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Abstract—The gathering of surveillance data such as visual
intelligence from potentially hostile areas has long played a
pivotal role in attaining various safety and security objectives.
The methodology of gathering such surveillance is increasingly
shifting towards rapid-deployment autonomous networks that
limit the need for human exposure, and that cover large unat-
tended areas while operating over extended periods of time.
To achieve the surveillance objectives, such networks must be
dependable and secure even in the presence of a potentially
hostile counter-surveillance opponent. In this work we explicitly
model and consider the presence of such an opponent in the
form of a hostile sensor network with eavesdropping and actu-
ation capabilities. We present a methodology for addressing the
security and dependability issues arising in such extreme settings,
which we collectively refer to as G-E-M. Specifically, we wish to
ensure the legitimacy and authenticity of the gathered (G-E-M)
visual surveillance in the presence of a hostile network engaged in
stealthy disinformation activities. We also wish to ensure that the
collected surveillance can be encrypted (G-E-M) for transmission
even if keys between the nodes and the sink are temporarily
compromised or otherwise unavailable. Finally we wish to ensure
that the network design both inherently prolongs the lifetime of
the network and also mitigates (G-E-M) deliberate energy drains.
These issues are not typically examined collectively though the
dependability of all these components is required to maintain the
functionality and longevity of the network. Though developed
and presented for the case of an attacker in the form of a hostile
network, the methodologies have applicability to networks with
a subset of subverted nodes that behave maliciously.

I. INTRODUCTION AND MOTIVATION

The accurate and timely gathering of visual surveillance and
intelligence data has long played a central role in attaining
objectives that secure public interests and safety. Motivated
by current security challenges and technological developments,
the gathering of such data is increasingly shifting towards the
use of unattended aerial or remote ground networks [1]. The
use of such distributed networks limits the need for human
exposure while allowing coverage of large and potentially
hostile areas over extended periods of time.

To achieve the remote visual surveillance objective, in this
work we consider a rapid-deployment heterogeneous ground
sensor network. The network is comprised of untethered
(wireless-transmission and battery-operated) camera nodes and
scalar sensors. Importantly, the network is deployed over a
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vast area where one or more of the zones may contain a
hostile opponent. The surveillance network must thus remain
dependable and secure despite disruption and disinformation
activities caused by the hostile opponent in this mission critical
setting [2], [3].

In this work we explicitly consider the potential availability
and use of sensor-actuator networks for hostile disruption
activities by an opponent. The use of such sensor-actuator
networks may enable new disruption and counter-intelligence
possibilities for the attacker [3]. In particular, actuation enables
distributed attacks that do not require the physical destruction
or jamming of nodes thus enabling attacks that are stealthy. In
such settings we may no longer assume that the gathered data
is legitimate (despite node redundancy), that loss of encryption
keys does not disrupt the surveillance mission [4], and that a
hostile opponent will not drain the legitimate network’s energy
deliberately [5]. Based on these considerations, the specific
goals of the mission critical sensor network for dependable
and secure surveillance are summarized below and collectively
referred to as G-E-M:

• G: Gather authentic and legitimate surveillance data. The
network must be able to collect relevant surveillance data
even in the presence of a hostile distributed attacker. The
hostile attacker may be engaged in disinformation and
disruption activities to cause relevant intelligence to be
omitted or to lead to the gathering of irrelevant data.

• E: Encrypt acquired surveillance data. The network must
be able to transmit the acquired surveillance securely
(with confidentiality) even if encryption keys between the
nodes and the base station are temporarily unavailable or
otherwise compromised [4].

• M: Mitigate network failure due to resource exhaustion.
The network must be able to inherently mitigate energy
drain caused by the gathering and transmission of visual
surveillance data and to mitigate deliberate energy drain
caused by a hostile attacker that may be present in the
environment.

A. Focus & Differences From Prior Work

In this work we present and overview an overall method-
ology for addressing the G-E-M objectives in the presence of
a hostile attacker. To secure the data gathering process (G),
we employ an optimal Neyman-Pearson detector supplemented
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with game theoretic analysis as in [3] to enable study of the
attack. However this paper focuses on the previously unex-
plored relationship between attack mitigation and detection.
The resulting trade-offs are important for system design as
well as for energy-drain mitigation (M ). To achieve encryption
(E) when keys are unavailable, we employ a keyless scheme
based on coding theory that has been extensively developed
in [6]. Importantly, the scheme of [6] applies to correlated
scalar data and is not readily applicable to images. Thus in this
work we develop and test an algorithm that enables use of this
scheme for visual surveillance. The scheme is fully compatible
with key-based protocols and is primarily intended for use
during times of key unavailability. The scheme mitigates
(M ) energy drain by providing a distributed solution that
eliminates the need for communication among the nodes and
by offering a trade-off between reconstruction quality and
redundancy. Thus the proposed overall methodology aims to
address the fundamental issues of dependable data gathering
and encryption. These issues are not typically studied together
though the dependability of both components is collectively
required to guarantee the functionality and longevity of the
network.

