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ABSTRACT

This paper studies the problem of achieving watermark semi-fragility in multimedia authentication through
a composite hypothesis testing approach. The embedding of a semi-fragile watermark serves to distinguish
legitimate distortions caused by signal processing manipulations from illegitimate ones caused by malicious
tampering. This leads us to consider authentication verification as a composite hypothesis testing problem with
the watermark as a priori information. Based on the hypothesis testing model, we investigate the best embedding
strategy which assists the watermark verifier to make correct decisions. Our results show that the quantization-
based watermarking method is more appropriate than the spread spectrum method to achieve the best tradeoff
between two error probabilities. This observation is confirmed by a case study of additive Gaussian white noise
channel with Gaussian source using two figures of merit: relative entropy of the two hypothesis distributions
and the receiver operating characteristic. Finally, we focus on certain common signal processing distortions such
as JPEG compression and image filtering, and investigate the best test statistic and optimal decision regions
to distinguish legitimate and illegitimate distortions. The results of the paper show that our approach provides
insights for authentication watermarking and allows better control of semi-fragility in specific applications.
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1. INTRODUCTION

This work focuses on achieving semi-fragility in multimedia authentication using a hypothesis testing approach
to verify the legitimacy of possible distortions. The goal of multimedia authentication is to authenticate the
visual meaning of multimedia data to ensure its integrity. Thus, content authentication of a host signal has
two main objectives: to alert a party to unacceptable distortions on the host and to authenticate the legitimate
source. Possible distortions on a signal can be divided into two groups: legitimate and illegitimate distortions.
When a signal undergoes a legitimate distortion which does not alter the visual content of the data, the system
should indicate that the signal is authentic. Conversely, when it undergoes illegitimate tampering, the distorted
signal should be rejected as inauthentic. Therefore, a successful multimedia authentication system should be
well designed such that it is robust to legitimate distortions but fragile to illegitimate ones.

Many multimedia authentication systems have been proposed in the last few years which employ semi-fragile
watermarks. A watermark is imperceptibly embedded in the multimedia signal to assist in verifying the integrity
of the associated signal. The hidden watermark can be a hash value [1] or a set of coarser content features
such as block histograms, or edge maps [2]. The primary advantage of employing semi-fragile watermarking
over traditional digital signature authentication technology is that there is greater potential in characterizing
the tamper distortion, and in designing a method which is robust to certain kinds of processing. In semi-
fragile watermarking, the watermark must survive legitimate distortions, but be fully destroyed by illegitimate
modifications applied to the signal. One of the first approaches to semi-fragile watermarking, called telltale
tamper-proofing, was proposed by Kundur and Hatzinakos [3] to determine the extent of modification both in
the spatial and frequency domains of a signal using a statistics-based tamper assessment function. Another
influential semi-fragile system is the self-authentication-and-recovery image (SARI) method developed by Lin
and Chang [4] in which a semi-fragile signature is embedded to survive JPEG compression up to a certain level.
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There are two major challenges in multimedia authentication watermarking to distinguish legitimate distor-
tions caused by incidental manipulations from those caused by illegitimate manipulations. One challenge is that
there is typically no clear distinction boundary between authentic and inauthentic signals. In general, modifica-
tions which do not alter the content of the multimedia signal are considered to be legitimate. These include minor
modifications such as high rate JPEG compression, image enhancement filtering, and even geometric distortions
such as rotation, scaling and translation. Severe modifications such as low rate compression, image blurring
filtering, and malicious image object removal or substitution are considered illegitimate. The other major dif-
ficulty to distinguish legitimate and illegitimate distortions is the fact that the original host is not available at
the receiver side for verification. In practical applications, the original host generally has much larger magnitude
than allowed legitimate channel distortions. The blindness of the original host in authentication verification
makes it hard to differentiate legitimate distortions from illegitimate distortions. Most proposed schemes to date
are either designed to achieve robustness to specific distortions (usually compression) using ad hoc measures, or
by carefully tuning a robust watermarking scheme so that it is likely to be destroyed if the distortion exceeds a
particular level [5]. Such schemes may attain desired robustness, but do not necessarily help provide fragility to
illegitimate distortions. A well-designed semi-fragile system should simultaneously address the robustness and
fragility objectives associated with legitimate and illegitimate distortions.

Our approach to the design of semi-fragile systems is to classify different types of common channel distortions
as legitimate or illegitimate, and to embed a watermark effectively to distinguish legitimate distortions from
illegitimate ones. This leads us naturally to consider the authentication verification procedure as a hypothesis
testing problem with the watermark as a priori information. The receiver’s best strategy is to identify legitimacy
of the distortion channel using the a priori watermark information while the embedder’s best embedding strategy
is to assist the receiver to make correct decisions. The results of our hypothesis testing model show that the
quantization-based watermarking method is better than the spread spectrum method to achieve the tradeoff
between two error probabilities. Finally, we apply our hypothesis testing model to certain common signal
processing distortions such as JPEG compression and image filtering, and determine the best test statistic and
optimal decision regions to distinguish legitimate and illegitimate distortions.

The paper is organized as follows. We model authentication watermarking through a composite hypothesis
testing model in Section 2. The best watermark embedding method to help the receiver to make correct decisions
is discussed in Section 3. Section 4 provides a case study of additive Gaussian white noise channel with Gaussian
source. Section 5 focuses on certain common signal processing distortions such as JPEG compression and image
filtering, and derive the corresponding best statistics. Conclusions are drawn in Section 6.

