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Abstract

Event-driven visual sensor networks (VSNs) rely on a
combination of camera nodes and scalar sensors to deter-
mine if a frame contains an event of interest that should
be transmitted to the cluster head. The appeal of event-
driven VSNs stems from the possibility of eliminating non-
relevant frames at the source thus implicitly minimizing the
amount of energy required for coding and transmission. The
challenges of the event-driven paradigm result from the vul-
nerability of scalar sensors to attack or error and from the
lightweight image processing available to the camera nodes
due to resource constraints. In this work we focus on the
reliability issues of VSNs in the case of global actuation at-
tacks on the scalar sensors. We study the extent to which
various utility functions enable an attacker to increase the
average expected number of affected nodes with a relatively
small penalty in the loss of stealth. We then discuss trade-
offs between different attack detection strategies in terms of
the cost of processing and the required information at the
cluster head and nodes.

1. Introduction

Visual sensor networks comprised of networked cam-
era nodes are envisioned for a variety of key applications
such as distributed surveillance [2]. In the case of cameras
dispersed throughout an environment, the acquired images
must be transmitted wirelessly from the nodes to a cluster-
head or central processing station. Given the energy and
computational limitations of such nodes, energy-efficient
image processing and transmission emerge as significant is-
sues for visual sensor networks (VSNs) [3]. Indeed recent
years have brought many interesting ideas from the growing
community of researchers engaged in this area.

One promising approach to address the issue of efficient
visual-data handling is based on the event-driven paradigm.
In this setup, a camera node transmits its captured image
frames only if an event of interest has been locally de-
tected. The required event detection may be performed
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Figure 1. Event-driven VSN with scalar support for each camera
node and the presence of a hostile network.

by processing the frames at the camera nodes directly [6].
However given the energy and the computational limits of
the camera nodes, a lightweight processing algorithm is
required and may not always result in a desirable trade-
off between the probability of detection PD and the prob-
ability of false alarm PFA. The event-driven paradigm
thus aims to improve the detection performance by exploit-
ing other available information, such as scalar-data read-
ings from co-deployed traditional (i.e. non-camera) nodes.
Figure 1 depicts one possible scenario where each cam-
era node receives decision support from a scalar node that
detects changes in motion, temperature or other environ-
mental readings (depending on the application). In com-
parison with other VSN techniques, the event-driven ap-
proach implicitly minimizes the use of energy and band-
width via scalar-assisted local image selection. The appeal
of the event-driven approach is that non-relevant frames are
eliminated at the source instead of undergoing costly cod-
ing and transmission to the cluster-head. It should addi-
tionally be noted that although more powerful, the cluster-
head is generally also resource-limited and benefits from
receiving only the relevant frames. A significant challenge
of the event-driven approach stems from the need to per-
form accurate event-detection. Specifically, in addition to
the challenges posed by the use of lightweight image pro-
cessing and vision technologies, it is necessary to consider
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the reliability of the scalar sensors. The specific type of
scalar sensor utilized depends heavily on the application. It
is known however that scalar sensors are generally prone
to a variety of sensor network attacks, some of which oc-
cur at the physical layer of sensing and can result in faulty
environmental readings. One such type of attack is the actu-
ation attack where nodes belonging to a hostile network uti-
lize micro-actuators to alter environmental conditions in the
physical vicinity of sensor nodes. This type of attack may
not be addressed through cryptographic means alone due to
its occurrence at the physical level [9], [1]. Furthermore,
scalar sensors may suffer from temporary malfunctions due
to harsh and varying environmental conditions [4].