II. BACKGROUND

In this work we wish to complement current research
interests into the security and dependability of visual sensor
networks [1], [7], [8] in mission critical settings and hostile
environments [2], [3] over extended periods of time [9]. To
provide cryptographic services over an extended period, nodes
in a sensor network will likely need to manage and update their
keys while mitigating excessive energy-use. To address this
issue, Eltoweissy et al. [9] propose a dynamic key management
system based on localized combinatorial keying (LOCK). To
address the longevity issue and enable the practical use of
such networks by mobile in situ users, Olariu et al. [2]
describe a novel paradigm for autonomous networked sensor
system (ANSWER) to provide QoS and secure information
services. Yu et al. [10] discuss important trade-offs between
the lifetime of an image network and the distortion with which
images are transmitted from cameras to a mobile user. In [11],
Soro and Heinzelman explore coverage and routing issues for
video networks, noting important differences from traditional
(scalar) networks.

In this work we wish to address the issue of providing a level
of confidentiality in the network when keys are temporarily
unavailable which might occur during extended-operation in
hostile settings [4]. In this context, we focus on the acqui-
sition and enciphering of visual surveillance data for timely
transmission to a sink rather than mobile users. In particular
we wish to explore the role of a distributed attacker such as a
sensor-actuator (or actor) network that may perform a variety
of disruptive attacks as in Czarlinska and Kundur [3], [5]. The
fundamental assumptions of these attacks as they pertain to the
mission critical setting are detailed in Section III.

III. MISSION CRITICAL SURVEILLANCE SNS

A. World Model

We consider a surveillance network comprised of camera
nodes and scalar sensors. For rapid deployment in outdoor
regions, the camera nodes are untethered in that they are
battery operated and transmit their acquired visual surveillance
wirelessly to a sink. This heterogeneous network is deployed
over a large area comprised of many smaller local zones zi

as shown in Figure 1. We consider the possible presence of
a second hostile sensor-actuator network deployed throughout
one or more of the zones. The hostile network is equipped with
actuation capabilities, signifying that it can perturb, disrupt or
alter the sensor readings of nearby nodes via micro-actuators
(the framework and results of this work are also applicable
to the case when nodes inside the legitimate network are
captured and re-programmed by an attacker to form a hostile
sub-network). Importantly, the surveillance network does not
know a priori which zones (if any) contain a hostile network
(or subverted captured nodes).

hostilesensor

Cluster
head

d

f

zone zi

camera

Fig. 1. Zone zi: Upon wake-up, a sensor node sends its (possibly attacked)
decision d to the cluster-head while the camera nodes acquire frames. The
frames are transmitted or discarded based on feedback f from the cluster-
head.

The scalar and visual nodes in the surveillance network may
all be active (turned-on) to acquire relevant surveillance during
an event. However we note that the deployment area is very
large and it is not known which zone(s) will contain an event
of interest during a given time. Furthermore extended periods
of time may elapse before a given region becomes actively of
interest. Given the battery operated nature of the network, we
assume that the network implements a common sleep/wake-up
strategy. For instance, a small subset of the nodes inside each
zone become the “cluster-heads” (this task is typically rotated
among the nodes to avoid uneven energy drain) [12].

In this work we assume that the remaining scalar and visual
nodes inside a zone are asleep until awakened by their cluster-
head(s). The cluster-head(s) trigger the wake-up when their
input exceeds a given (application-dependent) threshold Th.
We note that given the PDF or PMF (probability distribution
function or probability mass function) of the phenomenon
(monitored by the scalar sensors) and a threshold Th, an
input exceeds Th with some probability p where p is the
area of the PDF to the right of Th. To verify the presence of
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an event through redundancy and to localize the event, each
awakened scalar sensor makes a decision based on Th (“event
present” 1 or “event absent” 0) and transmits this decision
to the cluster-head(s). The awakened cameras continue to
capture the possible event and each camera either transmits
or disregards its frames based on feedback from the cluster-
head(s) regarding the presence or absence of the event in the
area. Thus the scalar sensors are utilized as a support system
for the camera nodes that capture the surveillance. In the
mission critical setting however, the redundancy provided by
the scalar sensors may not be sufficient to ensure a dependable
data-gathering process in the presence of a hostile attacker as
will be discussed in Section III-B.

