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Abstract

In this paper, we determine the watermark domain that
maximizes data hiding capacity. We focus on the situation in
which the watermarked signal undergoes lossy compression
involving quantization in a specified compression domain.
A novel linear model for the process of quantization is pro-
posed which leads to analytical results estimating the data
hiding capacity for various watermarking domains. Using
this framework we predict appropriate transforms for ro-
bust spread spectrum data hiding in the face of JPEG com-
pression. Simulation results verify our theoretical observa-
tions. We find that a repetition code used in conjunction
with spread spectrum watermarking in a different domain
than employed for compression improves data hiding ca-
pacity.

1. Introduction

In this paper, we focus on identifying general rules of
thumb for reliable high capacity watermarking in the pres-
ence of compression. Our intent is to take a communica-
tion analogy for watermarking and answer the fundamental
questions:

� For lossy compression involving quantization in a spe-
cific transform domain, what domain is best suited for
reliable watermark embedding and extraction.

� How much information can I reliably hide?

These questions lead us to a more analytic and informa-
tion theoretic approach to addressing the problem of data
hiding in the presence of compression. We hope that the in-
sights gained through this work may be applied directly to
previously proposed and future robust watermarking algo-
rithms to enhance performance.

Watermarking is emerging as a technology useful to not
only copy protection and tamper assessment applications,
but for broadcast monitoring and signal tagging. For the

two latter applications, sophisticated attacks are not neces-
sarily the leading threat. Instead, practical compression is
the most common form of incidental distortion that limits
the robustness or capacity of a data hiding or watermarking
scheme. Thus, in this work we address the problem of high
capacity watermarking in the presence of perceptual cod-
ing. Currently, the most common lossy image compression
standard is JPEG. Therefore, we focus on deriving capacity
results for watermarking in various transform domains as-
suming that the watermarked image undergoes JPEG com-
pression prior to watermark detection or extraction.

Several papers have dealt with integrating watermark
embedding with compression. Wolfgang et al. [6] suggest
that one must use the same transforms for watermarking as
for compression to maximize robustness. Their simulations,
however, are somewhat inconclusive as the results do not
strongly support their hypothesis. Kundur et al [3] finds that
use of the same transform for embedding and compression
is not optimal, and suggests that complementary transforms
will result in superior performance. Ramkumaret al [4, 5]
indicate that use of transforms with poor energy compaction
properties, which are not suitable for compression, provides
greater watermark capacity.

In this work, we conclude that the use of differing trans-
forms results in the best capacity when a repetition code is
used for watermark embedding (i.e., the same watermark
sequence is repeatedly embedded in the image). The use
of the same transform yields good results when one long
watermark sequence is embedded in the image. Overall,
the data hiding capacity is greater when a repetition code is
used with spread spectrum watermarking in a domain dif-
ferent than used for compression. The results are derived
analytically and verified through simulations.

This paper is organized into six sections. The next sec-
tion introduces the specific problem that we consider. Sec-
tion 3 introduces the figures of merit and models used to
derive our results. Novel models and analysis results are
presented in Section 4, followed by simulation results and
final remarks in Sections 5 and 6.



2. Problem Formulation
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Figure 1. The proposed joint watermarking
and compression scenario.

The block diagram of a typical watermark embedding
scheme in the presence of lossy compression is shown in
Figure 1. There are three basic stages: watermark embed-
ding, lossy compression and watermark detection. Gener-
ally, the embedding process occurs in a watermark domain.
An orthogonal transformation Tw is applied to the host im-
age f . The transformation decomposes the host image f

into coefficients to which the watermark is embedded. Tak-
ing the inverse transform T �1

w
produces watermarked im-

age fw in pixel domain which is designed to be percep-
tually identical to the original image f . Most commonly
used transforms include discrete cosine transform (DCT),
wavelet transforms, the Hadamard transform, the discrete
sine transform, the discrete Fourier transform (DFT) and
the Karhunen Loeve transform (KLT).

We consider the situation in which such compression is
applied after watermark embedding. Lossy compression is
a quantization process in a compression domain Tc such as
DCT domain for JPEG. The resulting compressed water-
marked image is f̂w.

At the receiver, the hidden message ŵ is extracted from
the “corrupted” watermarked image f̂w in the watermark do-
main. The existence of the original watermark w within f̂w
is detected by calculating the correlation between the orig-
inal watermark w and the extracted watermark ŵ. If the
correlation coefficient is above a given threshold the water-
mark is considered to be detected, otherwise, the watermark
is considered not to be present in the image.

It is of great interest to determine the best transforma-
tion domain in which to devise robust watermark embed-

ding methods given that compression occurs in a specific
domain, for example, DCT for JPEG. In this paper, we at-
tempt to investigate analytically the choice of watermark
domain for high capacity data embedding in the presence of
compression.

