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ABSTRACT

There is a critical need to provide privacy assurances for distributed
vision-based sensor networking in applications such as building
surveillance and healthcare monitoring. To effectively address pro-
tection and reliability issues, secure networking and processing must
be considered from system inception. This paper presents attacks
that affect the data privacy in visual sensor networks and proposes
privacy-promoting security solutions based on opponent detection
via game-theoretic analysis and keyless encryption.

Index Terms— Visual sensor networks, privacy of visual data,
network security, keyless privacy.

1. INTRODUCTION

In this work, we consider privacy and security mechanisms for a
heterogeneous wireless visual sensor network (VSN). The network
is comprised of wirelessly communicating camera nodes and scalar
sensors where the sensors trigger the cameras and provide specific
privacy guarantees based on event detection. The network may be
deployed in one or more zones such as throughout a building and
its perimeters. The scalar sensor network may contain a number of
malicious nodes that have been remotely or locally re-programmed
to disinform regarding the presence of an event for the purpose of
enabling and disabling camera privacy settings. Upon acquisition of
the privacy enabled or disabled frames, camera nodes must encrypt
and wirelessly transmit them to a local or off-site sink even if secret
keys have been compromised. The surveillance network must thus
remain dependable and provide privacy as well as confidentiality of
surveillance despite disruption and disinformation activities.

Measures to protect VSNs, to date, have focused on the prob-
lem of providing privacy by directly obfuscating the visual data. For
example, Lo et al. [1] propose image processing conducted directly
at the cameras that converts the video information into abstractions
containing only the information necessary to detect salient human
characteristics. Only the abstractions are communicated and pro-
cessed within the network, providing privacy. Fidaleo et al. [2] in-
troduce the notion of “subjective privacy” in video where only the
behavior, but not the identity of an individual under surveillance is
conveyed. Their approach to privacy involves processing of the raw
sensor data in order to remove personally identifiable information.
The resulting data, approved for public viewing, is communicated
with the aid of cryptographic security measures for further process-
ing. Wickramasuriya et al. [3] present a privacy preserving video
surveillance system that monitors subjects in an observation region
using video cameras along with localized sensors. The localized sen-
sors include radio frequency identification (RFID) tags that subjects
wear and motion detectors placed within the observation environ-
ment. The motion detectors are used to trigger the video cameras

on or off, and the RFIDs of the subjects provide authorization infor-
mation in order to specify which individuals are entitled to privacy.
The information from the various sensors are fused with the video
data resulting in a video stream with only authorized subjects being
masked through image processing.

In this paper, we take a non-obfuscation approach to addressing
privacy issues in VSNs. Given the growing trend in VSN design
that promotes the interaction of both visual and scalar sensors for
both performance and privacy [3], we assert in this paper that the
privacy preservation problem in VSNs is intrinsically tied to certain
network security issues. For example, a VSN that depends on mo-
tion detectors or RFID sensors to trigger cameras on or obfuscate
sensitive information is susceptible to networking attacks that will
hinder the privacy-guarantees of the system. Equally important is
the fact that sensor networks are susceptible to attacks such as sen-
sor node tampering and compromise that make secret cryptographic
keys briefly unavailable, thus once again, preventing some types of
privacy-enabling processing. Thus in this paper we focus on strate-
gies that will promote privacy in the face of these attacks.

2. VISUAL SURVEILLANCE SENSOR NETWORKS

2.1. VSN Model

We consider a VSN comprised of camera nodes and scalar sensor
nodes that trigger regional cameras and enable or disable local pri-
vacy rights. For ease of (re-)deployment, the camera nodes transmit
their acquired visual surveillance wirelessly to a (local or remote)
network sink such as a surveillance center. This heterogeneous net-
work is deployed in a large region such as a building that is com-
prised of many smaller local zones zi as shown in Figure 1 that can,
for example, correspond to different rooms and can include outdoor
perimeter areas.

