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Abstract—A parametric controller is proposed for the fre-
quency and phase stabilization after the occurrence of a dis-
turbance in the power grid. The proposed controller is based on
the feedback linearization control theory. To drive the frequency
of the system generators to stability, the controller relies on
receiving timely phasor measurement unit (PMU) readings about
the power grid to employ fast-acting flywheels that are situated
near the synchronous generators in order to balance a swing
equation model of the synchronous generators. The advantages
of the proposed controller are that it is tunable and integrates
well with existing governor controls in contrast to other forms
of PMU-based control. Numerical results show the effectiveness
of the proposed controller when applied to the New England
power system. Further, a comparison is drawn between the con-
troller and recently-proposed nonlinear controllers for transient
stability.

I. INTRODUCTION

Smart grid systems employ control, communications, and

sensor technologies to improve the reliability and efficiency of

the power delivery system. Information about system operation

is collected using sensors such as phasor measurement units

(PMUs) placed in specific locations around the grid. The cyber

data is then transmitted through a communication network to

distributed controllers where it is analyzed to determine if

any actions must be applied to enhance system operation and

efficiency.

The introduction of advanced telemetry and communication

technologies to the power systems opens the door to a variety

of new nontraditional controller design opportunities. More-

over, controllers can be employed to improve resilience of

the overall cyber-physical smart grid system. Recently, Wei et

al. [1]–[3] employed the concept of flocking in multi-agent

systems for the design of distributed controllers that aid in the

transient stability of synchronous generators in the face of a

severe disturbance. In the proposed framework, real-time PMU

data is employed to compute control actions that are actuated

via fast-acting energy storage systems.

Flocking-based control can be used in a power system

to achieve transient stability through frequency synchroniza-

tion and phase cohesiveness amongst synchronous generators.

However, the controller can be costly computationally and

demonstrates a graceful yet slow time scale for destabilization

as communication latency grows. Consequently, questions

arise as to whether more aggressive strategies exist that can

drive the power system to stability in a shorter period of time.

Further, a recent work of Andreasson et al. [4]–[6] proposed

using a consensus proportional integral (CPI) control scheme

to affect the mechanical power of a generator in order to

achieve an automatic frequency control strategy that is applied

in two levels. The generator’s frequency is controlled against

a reference frequency in the first level, and the reference

frequency is updated to eliminate errors in the second level. It

is obvious that in order to find the value of the control output,

the CPI controller needs to know the frequency of all system

generators; in other words, it is a centralized controller.

This article proposes a low-complexity tunable distributed

controller that easily integrates with generator governors.

When the power system undergoes a transient instability,

the proposed solution utilizes state information to execute a

feedback linearization control scheme that leads the generators

to stability more aggressively. Feedback linearization is a well-

known approach to convert a nonlinear system (plant) into an

equivalent linear system through feedback control. One form

of feedback linearization control involves canceling out the

nonlinear terms in the plant such that the resultant dynamics

of the closed-loop system is linear.

To achieve stability, sensor measurements are periodically

communicated to the distributed controllers that then actuate

change through fast-acting power injection and absorption

entities such as flywheels. The actuation stabilizes the power

grid by shaping the dynamics of the closed-loop system to

resemble that of a series of stable decoupled linear systems

with tunable eigenvalues. The short stability time makes the

proposed controller a good candidate for distribution systems

in which response time (say due to the presence of lower

inertia renewable energy sources) must be short. Moreover,

the controller integrates conveniently with other power system

controls such as governors. The proposed solution does not

need real-time information updates to practically stabilize the

power system. Consequently, we assert that the introduction

of such controller can enhance system resilience. Previously,

feedback linearization was investigated in [7] to control the

excitation system of the generators; however, our proposed

solution utilizes external power sources to stabilize the fre-

quency and achieve phase cohesiveness among the generators.

Contributions of this work include proposing a feedback

linearization controller for smart grids that undergo a transient

instability. Further, a simple, yet effective, formulation of

phase cohesiveness is investigated. Moreover, the performance

of the controller is compared to that of recent published work.

The rest of this article is organized as follows. The problem

setting is presented in Section II and the proposed controller
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Fig. 1. New England power system

is detailed in Section III. Section IV investigates the controller

performance. Conclusions are shown in Section V.