2. SEMI-FRAGILE HYPOTHESIS TESTING MODEL

In this section, we describe our hypothesis testing approach, and show how semi-fragility can be characterized
by error probabilities arising in a hypothesis testing model.

2.1. Authentication Watermarking Model
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Figure 1. General authentication watermarking model.

We consider a general authentication watermarking system contains three components: an embedder (Alice),
a distortion channel and the corresponding watermark verifier (Bob). In order for Bob to be assured that
the signal did originate from Alice, Alice authenticates the host source s by embedding her watermark m to
produce an authenticated signal x without introducing perceptible visual distortion. The watermarked signal
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is represented by x = f(s, w) where f(·, ·) is the embedding function. The watermarked signal x is received by
Bob through a public distortion channel. Knowing Alice’s watermark m, the receiver tries to decide whether
the received signal y is authentic or not by verifying the presence of Alice’s watermark. A binary decision on
authenticity is made based on the observed signal y and the sender’s watermark m which the receiver knows
prior to authentication verification.

2.2. Authentication Verification: A Composite Hypothesis Testing Approach

Possible distortion on the watermarked image is modelled as a distortion channel. We use y = P(x) to denote a
distortion channel, mapping the input x to the output y. The behavior of the random channel P is characterized
by its conditional probability density function (PDF) from channel input x to output y. The random distortion
channel includes deterministic modifications as a special case. Possible distortion channels are grouped into two
categories: the legitimate channel set L0 and the illegitimate channel set L1. The legitimate channel set L0

may include minor modifications such as high rate JPEG compression, image enhancement filtering, and even
unobtrusive rotation, scaling and translation manipulations. The illegitimate channel set L1 may include severe
modifications such as low rate compression, image blurring filtering, and malicious tampering such as image
object removal or substitution.

At the receiver end, knowing the sender’s watermark m, a watermark verification process attempts to identify
the type of distortion channel based on the received signal y, i.e. whether P ∈ L0 or L1. Semi-fragile watermark-
ing verification can therefore be viewed mathematically as a hypothesis testing problem to identify legitimacy of
a channel. We have two composite hypotheses: the null hypothesis H0 is L0 and the alternative hypothesis H1

is L1. The authentication verification process needs to test the following composite hypothesis problem,

H0 : y = P(x) for P ∈ L0 (1a)
H1 : y = P(x) for P ∈ L1 (1b)

based on the observation y and the sender’s watermark m. The watermark m represents a priori information
to the receiver, and is used to help make a correct hypothesis testing decision. This a priori information can
help the decision-making process because it is embedded in the watermarked signal x, so partial information of
x is revealed to the receiver through the side information. From the hypothesis testing model, we can see the
fundamental difference of robust watermarking and semi-fragile watermarking. The hypothesis testing problem
in robust watermarking is to determine which watermark message has been embedded in a host with channel
noise as an interference. The hypothesis testing in semi-fragile watermarking is to identify legitimacy of the
channel with the host signal as an interference. The embedding of a watermark, which is a priori information to
the receiver, is to alleviate the interference of the host signal to channel differentiation.

With respect to the hypothesis testing model, there are two types of authentication errors in semi-fragile
watermarking. Type I error, often called false positive error, or false alarm, results when the distortion channel
P is identified to be in L1 when it is actually in L0. This type of authentication error characterizes the robustness
of the semi-fragile authentication system. Type II error, often called false negative error, or miss, occurs when
x has been illegitimately tampered but the received signal y is wrongly verified by the receiver as authentic.
This type of authentication error characterizes the fragility of the semi-fragile system. Let An be the decision
region which the receiver uses to verify authenticity of the received signal y. Type I error probability is given
by αn(P) = P [y �∈ An|H0] for a legitimate channel P ∈ L0, and type II error probability is given by βn(P) =
P [y ∈ An|H1] for an illegitimate channel P ∈ L1.

Another interesting measure of two error probabilities is their asymptotic behavior. Both families of error
probabilities should decrease to zero as the length n increases since more observation data y are available to make
a decision. To evaluate how fast both families of error probabilities decrease as the dimension n increases, the
error exponents of both errors, assuming the limits exist, are defined as follows [6], Eα(P) = limn→∞ − 1

n ln αn(P)
for a legitimate channel P ∈ L0, and Eβ(P) = limn→∞ − 1

n lnβn(P) for P ∈ L1.
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2.3. Generalized Likelihood Ratio Test

The best decision region should give the best trade-off between two families of error probabilities under the
Neyman-Pearson criterion. A common approach to the composite hypothesis testing is the generalized likelihood
ratio test (GLRT) [7]. In the GLRT approach, the most probable individual hypothesis is computed to represent
the likelihood of the composite hypothesis. The generalized likelihood ratio is defined as the ratio of the maximum
value of the likelihood under H0 to the maximum under H1. For easy computation, the generalized log-likelihood
ratio is used in which the length n is normalized. That is,

GLLR =
1
n

log sup
P∈L0

f(y|P,H0,m) − 1
n

log sup
P∈L1

f(y|P,H1,m) (2)

where f(y|P,Hi,m) is the likelihood of the received sequence y = [y1, y2, . . . , yn] under the two hypotheses with
a known watermark m. Hypothesis H0 is accepted if the test statistic GLLR is greater than a given threshold
T ; otherwise, H1 is accepted.