B. Attack Goals and Model

In mission critical surveillance settings the opponent may
engage in stealthy counter-intelligence activities that disinform
or disrupt the surveillance gathering while minimizing the
chance of attack detection. To this effect the opponent may rely
on a sensor-actuator network to perform seemingly legitimate
sensing while covering one or more zones in the area. With
such deployment, the hostile network may engage in a variety
of attacks designed to misguide, drain and eavesdrop on the
surveillance network as shown in Figure 2.

wake-up gather encrypt transmit

miss-trigger disinform compromise keys capture shares

Fig. 2. Surveillance task: the nodes must wake-up during an event, gather
the relevant surveillance, encrypt it and transmit it to the sink. A distributed
hostile sensor-actuator network may interfere with one or more of these tasks
during an attack.

For instance during the wake-up cycle of the nodes, each
hostile sensor-actuator node (SAN) may actuate in its local
vicinity to alter the sensor readings of a neighboring scalar
node [5]. The effect of the actuation is to alter a decision
1 (event present) to a 0 (event absent), or vice versa. With-
out communication among the hostile nodes (communication
may presumably be detected and adds to the energy drain),
each SAN actuates with some probability q. Importantly, this
probability q can be selected to minimize the probability of
being detected even if the hostile network does not know the
probability p (probability of a scalar node registering an event
which depends on Th) [3]. Thus this attack is referred to as
a stealthy actuation attack. Based on the stealthy actuation
attack, the hostile network may miss-trigger and disinform the
surveillance network.

The physical deployment of the hostile network through-
out one or more zones may enable the hostile network to
compromise encryption keys through node capture [4]. Such
a compromise might reveal part of the gathered surveillance
to the attacker. Furthermore, the ensuing re-keying effort
in the network (such as in static key management systems
[9]) utilizes energy and might cause delays in surveillance

transmission. The wireless nature of the transmission may
also allow a distributed attacker to intercept a fraction of
the encrypted shares from m < n camera nodes while they
are transmitted to the sink. Thus a form of protection (i.e.
encryption) is always required to transmit the surveillance even
when keys are not available.

We note that in practice other important attacks on wireless
networks such as radio jamming or denial of service attacks
must also be considered [13]. Though important, these attacks
are generally not stealthy in that the service disruption leads
to noticeable effects and thus ultimately to attack detection.
In this work we focus on a class of stealthy attacks that have
traditionally received less attention despite their significance
and despite their possible implementation via micro-actuator
networks.

IV. PROPOSED GEM SOLUTION FOR MISSION CRITICAL

SURVEILLANCE SENSOR NETWORKS

We now detail methodologies suitable for the system de-
scribed in Section III to address the reliability of gathering (G)
and encrypting (E) surveillance while mitigating (M ) energy
drains.

A. Surveillance Gathering (G) and Drain Mitigation (M)

In harsh but otherwise non-hostile environments, node re-
dundancy may provide sufficient resilience against occasional
sensor errors [1]. Node redundancy alone however is no longer
sufficient in the case of a distributed hostile opponent capable
of sensing and actuation [5]. Indeed as discussed in subsection
III-B, the hostile network may alter the decisions of scalar
sensors in a way that makes the overall data appear legitimate
and reasonable given the phenomenon surveyed by the sensors.

To secure the data gathering process in the scenario of
stealthy actuation, we wish to verify if the scalar sensor
decisions di for i ∈ {1, n} collected by the n scalar sensors
are legitimate or if they have been altered through actuation.
Thus ideally we wish to distinguish between the hypothesis
H0 where the di have not been tampered with and the
hypothesis H1 where the di have been altered. In the case of
H0 the random variables di should come from the Bernoulli
distribution Bern(p) where p is the probability of an event.
The case of H1 presents a challenge since the actions of the
hostile network are unknown. If the hostile nodes actuate with
some probability q, then based on the model of actuation, di

will come from Bern(r) where r = p + q− 2pq but where q
(and thus r) still remain unknown.