II. DISTRIBUTED CONTROL SETTING

We assume that the smart grid is comprised of N agents

where each agent is comprised of a synchronous generator

with an associated PMU that provides information on genera-

tor rotor angle and frequency, and a distributed controller that

processes PMU data from the local and neighboring generators

to actuate a local fast-acting power injection and absorption

entity such as a flywheel. A communication network connects

the PMUs and the distributed controllers.

The dynamics of each agent in the considered system

depend on its own state and the states of other agents in the

multi-agent system. In such setting, a centralized controller

refers to a scheme where the states of all the agents in the

system need to be collected; however, in a distributed scheme,

the controller of a certain agent needs the state of that agent

and its neighbors. Further, a decentralized controller requires

only the state of its own agent.

The overall smart grid is a cyber-physical system in which

the physical components correspond to the classical power

delivery components as well as the fast-acting sources, and the

cyber entities include the PMU sensors, distributed controllers

and their associated communication network. The physical-

to-cyber interface occurs at the sensors while the cyber-to-

physical interface occurs at the controllers.

We consider the New England 10-generator 39-bus physical

power system shown in Fig. 1. In this power system, Genera-

tor 10 at Bus 39 represents the aggregation of a large number

of power generators. Let N denote the number of generators

in the power system (i.e., N = 10). The parameters of the

generators of the power system are defined in Table I and are

expressed in per units, with the exception of Mi and Di which

are expressed in seconds, and δi which is expressed in radians.

We employ the swing equation model to describe physical

synchronous generator dynamics. The rotor angle and fre-

quency states of such a model ideally enable the study of

transient stability or frequency stability. We assume that the

swing equation parameters are constant even when the system

undergoes instability. To address the physically networked

nature of the power system, we make use of Kron-reduction to

Parameter Description

Ei internal voltage of Generator i, ∀i ∈ {1, . . . , N}
Pe,i electrical power of Generator i
Pm,i mechanical power of Generator i
δi rotor angle of Generator i
ωi relative normalized rotor frequency of Generator i
X′

di
direct-axis transient reactance of Generator i

Mi inertia of Generator i
Di damping coefficient of Generator i

TABLE I
SYSTEM PARAMETERS

reduce the order of the interconnections and determine effec-

tive mutual couplings between the synchronous generators [8].

The relative normalized frequency of Generator i is defined

in this work as ωi =
ωact

i −ωnom

ωnom , where ωnom is the nominal

angular frequency of the power system and ωact
i is the actual

angular frequency of Generator i. Let δ̇i and ω̇i denote the

derivatives of δi and ωi with respect to time, respectively.

Then, assuming there is no power control in the power system,

the swing equation for Generator i in an interconnected system

is expressed as [9], [10]

δ̇i = ωi

Mi ω̇i = −Di ωi + (Pm,i − Pe,i) .
(1)

where the electrical power of Generator i is defined as [11]

Pe,i =
N
∑

k=1

|Ei| |Ek| [Gik cos (δi − δk)+

Bik sin (δi − δk)] ,

(2)

where Gik = Gki ≥ 0 is the Kron-reduced equivalent conduc-

tance between Generators i and k, Bik = Bki > 0 is the Kron-

reduced equivalent susceptance between Generators i and k,

and Yik = Gik +
√
−1Bik is the Kron-reduced equivalent

admittance between Generators i and k. Let Pa,i = Pm,i−Pe,i

denote the accelerating power of Generator i, then the swing

equation is represented as

δ̇i = ωi

ω̇i = 1

Mi
[−Di ωi + Pa,i] .

(3)

III. PARAMETRIC FEEDBACK LINEARIZATION CONTROL

Typically synchronous generators are equipped with power

control schemes (such as exciter and governor controls) that

help to adjust a generator’s internal settings to respond to

changes in the overall power grid. However, these local

controllers are often insufficient due to their slow reaction

to rapid systemwide changes. Thus, we develop a parametric

feedback linearization (PFL) controller that does not assume

the existence of any other local generator control; this assump-

tion provides a more conservative picture of the power system

stability. Consequently, if the proposed PFL controller can

alone stabilize a generator after the occurrence of a disturbance

in the system, it is more likely that the power system will

be stabilized when both the PFL controller and the power

controllers are activated in the system.