Each camera node may rely on a decision obtained directly from
one or more sensors regarding the presence of events. We note how-
ever that with some probability, each individual sensor may be com-
promised and re-programmed by an attacker (a sensor may also oc-
casionally malfunction). In such cases, a sensor may neglect report-
ing an event or may signal for privacy settings to remain in place
despite a possible intrusion. Alternatively, a captured sensor may
falsely trigger events to drain the wireless resources of the network
or detract attention from a zone with genuine activity. In this setting,
the binary decision of an individual sensor regarding the presence of
an event (under no attack) is modeled as a Bernoulli random variable
Bern(p) where p is the probability of the presence of event. We note
that if the probability distribution function (PDF) of the phenomenon
under observation is known, the probability p of an event is the area
under the PDF to the right of the event-decision threshold Th.
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To mitigate the possible re-programming of a number of sen-
sors, we consider the setup shown in Figure 1. Specifically, each
zone contains an intermediate cluster head that receives decisions
from sensors and performs attack detection upon these decisions. As
shown in Figure 1, some of the sensors are legitimate while others
may be hostile due to attack. Based on its attack detection results,
the cluster head provides feedback to the camera nodes regarding
privacy settings and regarding the presence of events. When the
presence of an event is confirmed by the cluster head, each noti-
fied camera enciphers the acquired frames for wireless transmission
to a sink. We note that the cluster head task may be performed by
a dedicated secure node or may be rotated among several sensors to
mitigate attacks and limit the energy drain of any given node.

d
f

Fig. 1. Sensor sends possibly attacked decision d to cluster-head
while cameras acquire frames. The frames are processed based on
cluster head’s feedback f .

2.2. Network Attacks on VSN Privacy

In VSN settings, an opponent may engage in active sensor attacks
that disrupt event detection and privacy-preservation to perpetrate
undetected intrusions on the premises [4]. The attacker may also ad-
ditionally eavesdrop on the network links to intercept camera frames.
Interception of camera data through eavesdropping, such as during
its wireless transit to an off-site sink, provides the attacker with valu-
able information regarding the premises.

From the point of view of the cluster head, each sensor reporting
its binary decision may be in error due to attack with some unknown
probability q [5]. The effect of the active attack is to alter a decision
0 (privacy enabled) to a 1 (privacy disabled), or vice versa and must
thus be mitigated. The cluster head is thus faced with the task of
attack detection given a potentially pervasive attack with unknown
attack probability. Sensor networks also suffer from a high likeli-
hood of key compromise such as through node tampering that reveals
keying information and jeopardizes privacy services. The ensuing
network re-keying effort utilizes energy and might cause unaccept-
able delays. Thus, keyless methods of preserving privacy even for
a short-term period are of value when pervasive privacy-protected
surveillance is required. The model of wireless eavesdropping in
this paper involves a distributed attacker who can capture a fraction
of encrypted results from m < n cameras while being transmitted
to the sink motivating the study of keyless encryption.

3. PROPOSED VSN PRIVACY PROTECTION STRATEGIES

3.1. Sensor Attack Detection and Reaction

In pervasive surveillance settings, it cannot be assumed that scalar
support data is always reliable and that encryption keys are available.
To secure the data gathering process in the face of sensor attacks, we
wish to verify whether the scalar sensor decisions di for i ∈ {1, n}
collected by the n scalar sensors are legitimate or if they have been
altered. Thus, ideally we wish to distinguish between the hypothesis
H0 where the di have not been tampered with and the hypothesis
H1 where the di have been altered. In the case of H0 the random

variables di should come from the Bernoulli distribution Bern(p)
where p is the probability of an event. The case of H1 presents a
challenge since the actions of the captured nodes are unknown. If
each hostile node attacks with some probability q, then di will come
from Bern(r) where r = p + q− 2pq but where q (and thus r) still
remain unknown.