Despite the missing information, attack detection and mit-
igation can still be achieved. If the hostile network wishes
to remain stealthy in the attack, then q has to be chosen
such that the scalar data received by the cluster-head appears
plausible. This signifies that the scalar decisions d where
d = [d1, ..., dn] should have a weight (number of 1s) that is
plausibly close to np (especially for large n where the actual
weight approaches np on average). Since the attacker does not
know the exact value of p (since p depends both on the PMF
of the phenomenon and the threshold Th), the optimal choice
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of q can be determined based on game theoretic analysis [3].
The analysis reveals important facts about the optimal value
of the attack parameter q and the cluster size n.

In general terms, the attacking network must select a value
of q that is small and that decreases with increasing cluster size
n in order to be stealthy. More specifically, the game theoretic
analysis allows the specific optimal value of q for the attacker
to be determined for any n. This analysis is thus important
for two reasons. First it provides a value for the parameter q
that was missing from the H1 hypothesis. Second, it provides
guidance in the selection of the cluster size. Specifically, the
expected fraction of nodes affected by actuation is n·q(n)/n =
q(n) where the attacker’s optimal q is a function of n and can
be determined from the analysis. As an example, for p = 0.1
and n = 30, the optimal value of q = 0.074 which is also the
expected fraction of scalar sensors giving faulty readings on
average [3]. Selecting the appropriate cluster size is thus an
important part of attack mitigation. Attack detection, that is,
performing some form of check on the received data is also
crucial. This can be seen from the fact that if the network
does not perform any verification, then effectively the hostile
network may perform any actuation without fear of detection.
When a check is performed, the hostile network must adopt
the stealthy model.

We thus now consider the problem from the point of view of
attack detection where H1 is the attack hypothesis and H0 is
the non-attack hypothesis. The optimal Neyman-Pearson (NP)
detector to distinguish between the two hypotheses is given
by Eq. 1 where w is the weight of the data d = [d1, ..., dn]
and T is a threshold chosen based on a desired probability
of false alarm α. Importantly as shown in Eq. 1, while T
can be determined without knowledge of the attack param-
eter q, the resulting probability of detection β cannot be
determined without it. Thus use of game theoretic analysis
provides mitigants through cluster size selection and provides
the missing parameter required to determine the performance
of the optimal detector.

w
H1
>
<
H0

T (p, α) where α(p), β(q, p) (1)

The above mitigation and validation technique may be
employed in a variety of applications and sensor network
architectures. For the mission critical surveillance application
discussed in Section III, the process may be as follows:

(1) NP test: The threshold of the detector is set based on an
application-dependent probability of false alarm α which
is generally chosen to be very small. Upon receiving
the decisions of the n scalar sensors, the cluster-head
employs the NP detector of Eq. 1. The cluster-head
proceeds based on the outcome of the test (H0 or H1).

(2) H0 (Non-Attack Hypothesis): In this case the cluster-
head trusts the data di for i ∈ {1, n}. Based on each
di ∈ {0, 1}, the cluster-head notifies each corresponding
camera if it should encipher and transmit its surveillance
using the techniques of section IV-B or if it should discard
the sequence captured to-date.

(3) H1 (Attack Hypothesis): If the result of the detector is
the H1 hypothesis, then most likely an attack is actually
occurring (since α is chosen to be small). Furthermore,
based on cluster size selection, it is known that approx-
imately only nq(n) nodes are expected to be in error
where nq(n) is small. What is not known is which nodes
are in error and various methods of handling this case
could be employed. For the mission critical setup, we
may wish to ensure that no event frames are missed
or omitted from transmission despite the attack. Thus
the cameras that correspond to a 1 might transmit their
frames while the cameras that correspond to a 0 might
verify if their frames are indeed “empty” (contain no
events). This verification may be accomplished through
lightweight visual detection based on difference images
as in [3], [7].

B. Surveillance Encryption (E) and Drain Mitigation (M)

In the mission critical setting, we wish to ensure that
the visual surveillance captured by the camera nodes can
be transmitted wirelessly to the sink even when encryption
keys become unavailable. Thus we wish to ensure continued
service and confidentiality in the network. To achieve this goal
we propose a scheme intended to compliment the key-based
solution by replacing it during periods of key unavailability.

The proposed scheme is tailored to the case where n camera
nodes in a cluster capture correlated visual surveillance but
where some (or all) of them do not have encryption keys
with the sink (and/or with each other). During this time
of unavailability, the camera nodes should still be able to
“encipher” the surveillance. Ideally they should also be able to
do so efficiently without having to transmit the frames to each
other. In other words, a distributed scheme where each camera
performs the enciphering separately is desirable. The scheme
that we thus develop and overview in this work is based on
the principles of distributed source coding where correlated
data may be compressed separately yet optimally given that
some correlation statistics about the data are known. Based
on these principles we develop a distributed scheme for visual
surveillance that provides confidentiality even if m < n of the
“enciphered” shares are intercepted by the hostile network as
shown in Figure 2.