Without external power control, as described in Eq. (3),

synchronous generators cannot alone achieve transient stability



in the presence of a fault or when circuit breakers open

beyond the critical clearing time either due to a malfunction

or cyber attack. The use of external control, however, can help

to achieve transient stability. Applying an external stabilizing

power source at Generator i, termed as Ui, modifies the swing

equation to

δ̇i = ωi

ω̇i = 1

Mi
[−Di ωi + Pa,i + Ui] .

(4)

Consequently, the proposed controller affects the dynamics of

the power system by absorbing or injecting a specified amount

of real power through the application of a fast-acting flywheel

at the designated generator. A positive value of Ui indicates

that the controller of Generator i is injecting power into the

corresponding generator bus and a negative value implies that

power is being absorbed from the generator bus.

A. Frequency Stability

The goal of the PFL controller is to asymptotically drive

the frequency of the system generators into stability after the

occurrence of a disturbance in the power grid; i.e., it is required

that lim
t→∞

ωi(t) = 0 ∀i ∈ {1, . . . , N} is achieved after the

activation of the PFL controller.

Feedback linearization [12, Ch. 13] is one approach used

to transform a nonlinear plant into an equivalent closed-loop

linear system. One way to implement feedback linearization is

by introducing a control signal that cancels out the nonlinear

terms in the system dynamics such that the closed-loop system

experiences (full or partial) linear dynamics. In order to fully

cancel the nonlinear terms in the swing equation (i.e., the
Pm,i −Pe,i

Mi
term) and enhance the system stability, we let the

external stabilizing control be represented as

Ui = − (Pa,i + Fi ωi) , (5)

where (Di + Fi) > 0 and Fi ≥ 0 is called the frequency

stability parameter. Consequently, the swing equation of the

interconnected power system (assuming exact knowledge of

the system parameters), after implementing the PFL controller,

reduces into a decoupled linear equation in the form of

ẋi = Ai xi , (6)

where xi =

[

δi
ωi

]

and Ai =

[

0 1
0 −1

Mi
(Di + Fi)

]

.

For this case, xi is called the state variable of Generator i.

To verify the stability of the power system after implementing

the proposed controller, the eigenvalues of Ai are calculated

and checked to determine if they lie in the left-hand complex

plane. The eigenvalues of Ai are found as 0 and −1

Mi
(Di + Fi);

thus, lim
t→∞

ωi(t) = 0 is achieved [12, Theorem 4.5]. Conse-

quently, the power system is stable under the proposed PFL

controller. Because the frequency stability parameter appears

to directly affect the value of the nonzero eigenvalue, it is

expected that higher values of Fi will drive the power system

to stability faster; however, higher values of Fi implies that the

PFL controller would need higher amounts of external power.

Let x = [x1, x2, . . . , xN ]T , where (·)T is the trans-

pose operator, denotes the system state variable, A =

[A1, A2, . . . , AN ]T represents the overall system matrix, and

U = [U1, U2, . . . , UN ]T represents the controller output for

the synchronous generators. Then, the dynamics of the overall

power system (after implementing the PFL control) can be

described as

ẋ = Ax . (7)

B. Phase Stability

The development in Eq. (5) focuses on stabilizing the

frequency of the system generators and promises no control

over the phase of the system generators. However, to maintain

a phase cohesiveness between the generators of the power

system, the absolute difference between the phase of any two

generators should be less than 100◦ [2], [13].

In order to accomplish such phase cohesiveness, the PFL

controller can be modified to account for the phase of the

generators. Specifically, the PFL controller can be expressed

as

Ui = − (Pa,i +Gi (δi − δ∗i ) + Fi ωi) , (8)

where Gi ≥ 0 is called the phase stability parameter and δ∗ =

[δ∗
1
, δ∗

2
, . . . , δ∗N ]T is the desired phase of the system generators.