For the attack to remain undetected at the cluster head however,
the probability of attack q should be chosen such that the scalar data
received by the cluster-head appears plausible. This signifies that the
scalar decisions d where d = [d1, · · · , dn] should have a weight
(number of 1s) that is plausibly close to np (especially for large n
where the actual weight approaches np on average). Since the at-
tacker does not know the exact value of p (it depends both on the
PDF of the sensed event and the threshold Th), the optimal choice
of q may be determined based on game theoretic analysis [5], the
results of which we now summarize. The attacking network must
select a value of q that is small and that decreases with increasing
cluster size n to be stealthy. This optimal value provides an estimate
for the parameter q that is missing from theH1 hypothesis.

We thus now consider the problem from the point of view of
attack detection where H1 is the attack hypothesis and H0 is the
non-attack hypothesis. The optimal Neyman-Pearson (NP) detector
to distinguish between the two hypotheses is given by Eq. 1 where
w is the weight of the data d and T is a threshold chosen based on a
desired probability of false alarm α. Importantly as shown in Eq. 1,
while T can be determined without knowledge of the attack param-
eter q, the resulting probability of detection β cannot be determined
without it. Thus, the analysis of [5] provides the missing parameter
required to determine the optimal detector performance.

w
H1
>
<
H0

T (p,α) where α(p), β(q, p) (1)

The above approach may be employed in a variety of VSN ap-
plications. For the VSN of Section 2.1, the process follows:

(1) NP test: The threshold of the detector is set based on an
application-dependent probability of false alarm α which is
generally chosen to be very small. Upon receiving the de-
cisions of the n scalar sensors, the cluster-head employs the
NP detector of Eq. 1. The cluster-head proceeds based on the
outcome of the test (H0 orH1).

(2) H0 (Non-Attack Hypothesis): In this case the cluster-head
trusts di for i ∈ {1, n}. Based on each di ∈ {0, 1}, the
cluster-head notifies each corresponding camera if it should
encipher and transmit its surveillance or if it should discard
the sequence captured to-date.

(3) H1 (Attack Hypothesis): If the result of the detector is theH1

hypothesis, then an attack is assumed (since α is chosen to be
small). It is known that approximately only nq(n) nodes are
expected to be in error where nq(n) is small [5]. What is not
known is which nodes are in error and appropriate intrusion
detection approaches may be applied. In a VSN application,
if privacy is or paramount importance, then no visual data
need be communicated. If event surveillance is also to be pri-
oritized then, cameras corresponding to a 1 can encipher and
transmit their frames while the cameras that correspond to 0
employ localized image processing [5, 6] to verify whether
their frames are indeed “event-empty.”

3.2. Keyless Visual Encryption

Pervasive privacy-enabled VSN surveillance necessitates the need
for keyless confidentiality of wirelessly communicated visual infor-
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mation. To achieve confidentiality at any time, we propose a scheme
intended to compliment key-based cryptographic solutions by re-
placing those methods during periods of key unavailability.

The proposed scheme is tailored to the case where n camera
nodes in a cluster capture correlated visual surveillance but where
some (or all) of them do not have encryption keys with the sink
(and/or with each other). During this time of unavailability, the
camera nodes should still be able to “encipher” the surveillance effi-
ciently without having to transmit the frames to each other. In other
words, a distributed scheme where each camera performs the enci-
phering separately is desirable. The scheme that we thus develop
and overview in this work is based on the principles of distributed
source coding where correlated data may be compressed separately
yet optimally given that some correlation statistics about the data are
known. We develop a distributed scheme for visual surveillance that
provides confidentiality maintaining privacy even if m < n of the
“enciphered” shares are intercepted by the hostile network.