3. Models and Measures

In the section, we introduce the basic models and figures
of merit used in our analysis work.

3.1. Spread Spectrum Watermarking

Many proposed watermarking schemes borrow ideas
from spread spectrum communications [1]. They embed a
watermark by adding a pseudo-noise (PN) sequence with
low amplitude to the host image. This specific PN sequence
is detected using a correlation receiver.

Let x = [x1; x2; � � � ; xN ] be the host image coefficients
in watermark domain. The watermark consists of a se-
quence of numbers, w = [w1; w2; � � � ; wN ] with a given
statistical distribution, such as a normal distributionN (0; 1)

with zero mean and a unit variance. The watermark is em-
bedded into the coefficients x according to the relationship

yi = xi + aiwi; (1)

where ai is a scaling parameter which determines the extent
to which one can alter xi to keep the perceptual fidelity of
the image; yi is watermarked coefficient.

To verify the presence of the watermarkw, the similarity
between the watermark domain coefficients ŵ of the possi-
bly tampered image f̂w, and the original watermark w is
measured. The similarity measure is given by the normal-
ized correlation coefficient.
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wiŵiqP

N
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i

qP
N

i=1
ŵ2
i

; (2)

where ŵ = [ŵ1; ŵ2; � � � ; ŵN ].
In this work, we assume that watermarking embedding

and detection takes place in this manner.

3.2. Watermark Capacity

One popular analogy for watermark embedding and de-
tection in the presence of compression is data communica-
tions over a noisy channel. Communicating the watermark
is analogous to transmission of the watermark through an
associated watermark channel.

For this watermark channel, there exists a watermark ca-
pacity which is the maximum number of bits that can be
hidden and recovered successfully (i.e., with an arbitrarily



low probability of bit error) from the possibly tampered wa-
termarked image. The more robust and effective a water-
marking scheme, the greater its watermark capacity which
makes this measure ideal for evaluation of the success of
any robust data hiding scheme.

Our task in this paper is to identify appropriate water-
mark domains for robustness against JPEG compression.
By using watermark capacity as our figure of merit, our goal
is essentially to determine the watermark transform domain
which maximizes this capacity.

3.3. Noise

In the case of blind watermarking the host image is
not available for extraction and the associated watermark
channel has two sources of noise: 1) the noise due to
the original image; 2) the attack noise due to compres-
sion/decompression process [4, 5].

A common model of an image involves representing it as
a wide sense stationary Gaussian stochastic process with a
specified covariance [2]. Let ffijg denote two-dimensional
image sequence in the spatial domain defined on a rectangu-
lar grid; fij is assumed to be a two-dimensional stationary
stochastic process. One typical covariance function model
used in image processing is [2]

Cov(fij ; fmn) = �2�
ji�mj

1
�
jj�nj

2
(3)

where �1, �2 are one step column and row correlation pa-
rameters.

A linear orthogonal transformation of the image may be
represented as follows

X = TFT�1 (4)

where F , ffij ; 1 � i � N; 1 � j � Ng is the im-
age matrix; T is an orthogonal transform matrix; X is the
coefficient matrix in a transform domain.

Let K1, K2 be two matrices with elements K1(i; j) =

�
ji�jj

1
, andK2(i; j) = �

ji�jj

2
respectively. From (3) and (4),

the covariances of the transform coefficients X are derived
to be

Cov(xij ; xmn) = �2K�

1
(i;m)K�

2
(j; n) (5)

where K�

1
= TK1T

�1 and K�

2
= TK2T

�1.
Given the basic models and assumptions established in

this section, we next introduce a novel model for compres-
sion in order to derive our capacity results.

4. A Novel Compression Attack Model

4.1. Quantizer Model

The lossy compression we consider in this paper involves
quantization of signal coefficients in a compression domain

such as the DCT domain (for JPEG). We denote the associ-
ated transformation from the pixel domain to the compres-
sion domain with Tc. Both the host image signal and the
watermark signal pass through a quantizer, as shown in Fig-
ure 2, where w is the watermark information and x is the
host image in the Tc domain.

+w

x

y
Quantizer

ŷ

Figure 2. Quantizer. The watermark w and
host image x jointly undergo quantization to
produce the watermarked quantized signal ŷ.

The existence of a nonlinear element such as a quantizer
in the watermark channel makes it difficult to analyze the
relationship between the original watermark and extracted
watermark. However, since watermark detection involves
computing the correlation coefficient between the original
and extracted watermark (i.e., the input and the output of
the watermark channel), we treat this channel as a black
box and propose a more tractable linear model which still
captures the essential characteristics of the effect of com-
pression on w in terms of correlation.

Suppose x and w are two independent random variables
with zero mean. The transform Tc coefficient value of the
watermarked image prior to quantization is given by y =

x + w. Let � be the quantization step. Then the quantized
coefficient is given as follows

ŷ = [y]� = round(
y

�
)�; (6)

where round(�) denotes rounding to the nearest integer, and
[�]� denotes the quantization operation with step �.