The Gi (δi − δ∗i ) term will drive the PFL controller to settle

the phase of the system generators on δ∗. The values of δ∗

are selected such that

|δ∗i − δ∗j | ≤ 100◦, ∀i, j ∈ {1, . . . , N} . (9)

Consequently, phase cohesiveness is maintained during and

after the controller’s active time.

C. Integration with Governor Control

The PFL controller integrates naturally with the governor

control commonly found in power systems. The governor

control slowly adjusts the mechanical power of a generator

in order to keep the frequency of the generator within the

stability margin. However, although the PFL controller has a

similar goal, the governor has a very slow time response.

One way to implement a governor controller is to slowly

close the gap between the mechanical and the electrical powers

of the generator. Mathematically, let Ṗm,i denote the derivative

of Pm,i with respect to time, then this implementation can be

represented for Generator i as

Ṗm,i = κi (Pe,i − Pm,i) , (10)

where κi ≥ 0. A value of κi = 0 indicates that the governor

control is not activated on Generator i.

D. Features of the Proposed Controller

Some of the advantages of the proposed stabilizing solution

over previous work includes shorter transient stability time

for the synchronous generators. The controller also integrates

well with other power system controllers; for example, the

governor control aligns naturally with the PFL controller.

Thus, if the exact system parameters are unknown to the

PFL controller, the governor can provide added robustness
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Fig. 2. System performance when only governor control is activated

against the parameter error. In addition, the design of the

proposed controller is straightforward and is easy to imple-

ment. Further, the development of this stabilizing control

provides a natural tool to demonstrate tradeoffs between the

degree of available external power and the stability time of the

synchronous generators. Moreover, the PFL controller does not

need real-time updates about the system state information in

order to effectively stabilize the power system; the controller

can stabilize the power grid as long it obtains frequent and

periodic updates from the system sensors though the smart

grid communication network. The proposed controller can also

easily be implemented in a step-wise manner.

IV. NUMERICAL RESULTS

The New England 10-generator 39-bus power system of

Fig. 1 is considered. The values of Mi’s and X ′

di’s are found

from [14], [15] and Di is set to 20 msec. The power system is

assumed to be running in normal secure state from t = 0 to t =

0.5 seconds. However, a three-phase fault occurs at Bus 17 at

t = 0.5 seconds. Then, Line 17–18 is tripped out to clear the

fault at t = 0.6 seconds. Finally, the PFL controller is activated

on all generators at t = 0.7 seconds.

Before the occurrence of the 3-phase fault, load flow anal-

ysis of the power system is conducted to find the values of

Pe,i, δi, and |Ei| for each generator. Because the power system

is balanced and there are no transients (before the fault), the

mechanical power of each generator also equals the electrical

power of that generator at the moment of fault.

For the following numerical results, the stability time of a

generator is calculated by finding the controller’s active time

after which the frequency of the generator is restricted to a

2% threshold. In other words, stability time of Generator i is

the time it takes the controller to keep the frequency stable

(i.e., |ωi| ≤ 0.02) permanently. Further, the following figures

show the performance results for the first four synchronous

generators; however, similar behaviour can be found for the

rest of the generators.

A. Power System without PFL Control

The performance of the power system when only a governor

control is activated is shown in Fig. 2. The implemented

governor slowly adjusts the value of the mechanical power of

a generator in order to reduce the gap between Pm and Pe so

that the change in frequency is slowed (and ultimately reversed

back into stability). The implemented nonlinear governor

closes 90% and 99% of the gap between Pm and Pe in 3.07

and 6.14 seconds, respectively. Results of Fig. 2 show that the
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Fig. 3. System performance when only PFL control is activated
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Fig. 4. System performance when phase stability parameter is activated

governor slows down the instability of the system; however,

it needs a relatively long time (around 17.5 seconds) to bring

the generators’ relative normalized frequency to within the

stability margin of ± 0.02 pu.

B. Frequency Stability

Fig. 3 displays the effect of implementing the proposed PFL

controller on the performance of the power system. Both the

governor control and the phase stability are not incorporated in

Fig. 3 to emphasize the results of using the proposed controller

in stabilizing the frequency of the system generators. The PFL

controller is designed to access the system state variable (i.e.,

x) every 10 msec, and the value of the frequency stability

parameter (Fi) in Eq. (5) is set to 500 msec for all generators.