3. THE BEST EMBEDDING METHOD

After analyzing the receiver’s best strategy to identify legitimacy of the distortion channel, we then investigate
the embedder’s best embedding strategy which assists the receiver to make correct decisions. There are mainly
two classes of watermark embedding methods: spread spectrum method and quantization-based method. In
this section, we provide an information-theoretic explanation of how the quantization-based embedding method
allows the receiver to achieve the best trade-off between Type I and II error probabilities.

From the composite hypothesis testing model, we know that the watermarked signal is an interference to
channel legitimacy identification, and the watermark m is a priori information related to the watermarked signal.
Semi-fragile authentication generally involves two composite hypotheses, but we can view them as two single
hypotheses based on the idea of the GLRT approach. The most probable individual hypothesis is computed to
represent the likelihood of the composite hypothesis. Let pY (y) and qY (y) denote two probability distributions
of two most probable single hypotheses corresponding to legitimate and illegitimate channels, respectively. A
well-known result in hypothesis testing provides a relationship between the error probabilities α and β and
the relative entropy D(pY ||qY ). The Type I and Type II error probabilities satisfy the following inequality:
d(α, β) ≤ D(pY |qY ) where the function d(α, β) is defined by d(α, β) = α log α

1−β + (1 − α) log 1−α
β [8] . In

particular, for α = 0, we have β ≥ 2−D(pY ||qY ). In other words, D(pY ||qY ) characterizes the error exponent of
Type II error probabilities for α = 0. The relative entropy D(pY ||qY ) is a measure of performance bound of the
hypothesis testing to differentiate two hypotheses with emphasis on Type II error probability. Therefore, we use
the relative entropy D(pY ||qY ) as a figure of merit to measure the receiver’s capability to identify authenticity
of a received signal. Although relative entropy is not a true distance metric because it is not symmetric and
does not satisfy the triangle inequality, it can be useful to think of it as a distance. In the authentication
watermarking model depicted in Fig. 1, let S, M , X and Y be the random variables corresponding to the source,
the watermark, the channel input and output, respectively. The figure of merit of the hypothesis testing for
semi-fragile authentication verification is the conditional relative entropy D(pY |M ||qY |M ) since the watermark
M is known at the authentication verification process.

There are two extreme scenarios that provide performance bounds for watermark-based authentication. In
one extreme scenario that the host signal is fully known to the receiver, the receiver can make the best judgement
on the legitimacy of a test signal. Non-blind authentication is not practical for most authentication applications
as the original signal is not always available. We consider this ideal scenario because it gives a upper bound of
performance for authentication watermarking applications. Errors in non-blind authentication are merely due to
the fuzzy boundary between legitimate and illegitimate distortions and one cannot eliminate such errors through
watermarking process. When the channel input X is known, the figure of merit associated with two hypotheses is
D(pY |X ||qY |X) where X is the channel input random variable. The other extreme scenario is that no watermark
information is used for authentication verification. Hypothesis test decision is made only based on the received
signal, without any help of the a priori watermark. This scenario corresponds to the worst case of semi-fragility
verification which provides a lower bound of performance for authentication watermarking applications. In this
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scenario, the channel input X itself serves as an interference to channel distortion hypothesis testing since no
information about X is available at the receiver through the a priori watermark. The figure of merit associated
with two channel distributions is D(pY ||qY ) which is only based on the distribution of the channel output Y .
From information theory, it can be shown that for any watermark embedding, D(pY |X ||qY |X) ≥ D(pY |M ||qY |M ) ≥
D(pY ||qY ). This result confirms our intuition about how a priori information helps to alleviate interference from
the host signal.

In general authentication watermarking schemes, the watermark should be embedded such that D(pY |M ||qY |M )
is minimized over possible embedding functions. This optimization problem is very complex to solve since the
embedding function should also satisfy an embedding distortion constraint. Here, we give an intuitive explana-
tion of how a good embedding function helps channel differentiation. Since the channel input X serves as an
interference to channel distortion differentiation, the watermark should be embedded to reduce the degree of the
interference of X to help the receiver identify the distortion channel correctly. The more random the signal X
is, the more difficult to distinguish between two hypothesis distributions pY |M and qY |M . Therefore, one would
like to reduce the uncertainty of X conditioned on M . In other words, the conditional entropy H(X|M) should
be minimized in order to reduce its interference to channel differentiation. From information theory, we have
H(X|M) = H(M |X) + H(X) − H(M). To minimize H(X|M), we therefore should do the following

• minimize H(M |X); To achieve this, the watermark M should be uniquely determined for a given wa-
termarked signal X. In quantization-based schemes, different watermarks are represented by different
quantizers, so the embedded watermark is uniquely determined from the quantized signal X. Therefore,
quantization-based schemes have H(M |X) = 0.

• minimize H(X); The entropy of X is reduced if X is quantized after watermark embedding. A larger
quantization step will result in less entropy of X. However, a larger quantization step will also result in
larger embedding distortion D. Therefore, there is a tradeoff in determining the quantization step.

• maximize H(M); In other word, the watermark should be uniformly distributed.

In spread spectrum watermarking, a watermark-related spread sequence W (M) is embedded in the original
host S, so the watermarked signal X = S + W (M). Therefore, H(X|M) = H(S). The original host serves
as an interference to channel hypothesis testing. Such case is equivalent to the worst case that no watermark
is embedded and used for verification since the known watermark M does not give any help to reduce the
interference from the host signal.