Our novel additive model for quantization is to replace ŷ
with

~y = �w + �x; (7)

where � and � are two parameters set such that the output
of the novel additive model has the same powerEfŷ 2g, and
the same correlation to w, Efwŷg. That is, � and � are set
such that

Ef~y2g = Efŷ2g; (8)

Efw~yg = Efwŷg: (9)

It can be shown that the following assignments obey
equations (8) and (9):



� =
Efwŷg

Efw2
g
; (10)

� =
q

Efŷ2g��2Efw2
g

Efx2g
: (11)

The model of (7 essentially tries to account for the vary-
ing degree of effect of the quantization process on the host
and watermark components of y. Clearly, because w is
much lower in amplitude than x for transparency of the
watermark, the influence of w after quantization on ŷ will
be much smaller if not negligible than the influence on x.
Thus, we expect � to be smaller than �.

4.2. The Scheme

In this section we incorporate the novel linear quan-
tization model discussed in Section 4.1 into our analysis
framework. Figure 3 shows an overall representation of the
watermarking and quantization-based compression process.
Spread spectrum watermarking occurs in the Tw domain
and compression in the Tc domain where Tw and Tc are
both orthogonal transformation matrices.
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Figure 3. Representation of the overall water-
marking and compression process.

The popular JPEG compression standard is based on the
8 � 8 block DCT. In order to evaluate the effects of dif-
ferent watermark domains given that compression occurs in
the DCT domain, we also consider 8 � 8 image segment
transforms for watermarking.

Although an image is often represented by a two-
dimensional signal, for our purposes we regard the image
signal as a one-dimensional sequence acquired by a colum-
nwise reordering operation. After column by column scan-
ning, each 8 � 8 block field is regarded as a 64 � 1 vec-
tor. Let n = 64 be the length of the vector. Suppose
f = [f1; f2; � � � ; fn]

T is an image block in the pixel do-
main, x = [x1; x2; � � � ; xn]

T is the image coefficient in the
compression domain, and w = [w1; w2; � � � ; wn]

T is the
watermark signal in the watermark domain. From Figure 3,
we see that

x = Tcf; (12)

v = TcT
�1

w
w: (13)

In practical lossy compression, the quantization is ap-
plied to all coefficients in varying degrees depending on a
quantization table. By modeling the quantization of coeffi-
cient i as described in Section 4.1 using parameters � i and
�i, we can establish a relationship between the watermark
signal embedded and its extracted version after quantiza-
tion. Figure 4 shows the overall coupled parallel channel
model.
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Figure 4. Equivalent parallel additive water-
mark channel model.

Let A = diag(�1; �2; � � � ; �N ), B =

diag(�1; �2; � � � ; �n). Then ŷ = Av +Bx. Let

T = TcT
�1

w
: (14)

From (13), we have

ŵ = T�1ŷ = T�1ATw + T�1Bx: (15)

Since Tw, Tc are orthogonal matrices, T is orthogonal
matrix as well. T�1 = T T . Let S = T TAT , z = T TBx,
then

ŵ = Sw + z: (16)

Generally, S is not a diagonal matrix, so there exists in-
terference between watermark inputs in different parallel
channels. However, it represents a symmetric interference
channel for which the channel capacity depends on the de-
pendence between watermark inputs in different channels.
In this paper, we only consider two extreme cases of de-
pendence: (1) fully dependent watermark inputs, or (2) in-
dependent watermark inputs. To calculate the capacity, we
make the following assumptions:

� The image signal f is Gaussian distribution as dis-
cussed in Section 3.3, so x, z are all normally dis-
tributed random variables whose variances can be de-
rived from f .



� In channel i, the watermark signal component w i is
also Gaussian distributed with variance �2

wi
.

Case 1: Fully dependent watermark inputs

Suppose w1; w2; � � � ; wn are fully dependent, namely for
all i, wi = �wi

u where u is a standard normal distribu-
tion N (0; 1) and �wi

is the amplitude of watermark signal
in channel i. This corresponds to the situation in which
the watermark is repeated throughout the signal. We can
exploit the full correlation and treat the watermark compo-
nents from other channels wj , for all j 6= i, as equivalent to
the input signal wi. The only noise contribution is from z i.
Therefore,

ŵi = zi +

nX
j=1

sijwj (17)

where zi =
P

n

k=1
Tki�kxk and sij =

P
n

k=1
Tki�kTkj .

Then, the channel capacity of channel i is

Ci =
1

2
log

2
(1 +

(
P

n

j=1
sij�wj

)2

�2
zi

) (18)

where �2
zi

=
P

n

k=1
T 2
ki
�2
k
�2
xk

. The overall channel capac-
ity is C =

P
n

i=1
Ci.