We first overview our basic scheme called S/DISCUS (secure
distributed source coding using syndromes) and then present a novel
algorithm for using S/DISCUS on visual surveillance. Suppose that
a cluster contains n nodes (i.e. cameras) where each node i captures
surveillance data Ui modeled as a string of k symbols; here, the
nodes capture Uk

1 , Uk
2 , . . . , Uk

n where the symbols are from a finite
field.1 Suppose that these n strings of surveillance are not indepen-
dent but correlated via a parameter t in the following sense:

w(Uk
1 + Uk

2 + · · ·+ Uk
n) ≤ t, (2)

where w(·) is the weight (i.e. the number of symbols that do not
match). The correlation model is expressing the observation that
Uk

1 , Uk
2 , . . . , Uk

n are similar with only a few differences among the
strings. We can see this more clearly if we consider a finite field of
order say 28 (for example the number of grayscale levels in a digi-
tal grayscale image, or one RGB plane of a digital colored image).
In this case the correlation in Eq. 2 restricts the number of different
pixels among the n nodes to only t nodes (in practice, visual surveil-
lance may not obey this correlation model thus necessitating an ap-
propriate algorithm for its use). Given this model and representation
of the surveillance data, each node using S/DISCUS inputs its Uk

i

into its own simple shift register circuit (the tap coefficient design
is detailed in [7]). This distributed approach using readily imple-
mentable shift-registers results in the following desirable properties:
(1) The output string of each shift register circuit is shorter than the
k input symbols providing compression; (2) The visual data is se-
cure against a distributed eavesdropper (such as a hostile network)
that captures m < n outputs of the shift registers; and (3) The sink
can reconstruct each of Uk

1 , Uk
2 , . . . , Uk

n perfectly from the received
shares without the use of decryption keys.

Importantly the eavesdropper’s ignorance is true even if he
knows the exact coefficients of all the shift register circuits (such
as through node capture). Furthermore, given infinite time and
resources, the eavesdropper cannot reduce the cardinality of the
message set down to 1; that is, the eavesdropper cannot solve for the
message (surveillance data) [7].

We now consider the case of visual surveillance data. Normally
S/DISCUS performs both lightweight encryption as well as com-
pression when the correlation model of Eq. 2 is satisfied (and does
so such that the decoder can perfectly reconstruct all the messages

1The actual data itself may not appear in the form of a string of symbols.
In practice the data collected by a node is grouped appropriately and can be
mapped to symbols in a finite field at the discretion of the engineer/designer,
in the same way that images and audio are often encoded.

Background
Remover

Image with
Subject

Background
only

Subject with
background
blacked out Quantize

LSB of each
8-bit pixel to

0000 or
1111

Stream of
4-bit

symbols

InterleaverS/DISCUS

Interleaved
stream of 4-bit

symbolsEncrypted
Image of
Subject

Fig. 2. Image Encoder

given all the shares). When S/DISCUS is applied to images that de-
pict a common scene from different orientations and perspectives,
the correlation model of Eq. 2 typically does not hold. One so-
lution is to have the cameras locally register their images prior to
using S/DISCUS. Such registration however typically requires (dis-
tributed) camera calibrations [8, 9] and may not be desirable for the
VSN setting.

We propose an alternative solution with local preprocessing as
outlined in Figure 2 with the goal of achieving sufficient invariance
such that the correlation model of Eq. 2 may be satisfied. Impor-
tantly, the invariances and variances must be distributed uniformly
since otherwise some portions of the input stream will satisfy the
correlation model, while large portions (particularly important fea-
tures) will not and therefore be undecodable.

As shown in Figure 2, the proposed solution requires that a back-
ground scene image be available for each camera; this may be peri-
odically captured by the cameras (when events are not detected) and
relayed to the sink without encryption. Using the background, a sub-
traction algorithm (such as the one used in [6]) is applied to an event
image, so that the background pixels can be set to a constant (for
example black) providing a basic source of invariance. To achieve a
higher guarantee of invariability, the 4 least significant bits (LSB) of
each 8-bit pixel are also quantized. The reasoning is that adjacent
pixels of images will likely get quantized to the same LSB value
thus providing further invariance (though the quantization process
introduces some irreversible distortion, in practice the distortion is
not prohibitive as shown experimentally in Section 4). Once the in-
variance has been obtained, it must be spread across the input which
is accomplished through the use of an interleaver that permutes the
pixel positions. This interleaver is deterministic in practice and may
be known to the opponent without compromising the security since
its only purpose is to transform the input stream into one that better
satisfies the correlation model. Finally S/DISCUS is applied to the
input stream as shown in Section 4.