Given the vulnerability of the scalar sensors to attack and
error, it is important to evaluate the reliability of the event-
driven approach. In particular, there is a critical need to
detect an attack event which may occur globally throughout
a cluster by exploiting the potential of node collaboration
and data correlation. In this work we present the results of
our study into the severity of a class of attacks known as
actuation attacks. The intended focus and contribution are:

1. An investigation of the severity of actuation attacks
when the attacker’s stealth condition is relaxed.

2. An examination of methodologies for improving at-
tack detection at the cluster-head and at the local
nodes.

2. Background & Recent Advances

In the growing literature of energy-efficient VSNs we
can identify several general approaches to the efficient han-
dling of rich visual data. One general approach is to exploit
node collaboration to distribute the signal and information
processing over multiple nodes in the network. Such dis-
tributed and collaborative approaches are also well-suited
to the inference of higher-level information from the nodes.
In the context of reducing the energy required for image
processing and transmission, the following methodologies
can be identified within this class:

1. Signal processing and geometry-based exploitation of
spatial and temporal overlap among cameras to reduce
redundant data. This approach is particularly attrac-
tive in dense deployments and multi-hop environments
where the field-of-view of several cameras is likely to
overlap spatially and over-time [14], [12].

2. Information and coding theoretic exploitation of spa-
tial data correlation utilized for distributed image com-
pression, such as via Wyner-Ziv coding. Though fun-
damentally different in its formulation, this approach
also attempts to eliminate data redundancy by allow-
ing the nodes to separately encode the non-redundant
data [11].

3. Event-driven approach based on collaboration between
(lightweight) image processing nodes and scalar sen-
sor readings. This approach is beneficial in cases
where scalar sensors are available in addition to de-
ployed cameras. This approach benefits from several
areas such as applied game theory and lightweight im-
age processing. [5].

Other noteworthy approaches include automatic computer
vision techniques adapted to the low-energy and low-
complexity regime of VSNs [13]. In this work we focus on
the event-driven approach and examine its reliability under
an actuation attack model.

2.1. Visual Nodes: Lightweight Event-Detection

To motivate the need for scalar-visual collaboration in
the event-driven paradigm, we examine the event detection
performance of a representative lightweight algorithm de-
tailed in [8]. The algorithm was selected based on its sim-
plicity and shared common features with other algorithms
of the lightweight class designed to detect general events
and is intended for illustration only. It is important to note
that the definition of an “event” in event-driven VSNs is
application dependent. However this definition is gener-
ally based on the detection of “significant” motion. This
is in contrast with “pull-based” systems where the cluster-
head issues an interest feature to the nodes and where the
nodes search their stored frames to determine if a match-
ing feature is discovered [10]. In the event-driven VSN,
a node “pushes” a frame to the cluster-head if the algo-
rithm determines that it is a frame of interest. Thus a com-
mon lightweight algorithm for the event-driven paradigm is
based on the computation of 1- a difference frame, 2- a rel-
evant statistic based on the difference frame and 3- compar-
ison of the statistic to a threshold to determine if an event
occurred [8]. Figures 2, 3, 4 and 5 show sample images
extracted from four separate sequences acquired under dif-
ferent conditions. In Figure 2, the event of interest is the
appearance and passing of an unidentified vehicle while in
Figure 5, the event is the appearance of an individual. As
can be seen from the figures, the probability of event de-
tection PD, the probability of false alarm PFA and the re-
sulting total probability of error PT vary greatly from se-
quence to sequence. In the context of lightweight algo-
rithms for the detection of general events, PD is defined
as the probability of registering significant motion given
the presence of a moving object while PFA is defined as
the probability of registering significant motion when no
moving object is present. The total probability of error
PT = PFA ·P (H0)+ (1−PD) ·P (H1) where P (H0) and
P (H1) are the a priori probabilities of the null hypothe-
ses (no object) and alternative hypothesis (object present)
respectively. We note that factors such as the motion of
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Figure 2. Sequence with vehicle moving away from camera. PD =
0.74, PFA = 0.25 and PT = 0.26.

Figure 3. Sequence with two vehicles approaching the camera.
PD = 0.11, PFA = 0.63 and PT = 0.3.

Figure 4. Sequence with individual outdoors. PD = 0.05, PFA =
0.23 and PT = 0.9.

Figure 5. Sequence with individual indoors. PD = 1.0, PFA =
0.13 and PT = 0.03.

nearby trees or the relative size of the moving object(s) in
the frame affect the detection performance.

