pixels in a frame.
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Fig. 7. Comparison of the P for the three methods. (a) Sequence 1 (indoor walking). (b) Sequence 4(a) (outdoor car no trees).

Fig. 8. Comparison of the P for the three methods. (a) Sequence 4(b) (outdoor walking, no trees). (b) Sequence 2 (outdoor car with trees).

Sequence 4(a). For certain outdoor image sequences such as
Sequence 3, is unacceptably high at 0.9

(18)

We thus wish to determine if the scalar sensors can help
the camera nodes achieve an improvement in performance
given their attack-prone nature. The methods incorporating
scalar-sensor data into the decision process as listed in Table II
were implemented using Matlab. For convenience, we recap
these methods.

• Method 1: rely on scalar decisions (especially if and
do no agree).

• Method 2: always send a frame that was marked as an event
by either or .

• Method 3: rely on the image processing decision . This
is essentially the case with no scalar sensors. It is used for
comparison with Methods 1 and 2.

The total probability of error obtained for each image se-
quence using Methods 1, 2, and 3 for a camera node relying on
one scalar sensor node is shown in Figs. 7–9, where refers
to Method and the scalar sensor error is varied. We make the
following observations.

1) Incorporating and trusting the scalar sensor decisions as
in Method 1 greatly reduces for most sequences, as
long as . This is especially true for the more diffi-
cult sequences (Sequence 2 and 3) containing lighting and
background changes such that is large. The condition
for may be met if is due to a sensor network at-
tack and cluster-head checking and cluster-size selection
is performed as outlined in Section IV-B. As an example,
Table VI summarizes for (corresponding to

Fig. 9. Comparison of the P for the three methods Sequence 3 (outdoor
walking with trees).

an optimal attack when the cluster has 20 nodes) for the
three methods. We see that in this case Method 1 achieves
the best performance except for the indoor sequence Se-
quence 1 where .

2) In the regime of larger sensor error , Method 3 relying
on is superior to Method 1. This condition appears to
be met for sequences with few significant background and
lighting changes (such as indoor sequences). It may also
be met if the largest source of scalar sensor error is not
due to attack and cannot be controlled.

3) Method 2 is generally not optimal but for certain se-
quences, it performs close to Method 1. Crucially, Method
2 becomes important for cases where we do not know
the relationship between and (i.e., which of the two
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TABLE VI
COMPARISON OF P FOR q = 0:1 FOR EACH METHOD (ALGO )

errors is smaller). For instance, though both sequences in
Fig. 8(b) and 9 were obtained outdoors in variable con-
ditions, the image processing error varies dramatically
between them.

Point 3 highlights the important observation that for arbitrary
conditions where the WVSN nodes are scattered for surveil-
lance, the relationship between and may not be known.
Specifically, if the largest source of scalar sensor error is due
to attack as assumed in this work, the value of may be de-
termined from the results shown in Section IV.B. However, the
error associated with arbitrary camera conditions remains un-
known. If we do not know whether or , we may
be forced to utilize Method 2 or another comparable method. As
can be seen from Figs. 7 and 8, this method generally achieves a
performance which lies in between the performance of Methods
1 and 3. The loss in performance not only impacts the detection
error, but also the energy use of WVSN camera nodes which
now transmit a frame if either or .

Finally, we note that to obtain an estimate of we may rely
on feedback from the cluster-head which was not required to
obtain an estimate of . Recalling that the cluster-head also
receives the image frames, we can envision a scenario where
the cluster-head performs its own analysis of the frame, per-
haps utilizing a different image processing algorithm. The de-
tection-computation-delay trade-offs of the various possible ap-
proaches form the basis of ongoing research.

VI. DISCUSSION AND CONCLUSION

In the discussion of wireless systems, especially ones de-
ployed for the purposes of image acquisition, energy and delay
play a critical role. In terms of energy consumption, wireless
data transmission is known to be a dominant source of energy
drain [8]. This energy expenditure becomes even more signifi-
cant in wireless image networks [5]. Much research has thus fo-
cused on energy-efficient compression and encoding of video,
such that the required computational energy is itself minimized
[2]. In comparison with this approach, event-driven systems aim
to minimize transmission energy via local selection of relevant
image frames.

