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Abstract—Flocking control has recently been used in smart
grid applications to stabilize power systems during a transient
instability period. Based on consensus and cooperation of multi-
agent control systems, flocking control uses cyber information
about the power system to help achieve stability after the
occurrence of a fault in the power system. Recent work showed
that such controller can be useful in a smart power grid;
however, issues of the controller’s power usage, stability time,
and frequency deviation have not been investigated yet. This
paper investigates the effect of the power generators’ inertia on
these issues in a WECC 3-generator power system. Results of this
work show that the location of the fault affects the relationship
between the generators’ inertia and the investigated measures.

I. INTRODUCTION

Interest in smart grid systems has surged recently. Smart

grid systems use advanced control, communications, and sen-

sor technologies to improve the efficiency and resilience of the

power grid. Further, smart grid technologies can help utility

companies to better manage and control the energy resources

and meet the customers’ demand. In addition, the increasing

integration of renewable energy sources and storage units into

the power grid accelerates the interest of adopting smart grid

technologies.

The cyber assets of a smart grid include communication and

information technology infrastructures, computing systems,

and data storage units. Cyber data can be collected over the

power grid using phasor measurements units (PMUs) and

remote terminal units (RTUs); this data can be transferred,

as an example, to supervisory control and data acquisition

(SCADA) systems using fiber optics communication links. The

timely availability of the system’s cyber data can help a control

center better stabilize the power system.

A flocking-based control is a nonlinear control that is based

on consensus and cooperation of multi-agent control systems.

In general, a flocking scheme can be used to control flock-

mates (or agents) to achieve [1], [2]:

• flock centering where an agent stays close to nearby

agents;

• collision avoidance where an agent avoids colliding with

nearby agents; and

• velocity matching where an agent attempts to match the

speed of nearby agents.

For a power system application, the flock centring feature

can be used to achieve phase angle cohesiveness while the

velocity matching feature can be used to achieve frequency

synchronization between the generators of the power system.

A recent work in [3]–[6] employed the concepts of flocking

control to aid the generators achieve stability during a transient

instability period.

The proposed flocking controller employs the cyber infor-

mation about the system into a nonlinear controller to help

the power system achieve stability after the occurrence of

a fault in the power grid. A local controller is used for

each generator, and an external, fast-acting, power source is

employed by each controller. The goal of the controller is to

achieve frequency stability and phase cohesiveness when the

power system undergoes a transient instability.

Although the work of [3]–[7] shed a light on the application

of flocking control for smart grids, the impact of having

different generators’ parameters on the performance of the

controller was not investigated. Further, some performance

measures were not considered. For example, the stability time

of the system generators, the average power used by the

controller, and the frequency deviation of the generators have

not been investigated yet.

This paper investigates the performance of the flocking

control in a smart grid application. Specifically, this work

explores the effect of the inertia of the power generators on

the power usage, stability time, and average frequency for a

WECC 3-generator power system.

The rest of this paper is organized as follows. System model

is shown in Section II. Section III investigates the performance

of the flocking control. Conclusions and final remarks are

shown in Section IV.

II. SYSTEM MODEL

Flocking-based control can be used to achieve transient

stability in case of a fault in the power system. In this setup,

a local controller is used for each generator and an external

power source is employed by each controller.

A schematic of the WECC 3-generator power system is

shown in Fig. 1. In this power system, Bus 1 is the slack bus,

Buses 2 and 3 are PV buses, and Buses 7 and 8 are PQ (load)

buses. The parameters of the power system’s generators are

shown in Table I, where Mi and Di are expressed in seconds,

δi is expressed in radians per second, and the rest are expressed

in per units.

The swing equation links the system parameters in a dif-

ferential equation, and it can be used to study the transient
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Fig. 1. WECC power system model

stability of a power system. Further, during the transient

instability duration, the system parameters can be considered

constant. Consequently, a swing equation with time-invariant

parameters can be used to model the power system dynamics

during the transient instability period.