3. Scalar Reliability: the Stealth Condition

Scalar sensor nodes deployed in a hostile environment
are susceptible to a variety of attacks on their data [4].
Many of the attacks can be averted through the use of cryp-
tographic keys and key management systems. However a
type of attack referred to as an actuation attack occurs at the
physical sensing layer prior to the encryption process and

effectively perturbs the collected readings away from their
true values [9], [7]. As illustrated in Figure 1 , the attack
is perpetrated by a foreign hostile network (i.e. a network
not under the control of the legitimate scalar nodes). For
the purpose of generality and tractability, the attack is mod-
eled by considering its effect on the sensors’ decisions about
the presence or absence of an event. As in [9], we assume
that under no attack, each sensor i makes a binary yes/no
decision xi where xi = 1 denotes “event present” and has
Bernoulli distribution Bern(p). The effect of the attack is
modeled as flipping a decision from 0 to 1 and vice versa
with Bernoulli probability q . Specifically, yi = 1 repre-
sents a hostile node i actuating and yi = 0 represents no
actuation. The overall effect is that a scalar node i makes
decision zi where zi = xi ⊕ yi .

Nash game theory analysis is employed to determine the
optimal attack parameter q that the hostile nodes should se-
lect to remain stealthy, that is, undetected. The attack de-
tection may be performed using different methodologies. In
[9], the attack detection is performed by having each scalar
node transmit its decision not only to its camera node, but
also to the cluster-head. The cluster-head compares the re-
ceived weight of the vector w(x) with prior expectations
and raises an alert when the difference exceeds a threshold.
In terms of game theory, the scalar sensor network is labeled
as player 1 and the hostile network is labeled as player 2 ,
each comprised of n nodes. The utility or payoff π2 that
player 2 is trying to maximize is shown in Eq. 1 along with
the utility that player 1 is trying to maximize.

π2(p, q) = Pr{w(x) = w(z)}
= Pr{w(x) = w(x ⊕ y)} (1)

π1(p, q) = −π2(p, q)

In [9] it is shown that the optimal attack parameter q is
small in general and that it depends on the network size n
and the probability of detecting an event (under no attack)
p, i.e. q(n, p). Though such choice of attack parameter
avoids detection with large probability, it is not powerful
from the hostile network’s point of view. This stems from
the fact that the average number of affected nodes a is given
by a = n · q .

In this work we wish to study alternative attacker util-
ity functions π̃2 which may yield a better tradeoff for the
attacker between stealth and the number of affected nodes
a . This is motivated by a wish to understand if a more se-
vere attack is possible under the stealth condition with the
given assumptions. Eqs. 2 to 6 show the various utilities
that we wish to consider. The significance of the n · q term
is that it represents the attacker’s desire to balance stealth
and the number of affected nodes. The

√
nq term expresses

a nonlinear preference for the number of affected nodes.
In that case, the attacker prefers to affect as many nodes
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as possible but the rate of satisfaction grows more slowly
once many nodes have already been affected. The additive
form of the utility functions in Eqs. 3, 4 and 6 represents
satisfaction if either the stealth condition or the number of
affected nodes is maximized. The multiplicative form in
Eqs. 2 and 5 requires that both components be maximized
in order for the utility to be maximized. In Eq. 6, the pa-
rameter r ∈ [0, 1] models a preference weighting between
the two factors. In each of these cases, player 1 is trying to
maximize −π̃2(p, q).

π̃2(p, q) = π2(p, q) · √nq (2)

π̃2(p, q) = π2(p, q) +
√

nq (3)

π̃2(p, q) = π2(p, q) + n · q (4)

π̃2(p, q) = π2(p, q) · nq (5)

π̃2(p, q) = r · π2(p, q) + (1 − r) · (n · q) (6)

4. Stealth Condition Results

Results for the optimal value of the attack parameter q
were obtained via simulation of the various payoff curves.
These results are shown in Tables 1 through 6 for various
cluster sizes n and parameter p. We note that due to the
symmetry of the utility function π2 in parameter p, the re-
sults are the same for p and 1 − p, e.g., for p = 0 .1 (rare
event) and p = 0 .9 (common event). We also note that re-
sults pertaining to Eq. 3 have been omitted from the tables
because they yield results resembling those of Eq. 4 .