The computational energy required for robust frame selection
is also minimized via the use of a lower-complexity image pro-
cessing algorithm with a robust threshold. The false alarm rate

of this detector is adjustable [(6)], which is important in security
and limited-energy systems where translates into the number
of non-event frames sent to the cluster-head. This detector also
does not require a training phase other than the original acquisi-
tion of a few non-event frames at the beginning of operation and
is thus suitable for rapid-deployment applications. In such appli-
cations, the main focus of the WVSN cameras is on surveillance
gathering rather than on data analysis which is performed at the
cluster-head or system sink (which generally has more energy
than the battery-operated camera nodes) [32]. A simple and gen-
eral visual detection algorithm may thus be appropriate for such
applications, especially if augmented by decisions from scalar
sensors which may be deployed quickly in the environment.

The energy required to process, encode and transmit scalar
decisions is generally considered much smaller than that of
video data and also incurs lower processing and transmis-
sion delay [2]. Furthermore the scalar sensor infrastructure is
flexible and many techniques have been developed to support
its function following ad hoc deployment [14]. Based on its
visual-scalar collaboration and feedback from the cluster-head,
the event-driven WVSN approach also inherently provides
fault recovery mechanisms and a trigger-mode of operation.
As the cluster-head receives both the scalar-sensor data and the
corresponding image frames, it is able to correlate the visual
and scalar event-detection. Discrepancies may be communi-
cated to the scalar-sensors, instructing them to move away from
their current locations which may be under the influence of an
actuation attack. Such feedback may also be provided to the
camera nodes instructing them to temporarily or permanently
disregard the scalar sensor decisions and to rely on their image
processing results, or vice versa, to omit the image processing
phase and rely on the scalar sensors.

To summarize, in this work we examine the detection per-
formance of event-driven WVSNs where image frames are
transmitted back to a cluster-head only if the frame contains an
event of interest. The decision regarding a frame can be made
purely based on image processing techniques or it can be made
using assistance from a scalar-sensor that may itself contain
errors due to hostile attack. Through game-theoretic analysis,
we show that the scalar sensor error can be controlled through
cluster-head checking and appropriate selection of cluster size

without feedback from the cluster-head. We also examine a
simple image processing algorithm and show its equivalence in
form to a robust detector with good performance in indoor and
some outdoor surveillance sequences. For sequences containing
changing background and lighting conditions, this detector may
produce a high probability of error. We thus discuss approaches
for utilizing the scalar sensor decisions collaboratively with
the camera decisions and determine that such decision fusion
provides a reasonable detection performance for WVSNs.

APPENDIX I
IMAGE SEQUENCE CHARACTERISTICS

In this section, we analyze in greater detail the statistics of a
representative image sequence, that is Sequence 2 from Fig. 3,
showing a moving car with trees. As pointed out in Aach and
Kaup [12], [29], the difference pixels generally do not obey a
normal distribution model though this assumption is commonly
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Fig. 10. Test for normality of difference images or q-q plot (car sequence)
under (a) H and (b) H .

Fig. 11. Difference image histogram (car sequence) under (a)H and (b)H .

made. To investigate the possible distribution of the difference
pixels, we make use of a typical q-q plot as shown in Fig. 10 for
the moving car sequence.

The q-q plot is used to test whether a set of samples are em-
pirically Gaussian. The Gaussian assumption is rejected if the
q-q plot returns a set of points that lie far off the straight line.
As shown in Figs. 10(a) and (b), this is indeed the case for the
car sequence under both hypotheses. The points lying off the
main line may either indicate the presence of massive outliers
in the data (the difference pixels), or may indicate that the distri-
bution is not Gaussian. We thus call upon the use of histograms
to provide further clues regarding the pixel distribution. The his-
tograms for the difference images under the two hypotheses are
shown in Fig. 11(c) and (d).