We first overview the basic scheme called S/DISCUS (se-
cure distributed source coding using syndromes) and later
discuss the proposed algorithm for using S/DISCUS on visual
surveillance. Suppose that a cluster contains n nodes (i.e. cam-
eras) where each node i captures surveillance data Ui modeled
as a string of k symbols, i.e. the nodes capture Uk

1 , Uk
2 , . . . , Uk

n

where the symbols are from a finite field.1 Suppose that these
n strings of surveillance are not independent but correlated via
a parameter t in the following sense:

w(Uk
1 + Uk

2 + · · ·+ Uk
n) ≤ t, (2)

1The actual data itself may not appear in the form of a string of symbols.
In practice the data collected by a node is grouped appropriately and can be
mapped to symbols in a finite field at the discretion of the engineer/designer.
For example this is how image and audio are encoded.
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where w(·) is the weight (i.e. the number of symbols that
do not match). The correlation model is expressing the ob-
servation that Uk

1 , Uk
2 , . . . , Uk

n are similar with only a few
differences among the strings. We can see this more clearly
if we consider a finite field of order say 28 (for example
the number of grayscale levels in a digital grayscale image,
or one RGB plane of a digital colored image). In this case
the correlation in Eq. 2 restricts the number of different
pixels among the n nodes to only t nodes (in practice,
visual surveillance may not obey this correlation model thus
necessitating an appropriate algorithm for its use). Given this
model and representation of the surveillance data, each node
using S/DISCUS inputs its Uk

i into its own simple shift
register circuit (the tap coefficient design is detailed in [6]).
This distributed approach using readily implementable shift-
registers results in several desirable properties:
(1) The output string of each shift register circuit is shorter

than the k input symbols.
(2) The surveillance data is secure against a distributed

eavesdropper (such as a hostile network) that captures
m < n shares (outputs of the shift registers).

(3) The sink can reconstruct each of the Uk
1 , Uk

2 , . . . , Uk
n

surveillance data perfectly from the received shares with-
out the use of decryption keys.

Importantly the eavesdropper’s ignorance is true even if he
knows the exact coefficients of all the shift register circuits
(such as through node capture). Furthermore, given infinite
time and resources, the eavesdropper cannot reduce the car-
dinality of the message set down to 1, i.e., the eavesdropper
cannot solve for the message (surveillance data) [6].

Background
Remover

Image with
Subject

Background
only

Subject with
background
blacked out Quantize

LSB of each
8-bit pixel to

0000 or
1111

Stream of
4-bit

symbols

InterleaverS/DISCUS

Interleaved
stream of 4-bit

symbolsEncrypted
Image of
Subject

Fig. 3. Image Encoder

We now consider the case of visual surveillance data. Nor-
mally S/DISCUS performs both lightweight encryption as well
as compression when the correlation model of Eq. 2 is satisfied
(and does so such that the decoder can perfectly reconstruct
all the messages given all the shares). When S/DISCUS is
applied to images that depict a common scene from different
orientations and perspectives, the correlation model of Eq. 2
typically does not hold. One solution is to have the cameras
locally register their images prior to using S/DISCUS. Such
registration however typically requires (distributed) camera
calibrations [8], [14] and may not be desirable for the mission
critical setting.

We propose an alternative solution with local preprocessing
as outlined in Figure 3. The goal of the preprocessing is to
achieve sufficient invariance such that the correlation model
of Eq. 2 may be satisfied. Importantly, the invariances and
variances need to be distributed uniformly since otherwise
some portions of the input stream will satisfy the correlation
model, while large portions (particularly important features)
will not satisfy the correlation model and will be undecodable.

As shown in Figure 3, the proposed solution requires that a
background image of the scene be available for each camera.
This background may be periodically captured by the cameras
(when events are not detected) and relayed to the sink without
encryption. Using the background, a subtraction algorithm
(such as the one used in [7]) is applied to an event image
with a subject, so that the background pixels can be set to
a constant (for example black). This provides a basic source
of invariance. To achieve a higher guarantee of invariability,
the 4 least significant bits (LSB) of each 8-bit pixel are also
quantized. The reasoning is that adjacent pixels of images will
likely get quantized to the same LSB value thus providing
further invariance (though the quantization process introduces
some irreversible distortion, in practice the distortion is not
prohibitive as shown experimentally in Section V). Once the
invariance has been obtained, it must be spread across the input
which is accomplished through the use of an interleaver that
permutes the pixel positions. This interleaver is deterministic
in practice and may be known to the enemy without com-
promising the security since its only purpose is to transform
the input stream into one that better satisfies the correlation
model. Finally S/DISCUS can be applied to the input stream
as shown in Section V.