From the above analysis, we see that the quantization-based method embeds the watermark by quantizing the
source, thus reduces the interference of the watermarked signal X to distortion channel differentiation. Therefore,
the quantization-based embedding method is better than the spread spectrum method in achieving semi-fragility
of multimedia authentication.

4. ANALYSIS OF AWGN CHANNELS WITH A GAUSSIAN SOURCE

To support the conclusion of the superiority of quantization-based embedding, we analyze in this section a simple
case of AWGN channels with a Gaussian source. The legitimacy of an AWGN channel is specified as follows.
An AWGN channel is legitimate if its variance σ2 < a for a constant a, and illegitimate if σ2 > b for a constant
b ≥ a. We also assume that the host signal is Gaussian distributed with zero mean and variance σ2

s . We use
the generalized likelihood ratio test to derive the optimal decision region for three different schemes: non-blind,
spread spectrum, and quantization-index-modulation (QIM). These methods are assessed and compared using
the relative entropy between two hypothesis distributions as well as the receiver operating characteristic (ROC).

4.1. Non-blind Authentication
We start with the ideal case where the watermarked signal x is known since it gives a performance upper-bound
for watermark-based authentication. The composite hypothesis testing with known x is to distinguish two sets
of Gaussian noise as follows,

H0 : y = x + z(σ2) for σ2 < a (3a)

H1 : y = x + z(σ2) for σ2 > b, (3b)
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where z(σ2) is a zero mean white Gaussian sequence with variance σ2. Writing z = y−x with x known, the opti-
mal decision region is derived using the following generalized log-likelihood ratio test GLLR = 1

n log supσ2<a f(z, σ2)−
1
n log supσ2>b f(z, σ2) > T for some threshold T . Here the likelihood function f(z, σ2) for Gaussian noise z with

variance σ2 is given by f(z, σ2) =
∏n

i=1
1√

2πσ2 exp(− z2
i

2σ2 ) =
(
2πσ2 exp(z̄2/σ2)

)−n/2

, where z̄2 = 1
n‖z‖2. For a

fixed z̄2, 2πσ2 exp(z̄2/σ2) is minimized at σ2 = z̄2. Then, the generalized log-likelihood ratio is given by

GLLR =

⎧
⎪⎨

⎪⎩

1
2 ( z̄2

b − log z̄2 + log b − 1) if z̄2 < a
1
2 ( z̄2

b − z̄2

a + log b − log a) if a ≤ z̄2 ≤ b
1
2 (log z̄2 − z̄2

a + 1 − log a) otherwise,
(4)

which is a strictly deceasing function of z̄2. The decision test GLLR > T can be simplified to z̄2 = 1
n‖z‖2 < r2

for some positive constant r2, which is related to T , and the parameters a and b. Therefore, the optimal decision
region An is given by

‖y − x‖2 ≤ nr2 (5)

for some constant r2. For a detailed derivation of the optimal decision region, refer to [9].

Type I error probability αn(σ2) for a legitimate AWGN channel with variance σ2 < a and Type II error
probability βn(σ2) for an illegitimate channel with variance σ2 > b are given by αn(σ2) = P

[
y ∈ Ac

n

]
=

P
[
χ2(n) > nr2

σ2

]
for σ2 < a, βn(σ2) = P

[
y ∈ An

]
= P

[
χ2(n) < nr2

σ2

]
for σ2 > b, respectively, where χ2(n)

denotes chi-square distribution with degree n, and Ac
n is the complement set of An.

When a ≤ r2 ≤ b, the Type I and II error probabilities decrease to zero as the length n increases, so their error
exponents exist. From large deviation theory, the error exponent function I(x) for χ2 distribution function is
I(x) = 0.5(x−ln x−1) [10]. Therefore, the Type I and II error exponents are given by Eα(σ2) = 0.5( r2

σ2 −ln r2

σ2 −1)
for σ2 < a, and Eβ(σ2) = 0.5( r2

σ2 − ln r2

σ2 − 1) for σ2 > b.

4.2. Spread Spectrum Scheme
The embedding function for spread spectrum scheme is given by x = s + w(m) where w(m) is an additive
watermark signal related to watermark message m. The verification procedure for the spread spectrum embedding
is the following hypothesis testing

H0 : y = s + w(m) + z(σ2) for σ2 < a (6a)

H1 : y = s + w(m) + z(σ2) for σ2 > b. (6b)

The receiver knows the watermark m, thus the spread spectrum signal w(m). However, the original signal s is not
known to the receiver, thus serves as noise to the hypothesis testing of two channels. Using a similar procedure
of the generalized log-likelihood ratio test, the optimal decision region An is given by ‖y − w(k)‖2 < nr2 for
some positive constant r2. This optimal decision criterion gives the best authentication verification structure for
spread spectrum watermarking, which is a distance detector to the embedded watermark. By contrast, in robust
watermarking for AWGN channels with a Gaussian source, a correlation detector is the best structure to test the
existence of the embedded watermark. We can see from this example the distinct nature of robust watermarking
and semi-fragile watermarking for authentication. The best detector for robust watermarking may not be good
for authentication watermarking in terms of semi-fragility characterized by two types of error probabilities.