These histograms show that the distributions are most likely
bell-shaped as can be confirmed through the use of Mardia sta-
tistics [33]. Based on the q-q plots and the histograms, we thus
approximate the difference pixels as Gaussian. We note how-
ever that this assumption tends to fail for event frames (alterna-
tive hypothesis) where regions of interest that undergo change
have a different distribution than regions of no change. Hence,
strictly speaking, the Gaussian assumption only holds for cer-
tain non-event frames and certain regions of an event frame. It
is nevertheless a helpful approximation that leads to a non-para-
metric (robust) detector.

In addition to the distribution assumption, we also consider
the assumption that . Indeed this assumption is imper-
fect since in order for every difference pixel in an event frame to
have , the object would have to move across the entire frame,
thus covering all pixels. In Aach and Kaup [12], [29], smaller
blocks are assumed to mitigate this flaw. However, through our
use of entire difference frames, this assumption does not hold.
To mitigate this issue we can assume that the effect of a small

movement can be distributed across all pixels by decreasing
. This assumption is more realistic since if we use the en-

tire frame to estimate , then the estimate of will mostly be
of the non-moving regions. Thus the variance will be decreased
to , leading to the use of a robust (non-parametric) de-
tector as in Section III-C.

APPENDIX II
GAME-THEORETIC ANALYSIS OF SUCCESSFUL ATTACK

We show that the probability of an unnoticed (hence suc-
cessful) attack is given by

Since the cluster-head is employing the type detector
given by (16), we begin by examining the conditions required
for the weights of the pristine data vector and the potentially
attacked data vector to be the same (which causes the attack
to be unnoticed).

Lemma 1: if and only if the number of 1s
in and coincide in exactly positions.

Proof: Let , and let be the set of
positions in that have a value of 1, i.e.,
and let be the set of positions in that have a value of 1,
i.e., . Then and . The
set of positions in both and that coincide is so
by definition . The set of positions that do not
coincide is . In binary addition, bits that
match always add to 0, and bits that do not match always add
to 1, hence

, where
results because , and follows from the
principle of inclusion and exclusion. If , then

, which implies . Conversely, if
, then .

Lemma 2: Suppose and have exactly overlapping 1s.
Then and must satisfy

(19)

Proof: Define , and as in the proof of Lemma
1. The distinct 1-positions over both and are given by the
set . Since the total number of distinct 1-positions cannot
exceed (for either or would be of length greater than ),
we have .

The following definition is based on Lemma 2 and will be
used in subsequent proofs.

Definition 1: Given a number , the pair is said to be
well-defined if it satisfies , and

.
In Lemma 3 we look at the conditional probability of and
overlapping in exactly positions. The technique used in the

proof is to fix one of the vectors, i.e., , as shown in Fig. 12,
and then choose s so that only of their 1-s overlap with any
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Fig. 12. Visualization of Lemma 3: choosing exactly m of y’s 1s to overlap
with x’s 1s.

of the ’s 1s. This probability turns out to be a hypergeometric
distribution.

Lemma 3: Let be the event that the number of 1s in and
overlap in exactly positions. Then

(20)

(21)

when and are well-defined (as in Definition 1), otherwise the
probability is 0.

Proof: We prove (20), and let the reader verify
(21). We fix , and think of as the binary string
that we vary so that we may look at the event

. We can
count the number of that satisfies by choosing 1s in

from positions out of the 1-positions in , which is , and

then choosing the remainder 1s in from positions out of

the 0-positions in , which is . The multiplication

counting rule gives . Now if we vary , by

the multiplication rule we have . There

are a total of pairs of of specified weights. Since

all such pairs have the same probability, we can take the ratio
of over the total number of pairs, giving us (20).

Theorem 1: Let be the event that the number of 1s in
and overlap in exactly positions. Define

(22)

(23)

(24)

In addition, we define to be equal to 0 if either or are

not integers. Then

(25)

Proof:

(26)

(27)

Equation (27) follows from Lemma 3, where again we assume
and are well-defined, or the probability is 0. Finally, we can

extract the desired marginal distribution:

(28)

Corollary 1:

(29)

where are as defined in Theorem 1.
Proof: Apply Lemma 1 to Theorem 1.