V. G-E-M PERFORMANCE & DISCUSSION

For data gathering in the stealthy actuation scenario, it
is important to both mitigate possible attacks and to detect
an attack if it is occurring. In Section IV-A we discussed
how the former and the latter can be accomplished through
cluster size selection and use of the optimal NP detector
respectively. Importantly, mitigation and detection are actually
related in this problem due to the attacker’s attempt at stealth.
Conceptually, as the cluster size increases (there are more
data points taken), the attacker’s optimal attack parameter q
decreases. This signifies that picking a larger cluster reduces
the (average expected) fraction of attacked nodes. However as
q becomes smaller, it is harder for the optimal NP detector
to detect the attack. Thus there is an inherent trade-off in the
process of cluster size selection that affects mitigation and
detection simultaneously.

The relationship between detection and mitigation is de-
picted in Figure 4(a) for a commonly used value of probability
of false alarm α = 0.1 (other α’s yield similar plots). The
plot shows results for various probabilities of an event p for
p ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} (results for 1−p are identical
due to symmetry). For each p, the cluster size n is varied over
n ∈ {1, 2, 3, 5, 10, 20, 30, 40, 50}. For each (p, n) pair, the
optimal attack probability q is determined from [3] and the
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corresponding probability of detection is found from Eq. 1
and [5]. The horizontal axis thus depicts the optimal attack
parameter and also corresponds to the (average expected)
fraction of attacked nodes (recalling that each q corresponds
to a different n). We observe that the detection performance
PD is best for small probabilities of an event p (which might
be the case in the surveillance setting over long periods of
time). Whether p is known or unknown however, for a desired
α we can examine the PD-q curve and select a suitable trade-
off point (or region) from which the required cluster size n
can be determined for energy-drain and attack mitigation.
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Fig. 4. (a) Probability of Detection PD (vertical) vs. optimal attack q
(horizontal) for various probabilities of an event p for α = 0.1. (b) Trade-
off between Reconstruction Quality (vertical) and Background Redundancy
(horizontal).

Fig. 5. Original image from (a) camera 1 and (c) camera 2. Reconstructed
images at the sink (b) PSNR of 19.59 dB (d) PSNR of 18.69 dB.

Next we wish to examine the performance of the S/DISCUS
paradigm for enciphering correlated images collected from
cameras using different perspectives without image registra-
tion. The experiments were performed using the S/DISCUS
scheme with two cameras and input blocks of 15 4-bit symbols
(where the 4 LSB of each 8-bit pixel are quantized). The
original images were captured in poor lighting conditions
as shown in Figures 5(a) and (c) and reconstructed at the
sink with PSNR (peak signal to noise ratio) of 19.59 dB
and 18.69 dB as shown in Figures 5(b) and (d) respectively.
Importantly, these PSNR values correspond to the full use of
the background to achieve invariance and thus correspond to
the case of full background redundancy. As shown in Figure
4(b) however, the PSNR and redundancy characteristics may
be traded-off by selecting the percent of background material
that is removed (i.e. not utilized to achieve invariance). The
ability to trade-off the desired PSNR and redundancy is
an important characteristics for the mission critical setting
with untethered cameras. Finally we note that the encryption
achieved with the low-complexity S/DISCUS for the images in

Figure 5 confounds an eavesdropper by giving approximately
36 possible pixel values for each pixel. Based on its distributed
enciphering and PSNR/redundancy flexibility, the S/DISCUS
scheme may be well-suited for certain mission critical surveil-
lance applications where keys are temporarily unavailable due
to hostile or challenging conditions.

VI. CONCLUSIONS

In this work we overviewed a methodology for addressing
the data-gathering, encryption and energy drain mitigation
issues arising in mission critical surveillance networks with
a hostile opponent. The methodology proposed for depend-
able data-gathering offers trade-offs between mitigation and
detection that are important in network design. The proposed
methodology for enciphering correlated visual surveillance can
be performed in a distributed manner without the use of keys
or inter-node communication. The overall proposed approach
mitigates inherent and deliberate energy drains and might
thus be well-suited for certain untethered rapid-deployment
surveillance applications.
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