Given the best decision region, the Type I and II error probabilities are given by αn(σ2) = P
[
y ∈ Ac

n

]
=

P
[
χ2(n) > nr2

(σ2
s+σ2)

]
for σ2 < a, and βn(σ2) = P

[
y ∈ An

]
= P

[
χ2(n) < nr2

(σ2
s+σ2)

]
for σ2 < b, respectively,

where χ2(n) denotes chi-square distribution with degree n, and Ac
n denotes the complement set of An. From

the above results, we can see that the additive spread spectrum signal w(k) does not help tradeoff two error
probabilities. One would get the same results if no signal w(k) is embedded. This observation confirms our
intuitive explanation of the spread spectrum method in Section 3.

When the constant r2 is chosen such that σ2
s + a ≤ r2 ≤ σ2

s + b, both error probabilities asymptotically
decay to zero as n approaches infinite. The Type I and II error exponents exist and are given by Eα(σ2) =
0.5( r2

σ2
s+σ2 − ln r2

σ2
s+σ2 − 1) for σ2 < a, and Eβ(σ2) = 0.5( r2

σ2
s+σ2 − ln r2

σ2
s+σ2 − 1) for σ2 > b, respectively.
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4.3. Quantization-based Embedding

In quantization-based schemes, a watermark m is embedded by quantizing the host s using a quantization
function associated with the watermark. The embedding function is described as follows, x = Q(s,m) where
Q(·,m) is the quantization function corresponding the watermark m. Let C(m) be the reconstruction point set
of the quantizer associated with the watermark m. Then x is the quantized value of s using a nearest neighbor
quantizer associated with C(m). The authenticated signal x is discretely distributed over the code set C(m). Its
probability distribution p(x|m) for x ∈ C(m) conditioned on watermark m can be derived from the distribution
of the source s as follow, p(x|m) = P [X = x|m] = P [Q(s,m) = x|m] = P [s ∈ V(x)] =

∫
V(x)

f(s)ds where V(x)
is the Voronoi region around x associated with C(m) and f(s) is the PDF of the host signal s.

The composite hypothesis testing problem for a quantization-based embedding scheme becomes the following:

H0 : y = x + z(σ2) for σ2 < a (7a)

H1 : y = x + z(σ2) for σ2 > a (7b)

where x is distributed over C(m) with probability mass function p(x|m) derived in the above for a given watermark
m. Let f(z, σ2) be the probability density function (PDF) of the zero mean Gaussian sequence z with variance
σ2. The PDF of y is given by a convolution of p(x) and f(z, σ2), which is

∑
x∈C(m) p(x)f(y − x, σ2). The

generalized log-likelihood ratio test is given by

GLLT =
1
n

log sup
σ2<a

∑

x∈C(m)

p(x)f(y − x, σ2) − 1
n

log sup
σ2>b

∑

x∈C(m)

p(x)f(y − x, σ2) > T (8)

for some constant T . The above test statistic needs to find the optimal solution of σ2 to maximize the summation
of a weighted likelihood. It is hard to find an explicit form for the solution of σ2. Since the term f(y− x, σ2) =
(
2πσ2 exp( 1

n‖y − x‖2/σ2)
)−n/2

is a deceasing function of ‖y − x‖, the codeword closest to y has the smallest

distance 1
n‖y − x‖, thus is the dominant term in the summation, especially for large n. Therefore, we use the

dominant term to approximate the test statistic. Because of the flat shape of the distribution of p(x) over C(m)
and the dominance of the closest codeword, this approximation leads to a suboptimal solution which is very close
to the optimal one. Let xc is the closest codeword in C(m) to the received signal y. The generalized likelihood
ratio test is simplified to the following by just using the dominant term of xc, 1

n log supσ2<a p(xc)f(y−xc, σ
2)−

1
n log supσ2>b p(xc)f(y − xc) > T . Using a similar calculation in the non-blind authentication case, the decision
region is obtained as follows ‖y − xc‖ < nr2 for some positive constant r2. For QIM schemes in which C(m) is
a dithered uniform quantizer, the closest codeword xc to y is given by xc = Q(y − d(m)) + d(m). The decision
region for the QIM scheme is illustrated in Fig. 2. The decision region can be represented by An = C(m) + Qn

where Qn is an n-dimensional sphere with radius r, i.e. Qn = {z ∈ R
n|‖z‖2 < nr2}.

xc

r2

Figure 2. The decision region for the QIM scheme contains blocks around the reconstruction set of the quantizer associated
with the watermark m.
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Now we compute Type I and II error probabilities associated with the above derived decision region. The Type
I error probability for a legitimate noise with variance σ2 < a is given by αn(σ2) = P [y �∈ An] = P [x + z(σ2) �∈
C(m) + Q] = P [z(σ2) �∈ (C(m) − x) + Qn], which is the probability that z(σ2) is not in any of the blocks in
Fig. 2. This error probability is less than the probability that z(σ2) is just not in the closest block around xc.
So we have αn(σ2) ≤ P [z(σ2) �∈ Qn] = P

[
χ2(n) > nr2

σ2

]
. When the constant r2 > a, the above error probability

decays to zero as n approaches infinite for all σ2 < a, so the Type I error exponent exists and is lower bounded
as follows, Eα(σ2) ≥ 0.5( r2

σ2 − ln r2

σ2 − 1) for σ2 < a.