Corollary 2: Let be a positive integer. Then

(30)

where and are as defined in Theorem 1.
Proof: Given realizations and , let and

(31)

(32)

The second line relies on the proof for Lemma 1. Since the
events of strings having 1-s overlapping in exactly and
positions are disjoint, the probability of the union of the events
is the sum of the probabilities of the individual events.
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APPENDIX III
GAME-THEORETIC OPTIMAL ATTACK PROBABILITY

We determine the optimal probability that a hostile actu-
ating network should use to maximize its probability of attack
success [18].

Theorem 2: For sufficiently large, as , where
.6

Proof: Let where
is .7 As , and similarly

. Using this idea, it can be shown that
and for all realizations and for sufficiently

large . Hence, substituting and into (29), we
obtain

(33)

when is sufficiently large. The conditions for being well-de-
fined imply , which can readily be veri-
fied. Again for sufficiently large , we apply Stirling’s approx-
imation to (33). In (34), shown at the bottom
of the page, we have removed the non-negative constants (inde-
pendent of ). Next we examine the derivative of

(35)

We can verify that the point is a salient point (i.e., a
“corner” since “turns on” at ) so the derivative does
not exist at this point. Hence our discussion of the derivative is
restricted to . Under the implications
for being well-defined, it can be verified that the terms outside

are always non-negative. However, the term can be shown
to be non-positive by showing that the argument inside is
always . Therefore, over the interval
of implies is monotonically
decreasing in this interval. The maximum must then be the
left boundary, i.e., .

Corollary 3: Suppose the malicious sensor network plays
according to Theorem 2. Let be the average

(or expected) number of legitimate bits that are flipped. Then
.

Proof: Since , therefore
, which implies .

6Although q approaches 0, setting q = 0 is incorrect, as this results in
'(0) = 0.

7The difficulty in this proof lies not in taking the derivative of'(q), but rather
in solving the first-order condition (@'(q))=(@q) = 0; hence we resort to the
asymptotic case as well as approximations.

APPENDIX IV
EFFECT OF THE PROBABILITY OF AN EVENT

In this work, we assume that an event of interest occurs with
some probability according to a Bernoulli distribution. If we
consider nature as a “player” in a game against the actuating
network (this is only conceptual), we are able to determine how
the probability affects the hostile nodes’ choice of . In what
follows we refer to nature as “Player” 1 and to the hostile actu-
ating network as Player 2.

For a static game, the pure strategy Nash equilibria are the
strategy vectors ( ) such that
Player 1 would not find it beneficial to deviate from given
Player 2 plays , and vice versa [18]. This problem is gener-
ally difficult, but if we look at the asymptotic case, that is for
sufficiently large, we may determine the following result:

Theorem 3: Suppose that Player 1 can only play from a
closed subinterval of , denoted , while

. For sufficiently large, the pure strategy Nash equi-
librium is given by

(36)

and , where . If , then there are two
equilibria at and .

Remark 1: The expression in (36) refers to choosing the left-
most boundary if it is closer to 0 than the right-most boundary is
closer to 1, and choosing the right-most boundary if it is closer
to 1 than the left-most boundary is closer to 0.

Proof: First we find the best response of Player 2 to Player
1’s . We have already shown in Theorem 2 that as

. For is sufficiently small, we can assume it is irrespective
of . Next we examine the best response of Player 1 to Player
2’s , where we know that will always be approaching 0. With
this in mind, we define for fixed at

(37)

where we have used (21) instead of (20) which we have been

using so far. Now since is small, so

can be approximated by a Poisson distribution ,
where

(38)

(39)

(34)
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where we have kept only the smallest in the series. Next

we use the identity

(41)

where in the last line we have extended to start at 0 in the
series, and hence must subtract/add the term to maintain
equality. We have chosen to do this because each of the series
sum to 1 as both series represent the total sum of a binomial
distribution. The resulting expression

then simplifies to .
This shows that is approximated as a concave function

with peak at when is sufficiently large. If can be
chosen from the entire interval , then the minima of
would be at and . If instead we have to choose

from the closed subinterval , then we would take
either the left or right boundary, whichever is closer to 0 or 1,
respectively.
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