4. PERFORMANCE AND DISCUSSION

For scalar data gathering in the stealthy sensor attack scenario, an op-
timal NP detector can be employed to detect hostile behavior. This
step indeed also mitigates the presence of the attack due to the SANs’
need to be stealthy. Conceptually, as the cluster size increases (there
are more data points taken), the attacker’s optimal attack parameter
q decreases signifying that picking a larger cluster reduces the (av-
erage expected) fraction of attacked nodes. However as q becomes
smaller, it is harder for the optimal NP detector to detect the attack.
Thus there is an inherent trade-off in the process of cluster size se-
lection that affects mitigation and detection simultaneously.
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The relationship between detection and mitigation is depicted in
Figure 3(a) for a commonly used value of probability of false alarm
α = 0.05 (other α’s yield similar plots). The plot shows results for
various probabilities of event p for p ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
(results for 1−p are identical due to symmetry). For each p, the clus-
ter size n is varied over n ∈ {1, 2, 3, 5, 10, 20, 30, 40, 50}. For each
(p, n) pair, the optimal attack probability q is determined from [5]
and the corresponding probability of detection is found from Eq. 1
and [4]. The horizontal axis depicts the optimal attack parameter
and also corresponds to the (average expected) fraction of attacked
nodes (recalling that each q corresponds to a different n). We ob-
serve that the detection performance PD is best for small p (which
might be the case over long periods of time). Whether p is known or
unknown, however, for a desired α we can examine the PD-q curve
and select a suitable trade-off point from which the required cluster
size n can be determined for attack mitigation.
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Fig. 3. (a) Probability of Detection PD (vertical) vs. optimal attack q
(horizontal) for various probabilities of an event p for α = 0.05. (b)
Tradeoff between Reconstruction Quality (vertical) and Background
Redundancy (horizontal).

Fig. 4. Original image from (a) Camera 1 and (c) Camera 2. Recon-
structed images at the sink (5× 5 median filtered)(b) PSNR of 20.8
dB (d) PSNR of 20.1 dB.

Next we wish to examine the performance of the S/DISCUS
paradigm for enciphering correlated images collected from cameras
using different perspectives without image registration. The experi-
ments were performed using the S/DISCUS scheme with two cam-
eras and input blocks of 15 4-bit symbols (where the 4 LSB of each
8-bit pixel are quantized). The original images were captured in
poor lighting conditions as shown in Figures 4(a) and (c) and re-
constructed at the sink with PSNR (peak signal to noise ratio) of
20.8 dB and 20.1 dB as shown in Figures 4(b) and (d) respectively.
Importantly, these PSNR values correspond to the full use of the
background to achieve invariance and thus correspond to the case of
full background redundancy. As shown in Figure 3(b) however, the
PSNR and redundancy characteristics may be traded-off by selecting
the percent of background material that is removed (i.e. not utilized
to achieve invariance). The ability to trade-off the desired PSNR and
redundancy is an important characteristics for wireless cameras. Fi-
nally we note that the encryption achieved with the low-complexity

S/DISCUS for the images in Figure 4 confounds an eavesdropper by
giving approximately 36 possible pixel values for each pixel. Based
on its distributed enciphering and PSNR/redundancy flexibility, the
S/DISCUS scheme may be well-suited for certain privacy-enabling
VSN surveillance applications where keys are temporarily unavail-
able due to hostile or challenging conditions.

5. CONCLUSIONS

In this work, we present approaches for addressing attacks on pri-
vacy in emerging VSNs. Given the interaction of scalar and visual
sensors within emerging VSNs, the privacy problems is intrinsically
tied to aspects of network security. The proposed methodology for
reliable gathering of scalar support data offers compromises between
mitigation and detection that are important for network design. The
proposed technique for keyless enciphering of correlated visual data
is shown to perform in a distributed scenario without the need for
inter-node communication thus demonstrating potential for perva-
sive privacy-preservation in VSNs.
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