The Type II error probability for an illegitimate noise with variance σ2 > b is given by βn(σ2) = P [y ∈ An] =
P [x+z(σ2) ∈ C(m)+Qn] = P

[
z(σ2) ∈ ∑

xc∈C(m)(xc−x+Qn)
]
, where (xc−x)+Qn is the decision block around

xc − x for x,xc ∈ C(m) as shown in Fig. 2. For QIM schemes where the encoding set is a dithered version of a
base quantizer Λ, the above Type II probability is represented by βn(σ2) =

∑
λ∈Λ

P
[
z(σ2) ∈ V(λ)∩Qn

]
where

V(λ) denotes the Voronoi region around λ. Given the Type II error probability represented in a summation over
all decision blocks, the Type II error exponent is difficult to have a explicit form. We give an approximation here.
When n is sufficiently large, from information theory, the Gaussian sequence z(σ2) is uniformly distributed in its
typical set, which is an n-dimensional ball with a radius of

√
nσ2. When σ2 is small enough that the error z(σ2)

only falls in the fundamental Voronoi block V0 corresponding to the origin, so βn(σ2) = P
[
z(σ2) ∈ V0 ∩ Qn

]
≤

P
[
χ2(n) < nr2

σ2

]
, and the corresponding error exponent is given by Eβ(σ2) = 0.5( r2

σ2 − ln r2

σ2 − 1) for σ2 > b and
r2 < b. When σ2 is large, the errors that z(σ2) falls in other blocks cannot be ignored. Since for large n, z(σ2)
is uniformly distributed, the Type II error probability is therefore approximately equal to the volume ratio of
the decision region to the whole signal space. This volume ratio is given by

βn(σ2) ≈ Vol(Ωn ∩ V0)
Vol(V0)

≤ Vol(Ωn)
Vol(V0)

=
(

r2Gn(Λ)
DGn(B)

)n/2

, (9)

where Gn(B) and G(Λ) are the normalized second moments of the n-dimensional ball and the base lattice Λ
for C(m), respectively [11]. Gn(B) converges to 1/2πe as n → ∞ and G(Λ) ≥ 1/2πe [12]. Therefore, the error
exponent Eβ(σ2) ≥ 1

2 log( D
r2 ) − log(2πeG(Λ)). If the lattice Λ is also a “good” lattice, G(Λ) = 1/2πe, then

Eβ(σ2) ≥ 1
2 log( D

r2 ).

4.4. Comparison Results
In this section, we compares three scenarios by computing the relative entropy between two hypothesis distrib-
utions and two families of error probabilities using the generalized likelihood ratio test. We assume a Gaussian
host s with variance σ2

s = 200. In our simulation, we set a = b = 36. In other words, the AWGN channel is
legitimate for σ2 < 36 but illegitimate for σ2 > 36.

σ2
1 = 64 σ2

1 = 100
NB SS QIM NB SS QIM

σ2
0 = 4 1.3237 0.0220 0.1548 1.6294 0.0474 0.1792

σ2
0 = 10 0.7304 0.0175 0.0208 1.0118 0.0409 0.0434

Table 1. The relative entropy between legitimate and illegitimate AWGN channels for non-blind (NB), spread spectrum
(SS) and quantization-index-modulation (QIM) schemes. The host variance σ2

s = 200. The values of the relative entropy
for QIM are numerically computed due to quantization.

First, we compute the relative entropy D(pY |M ||qY |M ) between an legitimate channel pY |X(y) and an illegiti-
mate channel qY |X(y) in three scenarios. Since there is a set of legitimate channels, we choose two representative
legitimate channels with parameter σ2

0 = 4 and σ2
0 = 10. Similarly we select two representative illegitimate

channels with σ2
1 = 64 and σ2

1 = 100. The relative entropy D(pY |M ||qY |M ) for different legitimate and illegit-
imate channels are shown in Table 1 in which the QIM scheme uses scalar uniform quantizer with step size 8.
The values of the relative entropy in the table show that the ideal non-blind scenario expectedly has the largest
values, and spread spectrum has the smallest values. The quantization-based scheme achieves relative entropy
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greater than the spread spectrum scheme. This results show that the quantization-based scheme can achieve
better balance between the two types of error probabilities than the spread spectrum scheme.

We also compute two families of error probabilities associated with best decision regions with various thresh-
olds. A common approach in the assessment of hypothesis testing scheme is the receiver operating characteristic
(ROC) curves. The ROC curve is a curve of Type I error probability vs. Type II probability as the threshold
for decision region varies. In our composite hypothesis testing model, we have two families of error probabilities.
To obtain a ROC curve, we again choose a representative parameter from each parameter set. Let σ2

0 = 4 be the
representative parameter from the legitimate set, and σ2

1 = 64 be the one from the illegitimate set, thus a ROC
curve is obtained as αn(σ2

0) vs. βn(σ2
1) as the threshold parameter T or r2 varies.
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Figure 3. The ROC curves when n = 6 and the error exponent curves for non-blind, SS and QB methods.