Figure 6 offers a visual comparison of the effect of the
adjusted utility given by Eq.2 compared to the original util-
ity given by Eq. 1 for the case where n = 10 and p = 0 .1 .
As shown in the figure, the attacker is able to obtain a seem-
ingly higher utility by migrating to a slightly higher value
of q . We therefore conclude that it is indeed beneficial for
the attacker to adopt the new payoff given by Eq. 2 and
migrate to a higher q value. It is important to note however
that while higher than the original utility, the new utility no
longer measures the stealth condition alone. If we wish to
understand how the higher q value impacts stealth, we need
to recompute the resulting probability of attack evasion for
the new set of q . This has been done in Tables 1 to 6 to
offer a more direct look at the resulting stealth.

In Tables 1 through 6 , qN refers to the optimal Nash
q determined from the original utility given by Eq. 1 and
q̃N refers to the new optimal Nash q computed for Eqs. 2
through 6 . The last column shows the difference between
the achieved stealth S where So is the stealth obtained orig-
inally from Eq. 1 and Sn is the new stealth obtained using
Eqs. 2 through 6 .

S = Sn − So (5)

We observe that S is always negative or zero because by
moving to a higher q value, the attacker is giving up some

Table 1. Rare event (p = 0.1) or common event (p = 0.9) and
small cluster size of n = 10 and q̃N = 0.205.

qN S
Eq. 2 0.255 -0.001
Eq. 4 1.0 -0.059
Eq. 5 0.305 -0.007
Eq. 6 0.255 -0.001

Table 2. Rare event or common event and medium cluster size
n = 35 and q̃N = 0.063.

qN S
Eq. 2 0.08 -0.003
Eq. 4 1.0 -0.055
Eq. 5 0.098 -0.01
Eq. 6 0.065 0

Table 3. Rare event or common event and large cluster size n =
100 and q̃N = 0.022.

qN S
Eq. 2 0.028 -0.003
Eq. 4 1.0 -0.054
Eq. 5 0.035 -0.011
Eq. 6 1 -0.054

Table 4. Typical event (p = 0.5) and small cluster size n = 10
and q̃N = 0.999.

qN S
Eq. 2 0.999 0.0
Eq. 4 0.999 0.0
Eq. 5 0.999 0.0
Eq. 6 0.999 0.0

Table 5. Typical event and medium cluster size n = 35 and q̃N =
0.089.

qN S
Eq. 2 0.205 -0.047
Eq. 4 1.0 -0.196
Eq. 5 0.934 -0.128
Eq. 6 0.09 0

of the stealth in favor of more actuation. We notice how-
ever that in many instances the penalty in S is not signifi-
cant compared to the gain achieved in higher q . Specifically,
though the gain in q appears small, it results in a higher ex-
pected number of affected nodes for a relatively small loss
in stealth. We make some further observations regarding the
trends.

• For the typical event p = 0 .5 , it is generally harder
to achieve an increase in q without a proportional de-
crease in stealth. We can relate this observation to the
findings from [9] where the attacker’s best case sce-
nario occurred for p = 0 .5 . The new findings thus
signify that the case where p = 0 .5 is already efficient
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Table 6. Typical event and large cluster size n = 100

qN q̃N S
Eq. 2 0.031 0.999 -0.122
Eq. 4 0.031 1.0 -0.195
Eq. 5 0.031 0.999 -0.122
Eq. 6 0.031 0.032 0
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Figure 6. Utility and q comparison between original π2 and π̃2

from Eq. 2

for the attacker. Thus no further alteration of the utility
is beneficial.

• For the rare event (p = 0 .1 ) or the common event
(p = 0 .9 ), certain modified utility functions do yield
an improvement in q at a low penalty in the loss of
stealth. This is true for example using Eq. 2 or Eq. 4 .

• For the rare or common event however, the benefits of
the modified payoff function start to decrease for in-
creasing cluster size n in terms of the attack becom-
ing more detectable. This is significant since if q were
large for large clusters n, the expected number of af-
fected nodes would be large.