Parameter Description

Ei internal voltage of Generator i, i = 1, . . . , N
Pe,i electrical power of Generator i
Pm,i mechanical power of Generator i
Mi inertia of Generator i
Di damping constant of Generator i
δi rotor angle of Generator i
ωi relative normalized rotor frequency of Generator i
X′

di
direct-axis transient reactance of Generator i

Gii equivalent shunt conductance of Generator i

TABLE I
SYSTEM PARAMETERS

Let δ̇i and ω̇i denote the derivatives of δi and ωi with

respect to time, respectively, then the swing equation of an

interconnected power system is expressed as [8], [9]

δ̇i = ωi

ω̇i = −Di

Mi

ωi +
1

Mi

(Pm,i − Pe,i) ,
(1)

where the electrical power of Generator i is defined as

Pe,i =

N
∑

k=1

|Ei| |Ek| [Gik cos (δi − δk) +Bik sin (δi − δk)] ,

(2)

where N is the number of generators in the power system,

Gik = Gki ≥ 0 is the Kron-reduced equivalent conductance

between Generators i and k, Bik = Bki > 0 is the Kron-

reduced equivalent susceptance between Generators i and k,

and Yik = Gik +
√
−1Bik is the Kron-reduced equivalent ad-

mittance between Generators i and k. All of Yik, Gik , and Bik

are expressed in per unit values. Using φik = arctan
(

Gik

Bik

)

and Pik = |Ei||Ek||Yik|, then the swing equation is reduced

into

δ̇i = ωi

ω̇i = −Di

Mi
ωi +

1

Mi

(

Pm,i − |Ei|2 Gii

)

− 1

Mi

N
∑

k=1,k 6=i

Pik sin (δi − δk + φik) .

(3)
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Fig. 2. Relative normalized frequency of the system generators

Without a governor control, as described in Eqs. (1) and (3),

the generators cannot stabilize the power system whenever

there is a fault in any bus in the system. However, using

external controllers can help stabilize the power system during

the transient instability period. Applying an external power at

Generator i, termed as Ui, changes the swing equation into

δ̇i = ωi

ω̇i = −Di

Mi
ωi +

1

Mi

(

Pm,i − |Ei|2 Gii

)

− 1

Mi

N
∑

k=1,k 6=i

Pik sin (δi − δk + φik) +
1

Mi
Ui .

(4)

In a flocking-based control, Ui can be used to achieve both

frequency synchronization and phase cohesiveness between

the system generators. Specifically, Ui is calculated as [3]

U =
N
∑

k=1
k 6= i





t
∫

t0

ρ(δi − δk) dt



1−Gδ−Bω·D−c(δ−δ0), (5)

where U = [U1, U2, . . . , UN ]T , t0 is the time to activate

the flocking control, t is the time to calculate the value

of the control, ρ is a control function, c is a navigation

term, δ0 = [δ01 , δ02 , . . . , δ0N ]
T are the phase values at t0,

D = [D1, D2, . . . , DN ]T , δ = [δ1, δ2, . . . , δN ]T , and ω =

[ω1, ω2, . . . , ωN ]T . Moreover, B and G are cyber control

matrices.

It is noted that the model of the local generators does

not include a governor control. The presence of a governor

controller helps the generator during the instability duration;

however, the governor control is much slower than the flocking

controller. Consequently, it is believed that if the flocking

controller stabilizes the system without the governor control,

the power system will also be stable when the governor control

is activated.

III. EVALUATION OF FLOCKING CONTROL

The impact of the generators’ inertia on the flocking con-

troller’s performance is investigated in this section. Specifi-

cally, the stability time and the average frequency of the power

system’s generators, and the average external power needed

by the controller are considered. The WECC 3-generator test

system is simulated to demonstrate the effectiveness of the

flocking control.
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(a) M3 = 25 msec
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(b) M3 = 50 msec
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(c) M3 = 25 msec
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(d) M3 = 50 msec
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(e) M3 = 25 msec
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(f) M3 = 50 msec

Stability time of Generator 3

Fig. 3. Stability time of the system generators

As shown in Fig. 1, N = 3 for the 3-generator power system.

Let D1 = 0.005 seconds, D2 = 0.001 seconds, D3 = 0.002

seconds, X ′
d1 = 0.08 pu, X ′

d2 = 0.18 pu, and X ′
d3 = 0.12

pu. The value of M1 is varied between 15 to 75 msec, M2

is varied between 2.5 to 25 msec, and the value of M3 is

alternated between 25 and 50 msec.

Running the load flow analysis for the power system before

the fault occurs yields E1 = 1.162 ∠7.605◦, E2 = 1.261

∠−8.904◦, and E3 = 1.244 ∠−4.024◦. Because the power

system is balanced and there are no transients before the

fault, the mechanical power for each generator equals its

electrical power. Consequently, using Eq. (2), the values of

the mechanical power for each generator, in per unit values,

are Pm,1 = 1.9989, Pm,2 = 0.6661, and Pm,3 = 1.6.

The power system is assumed to be running normally from

t = 0 to t = 0.5 seconds. However, a 3-phase fault occurs at

Bus 6 at t = 0.5 seconds. Then, Line 6-7 is tripped out to clear

the fault at t = 0.6 seconds. Finally, the flocking controller is

activated on all generators from t = 0.7 seconds to t = 30

seconds.