Further, the absolute value of any Ui cannot exceed 5 pu.

It is noted that the power system achieves frequency stability

within a short time. For example, stability time of Generator 1

is about 2.34 seconds. It is to be noted that because the

mechanical power of the synchronous generators does not

change in this case, the stabilizing controller compensates the

difference between Pm and Pe in order to keep the power

system stable.

C. Frequency and Phase Stability

The phase stability parameter is activated in this case. As a

numerical example, let the values of δ∗ in Eq. (8) be equal to

the phase of the system generators before the occurrence of

the three-phase fault at Bus 17; i.e., the controller will drive

the phase of the generators to the before-fault values. Let the

values of Fi and Gi be both set to 0.5.

Fig. 4 shows the effect of activating the phase stability

parameter in the PFL controller. It is observed that the phase

of the system generators is controlled as promised by Eq. (8).

In this case, the stability time of Generator 1 is around

5.53 seconds, which is slightly higher than that of the case

when phase stability parameter is not activated. However,

the extra time is needed by the PFL controller in order to



Governor Flocking CPI PFL PFL & PFL &
Gen. Control Control Control Control Phase Governor

1 17.5268 47.1266 4.9270 2.3425 5.5332 1.6180
2 17.3304 45.3626 5.0617 1.4841 3.6801 1.5417
3 17.3456 45.3269 5.0856 1.7205 3.6628 1.7633
4 17.6166 47.0708 5.2622 1.2634 3.2608 1.1706
5 17.6046 45.3384 5.3558 1.0793 2.9979 0.9920
6 17.6146 46.9529 5.2447 1.4792 3.3510 1.4040
7 17.6139 45.3225 5.2533 1.1866 3.1868 1.0831
8 17.5799 47.0606 5.0235 1.2632 3.2148 0.9823
9 17.6114 45.3489 5.2276 1.4441 3.2510 1.3188

Fig. 5. Stability time (second)

achieve both the desired phase cohesiveness and the frequency

stability.

D. Comparison with Recent Work

As a comparison, the performance of the recently proposed

flocking control and consensus proportional integral control

schemes is investigated next.

Flocking control was proposed in [1]–[3] to address stability

issues in power system after the clearance of a fault. In general,

a flocking scheme can be used to control flock-mates (or

agents) to achieve flock centering where an agent stays close

to nearby agents, collision avoidance where an agent avoids

colliding with nearby agents, and velocity matching where an

agent attempts to match the speed of nearby agents [16]–[18].

For a power system application, the flock centring feature

can be used to achieve phase angle cohesiveness while the

velocity matching feature can be used to achieve frequency

synchronization between the generators of the power system.

Andreasson et al. proposed to use the CPI controller in order

to achieve automatic frequency control (through affecting

the mechanical power of the generators); however, the PFL

controller affects the output of fast-acting external power

sources instead of changing the mechanical power of the

designated generator. Consequently, to be consistent with the

PFL and flocking controls, the numerical results of the CPI

scheme used the output of the CPI controller to affect the

output of the fast-acting flywheels. As a summary of the

different control schemes, a detailed record of the stability

time of each generator (except Generator 10) in the New

England power system is shown in Fig. 5. Compared to the

governor or flocking controls, the PFL controller achieves

the quickest stability. However, activating the phase stability

parameter increases the stability time slightly. Further, savings

in system stability can be accomplished by activating both PFL

and governor controls at the same time. Moreover, the PFL

controller outperforms the recently-proposed centralized CPI

controller for comparable parameters.

V. CONCLUSIONS

This paper proposes a parametric frequency and phase sta-

bilizing controller for smart grid systems under severe fault or

malfunction of protection devices. System state information is

collected by sensors and transmitted through a communication

network to distributed controllers. Based on the received data,

a feedback linearization control is applied using fast-acting

flywheels situated near the synchronous generators to balance

the swing equation and drive the power system to stability.

System performance is investigated when the proposed

controller is applied to the New England 39-bus 10-generator

power system. Further, the performance is studied when both

the proposed and governor controls are activated in the power

system. Results of this work show the effectiveness of the

proposed controller in stabilizing the power grid and making

it more resilient to disturbance.
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