Fig. 3(a) shows the ROC curves of different schemes for sequence length n = 6. We can see from the figure that
the spread spectrum scheme is the worst scheme, and the ideal non-blind scheme is the best. The quantization-
based scheme is worse than the non-blind one, but better than the spread spectrum scheme. This simulation
results confirm our analysis that the signal x is localized in quantization-based schemes, thus interfering less
in the channel identification of the two types. Fig. 3(b) illustrates the error exponent curves as the noise
variance σ2 varies for the non-blind, the spread spectrum, and the quantization-based schemes. In order that
the corresponding error exponents exist, the threshold r2 is set to be σ2

s +a for the spread spectrum scheme, and
a for the non-bind and quantization based schemes. We see in the figure that the non-blind scheme has much
larger error exponents than the spread spectrum scheme since the host signal has a significant impact on the
differentiation of two channel sets. The quantization-based scheme has the same error exponent as the non-blind
case when the noise variance σ2 is small. However, when σ2 increases, the Type II error exponent approaches
to a constant related to the embedding distortion D. These simulation results show that the quantization-based
method achieves significant improvement over the spread spectrum method in the ability to distinguish the
legitimacy of a distortion channel.

5. COMMON IMAGE PROCESSING ATTACKS

Our hypothesis testing approach on the case study of AWGN noise with Gaussian source confirms our intuitive
explanation that the quantization-based method allows the best tradeoff in semi-fragility. In this section, we
analyze certain signal processing distortions and show how to distinguish effectively between minor and severe
changes in quantization-based schemes. Malicious tampering such as image object removal or substitution always
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result in changes of large amplitude, thus the tampered signal is out of the detection region with high probability.
Therefore, we only focus on common signal processing attacks in our work.

In the quantization-based scheme, a watermark is embedded by quantizing the host. The structure of the
quantizer should tradeoff among semi-fragility, embedding distortion, and security [13]. For authentication
verification, given a test signal, the closest codeword xc in the quantizer set corresponding to the watermark
is found, and the quantization error y − xc is used to estimate legitimacy of a channel distortion. The test
statistic based on the quantization error plays an important role in determining the degree of distortion in order
to distinguish minor and severe accidental changes. Based on the hypothesis testing model, we examine the
relevant test statistic for specific distortions: JPEG compression, filtering, and geometric distortions.

5.1. JPEG Compression

JPEG compression is the most common incidental modification since most images are stored and transmitted in
compressed format to save storage and bandwidth. Therefore, many watermarking systems have been proposed
to be semi-fragile to JPEG compression up to a certain degree [3, 4, 14]. They all utilize a common property of
uniform scalar quantizer that the quantization error due to JPEG compression in DCT domain is bounded in
the range of [−∆

2 , ∆
2 ] where ∆ is the quantization step for compression quantization. However, in these systems,

fragility against illegitimate JPEG compression is not investigated. The Type II authentication error probability
cannot be eliminated since illegitimate severe quantization may still result in small quantization error in the
detection region. In this section, we view quantization noise as uniformly distributed signal, analyze both error
probabilities, and derived the test statistic to identify legitimacy of the JPEG compression distortion channel.

Given the watermarked image coefficients x in DCT domain, the quantized signal y = Q∆(x) where the step
size ∆ is related to compression quality and the rate of compressed signal. The quantization error is defined
as z(∆) = y − x = Q∆(x) − x. For JPEG compression attack, high quality factor down to certain level is
regarded as legitimate but low quality factor is illegitimate. The composite hypothesis testing problem for JPEG
compression is described as the following,

H0 : y = x + z(∆) for ∆ < a (10a)
H1 : y = x + z(∆) for ∆ > b (10b)

Suppose x is known, we need to make a decision on the hypotheses based on the observed quantization error z.
Often the channel input x has larger variance than the quantization step, so z can be assumed to be uniformly
distributed in the range [−∆

2 , ∆
2 ] for high rate quantization.

The decision region is obtained if GLLR = 1
n log sup∆<a fZ(z,∆) − 1

n log sup∆>b fZ(z,∆) > T for some
threshold T , where the likelihood of uniformly distributed signal is given by fZ(z,∆) = ( 1

∆ )n if maxi |zi| < ∆
2 , and

0 otherwise. The optimal decision An from GLLR can be simplified to maxi |zi| < 1
2∆T where ∆T = min{a, be−T }

[9]. The Type I error probability αn(∆) = 1 − (
∆T

∆

)n for ∆ > ∆T , and 0 otherwise when ∆ > a. The Type II
error probability βn(∆) =

(
∆T

∆

)n for ∆T < a when ∆ > b. The above hypothesis testing results show that from
the observed quantized noise z, the test statistic 2maxi |zi| is an estimate of ∆, therefore measures the degree
of JPEG compression. Legitimacy of the JPEG compression attacks should be judged by comparing the test
statistic with a threshold.

5.2. Image Filtering

The objective of image filtering is to remove noise from an image, but still keep a good visual quality of the image.
Real images have energy concentrated in low frequency but noises often occur in high frequency. Therefore, image
filtering is always a low pass filter to filter out high frequency components. For filtering, it is better to represent
the image signals in the frequency domain to investigate the effects of filtering distortions. In frequency domain,
we have Y (U, V ) = X(U, V )H(U, V ) where X(U, V ), Y (U, V ) and H(U, V ) are the host image, the filtered image
and the filter, respectively. Then the filtering model can be represented by additive model by taking a logarithm
on the magnitude of the frequency as follows, log |Y (U, V )| = log |X(U, V )|+log |H(U, V )|. The additive filtering
distortion item log |H(U, V )| is small for smooth filtering, and large for severe filtering, we then can apply our
approach to semi-fragile watermarking to detect the degree or legitimacy of filtering distortions. The idea here is
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to apply quantization-based watermarking in signal log |X(U, V )| at frequency band (U, V ) such that the severity
of the filtering can be measured from the quantization error of the test signal log |Y (U, V )|.