• Among the various modified utility functions, Eqs. 2
and 5 appear to offer a somewhat better advantage over
the other utilities. This may suggest that a multiplica-
tive form for the utility function is more efficient in
moving along the q-π2 curve. For instance, if we ex-
amine the original utility function π2 shown in Figure
5, we notice that moving to a higher value of q should
be possible without decreasing the stealth significantly.
Utilizing the modified utility in Eq. 2 , the attacker is
able to capture this gain.

5. Examining Attack Detection

Attack detection in the case of an actuation attack is chal-
lenging given the globally distributed form of the attack.
Specifically, given the deployment of the hostile network
throughout the environment, every scalar node inherits the
probability q of being affected and thus of giving unreliable

readings. In this challenging scenario, the type of attack de-
tection that is performed depends heavily on the type of in-
formation available to the cluster head and the nodes. In [9],
attack detection was performed by reporting all the scalar
sensor decisions not only to the camera nodes, but also to
the cluster head. The cluster head in turn compared the re-
ceived data vector to expected averages for the number of
nodes that should report an event for a given physical distri-
bution. Importantly, this solution does not guarantee that the
hostile actuation will be detected with certainty and depends
on various parameters such as n and p. Secondly, when an
attack is detected, the cluster head is only able to conclude
that an attack occurred and not which specific scalar nodes
were affected. Furthermore, this solution is somewhat cen-
tralized in that the detection is not performed at each local
node but rather at the cluster head.

In [8], global attack detection is still performed at the
cluster head but the camera nodes also make local deci-
sions regarding the reliability of the scalar sensors. This
is achieved by processing the frames at the camera nodes
using lightweight event detection as described in Section
2.1. However event detection utilizing the lightweight ap-
proach incurs a probability of error q ′ and under certain en-
vironmental and lighting conditions, this error may be larger
than the error q due to attack. We wish to briefly examine
alternative solutions to this problem, specifying trade-offs
between local processing vs. global processing and the in-
formation required in each scenario.

Cluster head image processing. In this approach, the
cluster head determines not only if an attack occurred but
which scalar nodes have been affected. This level of de-
tail comes at the cost of performing higher-quality event
detection upon the image frames received from the cam-
era nodes and comparing the results with the scalar sensor
decisions. This solution is likely too expensive for energy-
limited VSNs in most cases.

Selective Cluster head image processing. In this ap-
proach the cluster head performs higher-quality image pro-
cessing on a chosen number k of the received image frames
where k < n . In order to minimize energy use and delay (in
processing the frames), it is desirable to select an optimal k
which achieves a target probability of attack detection. In
the case where the probability of natural scalar sensor error
(i.e. not due to attack) is known, the minimal k can be de-

termined using the equation PD ≤ ( nq
nq′+1)·(

n−nq
k−nq′−1)

(n
k)

where

nq is the expected number of affected nodes (due to attack).
Given that the number of nodes that may be reporting unre-
liable readings due to natural error is nq ′, in order to con-
clude that an attack is occurring, we need to find at least one
more unreliable node than nq ′. Figures 7 and 8 illustrate
the optimal value of k such that precisely nq ′ + 1 nodes are
found and such that at least nq ′ + 1 nodes are found. Fig-
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Figure 7. Optimal value of k for finding 2 or more of the 5 affected
nodes.
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Figure 8. Optimal value of k for finding 2 or more of the 10 af-
fected nodes.

ure 7 shows the results for the case where n = 50 nodes,
q′ = 0.02 and q = 0.1. Figure 8 shows the results for the
case where n = 50 nodes, q′ = 0.02 and q = 0.2.

6. Conclusions

In this work we examine issues associated with the reli-
ability of event-driven Visual Sensor Networks (VSNs) that
rely on scalar sensors to identify visual events of interest.
We focus our study on scalar sensors in the presence of a
global actuation attack and examine if the attacking net-
work is able to increase the number of affected nodes while
remaining stealthy (undetected by the cluster head). We de-
termine that a number of utility functions exist which en-
able an attacker to increase the average expected number
of affected nodes while incurring a relatively small penalty
in the probability of loosing stealth. However the gain of
the attacker is still limited and decreases with an increasing
cluster size. Finally we examine some alternative strategies
for detecting the attack in terms of the trade-offs between
required image processing and information known to the
cluster head or nodes.
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