Stability time of a generator is found by finding the time af-

ter which the relative normalized frequency of the generator is
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(f) M3 = 50 msec
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Fig. 4. Average external power needed by the flocking controller

restricted to some threshold (called stability margin). For M1

= 50 msec, M2 = 15 msec, and M3 = 35 msec, Fig. 2 displays

the relative normalized frequency of the three generators. It is

noted that when the stability margin is set to 0.4, the three

generators need slightly more than 16 seconds to stabilize.

Stability time results of the three generators are shown

in Fig. 3. It is noted that the stability time increases with

increasing the inertia of Generator 2. Moreover, when M3

increases, the stability time is expected to increase as well. For

Generator 1 (the slack generator), the stability time decreases

with increasing the inertia up to a point, then the stability time

levels off (or increases slightly).

The simulation results show that the lowest stability times

are 9.27 seconds for Generator 1 (when M1 = 45 msec, M2 =

2.5 msec, and M3 = 25 msec); 8.75 seconds for Generator 2

(when M1 = 45 msec, M2 = 2.5 msec, and M3 = 25 msec); and

9.07 seconds for Generator 3 (when M1 = 50 msec, M2 = 2.5

msec, and M3 = 25 msec). However, the flocking controller

cannot stabilize the power system in some cases within the

30-second run. Specifically, for low values of M1 and high

values of M2 and M3, the power system appears slower in
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Fig. 5. Relative normalized frequency of the system generators

responding to the flocking controller. With doubling the inertia

of Generator 3, the number of cases that the generators in the

power system cannot be stabilized increases as seen in Table II.

The flocking control relies on external power sources (Ui,

where i = 1, . . . , N ) to stabilize the power system as shown

in Eq. (4). The value of U is calculated according to Eq. (5).

Fig. 4 displays the average external power needed by the

flocking controller during the time when the controllers are

activated. It is observed that with increasing M1, the controller

needs more power to stabilize Generator 1 and less power to

stabilize Generator 3. On the other hand, increasing the inertia

of Generator 2 causes the flocking controller to use more

external power for the three generators (the increase is less

obvious for Generator 3). Further, Table III shows some results

for M3, where an increase in inertia means more external

power is needed to stabilize Generator 3 and less power to

stabilize Generator 1.

Finally, Fig. 5 shows the average relative normalized fre-

quency of the system’s generators during the controllers’ active

time. One goal of the flocking control is to achieve exponential

frequency synchronization through lim
t→∞

ωi(t) = 0. Conse-

M3 = 25 msec M3 = 50 msec

Generator 1 3.08% 15.39%
Generator 2 3.08% 14.62%
Generator 3 3.08% 19.23%

TABLE II
PERCENTAGE OF CASES WHERE THE GENERATOR IS NOT STABILIZED

M3 = 25 msec M3 = 50 msec

Generator 1 0.4890 0.3933
Generator 2 0.3154 0.3120
Generator 3 0.4608 0.5704

TABLE III
AVERAGE EXTERNAL CONTROL POWER (PU)

M3 = 25 msec M3 = 50 msec

Generator 1 0.0799 0.0415
Generator 2 0.0933 0.0493
Generator 3 0.0547 0.0429

TABLE IV
AVERAGE RELATIVE NORMALIZED FREQUENCY (PU)

quently, it is preferred that the relative normalized frequency

of the system generators be as close as possible to zero.

As the value of M1 increases, the average values of ω1 and

ω3 increase. However, increasing the value of M2 decreases

the average values of the frequency. Further, Table IV shows

the relationship between M3 and the average frequency. When

the value of M3 is increased, both average values of ω1 and

ω2 decrease.

It is observed that the location of the 3-phase fault and the

tripped out line (i.e., Line 6-7) affects the way the generators

respond to the flocking control. Specifically, it is shown that

the inertia of Generator 3 (with its close proximity to Line

6-7) has the most effect on the stability time of the generators

of the power system.

IV. CONCLUSIONS

Flocking control was recently proposed to help achieve

transient stability after the occurrence of a fault in the

power system. This paper investigates performance aspects

of flocking-based control for power systems. Specifically, this

work explores the relation between the inertia of the system

generators and the stability time, the external control power,

and the system frequency.

Results of this work show that the location of the fault

affects the way the flocking controllers perform. Further, the

value of the inertia of the generator that is closest to the faulted

line has the most impact on the performance of the controller.
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