To better illustrate the idea, we use a Gaussian filter as an example and control its degree of degradation
using a single parameter. Gaussian filter is a linear filter whose low-pass filter curve is a Gaussian function
with a single degradation parameter. One advantage of Gaussian filters is that there are no sidelobes in both
spatial and frequency domain. The frequency spectrum of a Gaussian filter is approximated by [15] H(U, V ) ≈
e−2π2σ2(U2+V 2) for |U |, |V | < 1/2, which is also a Gaussian function. The parameter σ2 controls the shapes of
frequency responses, which represents the degree of filtering degradation. Since large σ2 may blur edges, low
values of σ2 is preferred when applying a Gaussian filer to remove noises. Therefore, we assume Gaussian filters
are legitimate when σ2 < a, but legitimate when σ2 > b where a, b are two positive constant and b ≥ a. The
composite hypothesis testing problem of Gaussian filtering is described as the following,

H0 : log |Y (U, V )| = log |X(U, V )| − 2π2σ2(U2 + V 2) for σ2 < a (11a)

H1 : log |Y (U, V )| = log |X(U, V )| − 2π2σ2(U2 + V 2) for σ2 > b. (11b)

We apply a QIM scheme to embed a watermark by quantizing the signal log |X(U, V )|. In frequency band
(U, V ), the dithered quantizer set C(m) is designed to be those of X(U, V ) satisfying log |X(U, V )| = ∆(U, V )(i+
d(m)) for some integer i and a given dither value d(m) where ∆(U, V ) is the quantization step size in frequency
(U, V ) and ∆(U, V ) > 2π2(U2 + V 2)a. After applying a quantization scheme, the quantized signal log |X(U, V )|
can be recovered from log |Y (U, V )| under legitimate filtering. We then can estimate σ2 from log |Y (U, V )| and
the recovered log |X(U, V )| as follows,

σ̂2(U, V ) =
log |X(U, V )| − log |Y (U, V )|

2π2(U2 + V 2)
. (12)

Legitimacy decision is made from the estimated degree of degradation σ̂2 over all frequency (U, V ).

5.3. Geometric Distortions

Geometric distortions are the most complex one among all possible distortions [16]. In our analysis so far, we
consider a value-metric model that uses the magnitude of additive changes to determine their severity. Geometric
distortion instead does not change the value of the input. Rather it eliminates the synchronization between the
input and the output. For images, geometric distortions include rotation, scaling and transformation.

The legitimacy of geometric distortions depends on specific applications. In applications where any geometric
distortion is not acceptable, geometric distortions belong to the illegitimate set. Traditional quantization-based
schemes still work since geometric distortion, like malicious tampering, pushes the quantized signal out of the
detection region, so the distorted images are detected as illegitimate with high probability. For some image
applications, global geometric distortions are considered acceptable since they do not change the visual meaning
of images. In these cases, geometric distortions belong to the legitimate set. In robust watermarking literature,
several watermarking systems resilient to geometric distortions have been proposed in which watermarking takes
place in some transform domain which is invariant to rotation, scaling and translation (RST) [17]. The same
approach can be employed in authentication watermarking. Authentication embedding and verification take
place in these RST-invariant domains where geometric distortion does not change the image component.

The most complicated specification of geometric distortion is that small amount of rotation, scaling or trans-
formation produces a similar image, thus is legitimate. However, large amount of rotation, scaling or transforma-
tion will change placement of image objects, so is illegitimate. This specification is reasonable for some practical
applications such as digital checks or digital medical images. For such specifications on geometric distortions, we
can apply a similar idea of value-metric model that the embedded watermark should retain all geometric informa-
tion of the watermarked image. Then any geometric distortion can be assessed by comparing the geometrically
distorted signal with the original watermark. To achieve this, we can embed a periodic reference watermark
pattern on the entire image using the QIM scheme. At the receiver end, the embedded reference watermark is
extracted, and checked with the original reference pattern to estimate possible geometric distortion and judge
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if the geometric distortion is acceptable or not. To check the extracted watermark with the original one, one
has to do an exhaustive search on all possible legitimate RST distortions. Since only small amount of geometric
distortion is allowed, such exhaustive search is feasible.

6. CONCLUSIONS
The paper studies how to embed a watermark effectively to achieve semi-fragility of multimedia authentication
through a composite hypothesis testing approach. Our results show that the quantization-based embedding
method outperforms the spread spectrum method in the tradeoff of semi-fragility. Based on the hypothesis
testing model, we also analyze certain common image processing distortions, and show how our approach can
distinguish effectively minor changes from severe ones in quantization-based authentication watermarking. The
results of the paper show that the hypothesis testing model provides insights for authentication watermarking
and allows better control of robustness and fragility in specific applications.

Practical semi-fragile authentication applications may involve several composite attacks. For example, the
legitimate set contains minor additive Gaussian noise, high quality compression, and mild image filtering while the
illegitimate set includes severe Gaussian noise, low quality compression, severe filtering, and object substitution.
For these types of composite sets, it is much harder to distinguish them, even in the non-blind case. Such challenge
is due to the nature of multimedia perception and classification, which is beyond the scope of authentication
watermarking. Further work will consider multimedia perception for authentication purposes.
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