Case 2: Independent watermark inputs

Suppose wi and wj for i 6= j are independent. This corre-
sponds to the situation in which one long spread spectrum
watermark sequence is embedded. For channel i, other wa-
termark signals wj ; j 6= i are regarded as noise. Therefore,

ŵi = siiwi + zi +

nX
j=1;j 6=i

sijwj ; (19)

where zi =
P

n

k=1
Tki�kxk and sij =

P
n

k=1
Tki�kTkj .

Then the channel capacity is

Ci =
1

2
log

2
(1 +

s2
ii
�2
wi

�2
zi
+
P

j 6=i
s2
ij
�2
wj

); (20)

where �2
zi

=
P

n

k=1
T 2
ki
�2
k
�2
xk

. Once again, the overall
channel capacity is C =

P
n

i=1
Ci.

5. Investigative Results

We consider several watermark transform Tw domains:
(1) pixel, i.e. the identity transform; (2) Karhunen Loeve
transform (KLT); (3) Discrete Cosine transform (DCT); (4)
Hadamard transform; (5) Wavelet transform, in particular,
Daubechies wavelet; (6) Slant transform. Given a JPEG
compression quality level, the associated quantization table

is fixed and known, and the channel capacity of each poten-
tial transform Tw can be calculated for cases 1 and 2.

For comparison, we assume that the amplitude of water-
mark in all channels is equal to a constant, i.e. for all i,
�2
wi

= a. And we choose a = 4 to guarantee impercep-
tibility of the watermark embedding. Two parameters �1,
�2 in image covariance model given by Equation (3) are es-
timated from the classic image of Lena (also used in our
verification simulation results) by least-mean-square-error
method.

Figure 5 shows the predicted channel capacity of six dif-
ferent watermark transforms for Case 1 when the watermark
inputs in different channels are fully dependent. From the
results, we can see that Hadamard and wavelet transforms
are better for robust data hiding than other transforms. In
particular, Hadamard Transform is the best transform when
JPEG compression occurs in the very common range of
JPEG quality 40 � 85, and the pixel domain is the worst
for all cases of watermarking. The results for Case 2 when
the watermark inputs are all independent in different chan-
nels are shown in Figure 6. For any JPEG quality, KLT
and DCT are the two best among all these transforms and
SLANT is also good transform, better than Hadamard and
Wavelet. The pixel domain is still the worst domain for wa-
termarking.

60 70 80 90 100
0

1

2

3

4

5
Result for Case 1

JPEG Quality

Ch
an

ne
l C

ap
ac

ity

PIXEL   
KLT     
DCT     
HADAMARD
WAVELET 
SLANT   

Figure 5. Channel capacity of different water-
mark transforms for Case 1.

In order to verify our analytical results, we implemented
spread spectrum watermarking simulations on a real test im-
age of Lena. A watermark sequence with normal distribu-
tion N (0; 4) is embedded into each decomposition coeffi-
cient channel. Since capacity is a theoretical measure which
cannot be directly computed from our watermarking simu-
lation, we estimate the capacity of the individual channel by
formula C = 1

2
log

2
( 1

1��2
) where � is the correlation co-

efficient between the original watermark and the extracted
watermark and it is assumed that the extracted watermark
undergoes additive white Gaussian noise. Figure 7 and 8
show the overall channel capacity based on simulation on
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Figure 6. Channel capacity of different water-
mark transforms for Case 2.

test image Lena for Case 1 and Case 2 respectively based
on our analytical model. We can see that the experimental
results nearly follow our theoretical calculations.
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Figure 7. Simulation results on test image
Lena for Case 1.

6. Concluding Remarks

We have described one novel approach to analytically
evaluate the behavior of watermarking in a watermark do-
main given that lossy compression occurs. By approximat-
ing a non-linear quantizer as a linear model, channel capac-
ity is calculated to measure the efficiency of the associated
watermark channel. Based on this novel model, we find that
the Hadamard transform is better than other commonly used
transforms in the case that the watermarks embedded in dif-
ferent decomposition channels are fully dependent. On the
other hand, in the case that the watermarks embedded in dif-
ferent decomposition channels are independent, it is better
to choose watermark domain to be the same as compression
domain, i.e. DCT for JPEG. We also have shown that the
experimental results nearly follow the theoretical calcula-
tion, which shows that our underlying model is at least, in
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Figure 8. Simulation results on test image
Lena for Case 2.

part, sound.
We focus on spread spectrum-based watermarking in the

paper, future research will be devoted to investigate quanti-
zation based watermarking algorithm and try to determine
the best transform domain for quantization based water-
marking algorithm given that JPEG compression occurs. In
addition, we are currently working on using our compres-
sion attack model to develop a highly quantization-robust
blind data hiding algorithm.
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