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Abstract—This paper studies the problem of achieving water-
mark semifragility in watermark-based authentication systems
through a composite hypothesis testing approach. Embedding a
semifragile watermark serves to distinguish legitimate distortions
caused by signal-processing manipulations from illegitimate ones
caused by malicious tampering. This leads us to consider authen-
tication verification as a composite hypothesis testing problem
with the watermark as side information. Based on the hypothesis
testing model, we investigate effective embedding strategies to
assist the watermark verifier to make correct decisions. Our re-
sults demonstrate that quantization-based watermarking is more
appropriate than spread-spectrum-based methods to achieve
the semifragility tradeoff between two error probabilities. This
observation is confirmed by a case study of an additive Gaussian
white noise channel with a Gaussian source using two figures
of merit: 1) relative entropy of the two hypothesis distributions
and 2) the receiver operating characteristic. Finally, we focus on
common signal-processing distortions, such as JPEG compression
and image filtering, and investigate the discrimination statistic and
optimal decision regions to distinguish legitimate and illegitimate
distortions. The results of this paper show that our approach
provides insights for authentication watermarking and allows for
better control of semifragility in specific applications.

Index Terms—Digital watermarking, hypothesis testing, multi-
media authentication, semifragile.

I. INTRODUCTION

M ANY watermark-based multimedia authentication
systems have been proposed in the last few years

for ensuring the integrity and origin of multimedia data such
as images. These systems fall into two broad categories:
1) fragile and 2) semifragile. Fragile authentication water-
marking systems [1]–[3] often detect any modifications to
the marked signal in a similar way to traditional digital sig-
natures. Semifragile systems [4]–[6], however, are designed
to detect content-changing modifications, but tolerate certain
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kinds of content-preserving processing, such as high-quality
compression. The primary advantage of employing semifragile
watermarking over digital signature and fragile watermarking
technologies is that there is greater potential in characterizing
the tamper distortion. Though not used for authentication
applications but copyright protection, it is worth mentioning
another type of watermarking—robust watermarking—which
is designed to detect or extract the embedded watermark itself
even under modifications of the marked signal.

Many semifragile watermarking systems have been pro-
posed in the literature [4]–[19]. One of the first approaches to
semifragile watermarking, called telltale tamper proofing, was
proposed by Kundur and Hatzinakos [4] to determine the extent
of modification in the spatial and frequency domains of a signal
by using a statistics-based tamper assessment function. Another
influential semifragile system is the self-authentication-and-re-
covery image (SARI) method developed by Lin and Chang
[5], [6] in which a semifragile signature is designed to survive
JPEG compression up to a certain level. To distinguish JPEG
compression from other malicious manipulations, two invariant
properties of quantization are used. The first property shows
that a prequantized coefficient can be exactly reconstructed after
subsequent JPEG compression if the original quantization step
is larger than the one used for JPEG compression; this property
is used for watermark embedding to guarantee robustness up
to a certain level of JPEG compression. The second property
involves an invariant relationship between a pair of coefficients
before and after JPEG compression, and is used to generate the
signature. Although the SARI system works well under JPEG
compression, its ad-hoc design using the unique properties
of JPEG quantization limits its portability to different appli-
cations. Other previously proposed semifragile watermarking
methods [10], [12], [14] are achieved by carefully “scaling”
a robust watermark so that it is likely to be destroyed if the
distortion exceeds a particular level. Lin et al. [12] propose
a semifragile watermarking technique based on extending a
simple spread-spectrum watermarking method with a modified
detector. Yu et al. [10] use a mean-quantization-based fragile
watermark to detect malicious tampering while tolerating some
incidental distortions. Most recently, new semifragile water-
marking schemes have been proposed by using random bios
and nonuniform quantization [17], integer wavelet transform
[18], and spatiotemporal chaos [19].

Overall, semifragile multimedia authentication systems are
designed with two objectives: 1) to authenticate legitimate
changes and 2) to detect content-changing modifications.
Thus, possible distortions are often classified into two cate-
gories: 1) legitimate and 2) illegitimate changes. In general,
modifications which do not alter the “perceptual” content of
the multimedia signal are considered to be legitimate. These
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typically include minor modifications, such as high-rate JPEG
compression and image enhancement filtering. Severe modifi-
cations, such as low-rate compression, image blurring filtering,
and malicious image object removal or substitution are typi-
cally considered illegitimate. When a marked signal undergoes
legitimate distortion which does not alter the visual content
of the data, the authentication system should indicate that the
signal is authentic from the original sender. Conversely, when
it undergoes illegitimate tampering, the distorted signal should
be rejected as inauthentic. Therefore, a successful multimedia
authentication system should be well designed such that it is
robust to legitimate distortions but fragile to illegitimate distor-
tions. Note that the legitimate and illegitimate transition region
is application dependent and that the semifragile methodology
should employ this information during the design phase.

Multimedia authentication watermarking faces two signifi-
cant challenges. One challenge is that there is typically no clear
distinction boundary between legitimate and illegitimate distor-
tions. This intrinsic uncertainty makes semifragile authentica-
tion challenging and necessarily ad hoc in most applications.
The other major difficulty is the fact that the original host is
not available at the receiver side for authentication verification.
Therefore, in some contexts, the original host serves as an inter-
ference in authentication. In practical applications, the original
host generally has a much larger magnitude than the allowed le-
gitimate channel distortions. The unavailability of the original
host makes it hard to differentiate legitimate distortions from il-
legitimate ones. These challenges motivate us to investigate the
semifragile nature of multimedia authentication by using the hy-
pothesis testing approach.

Statistical hypothesis testing is the fundamental approach in
signal detection theory [20]. It has been employed in robust wa-
termarking to derive various optimal watermark detectors for
certain attack models [21], [22] as well as in steganalysis for de-
tecting hidden data [23]. Hypothesis testing is also an important
approach for the information-theoretical analysis of message
authentication. In [24], message authentication is interpreted as
a hypothesis testing problem to analyze lower bounds for au-
thentication attacks, in which the relative entropy is employed to
evaluate the ability to differentiate two hypothesis distributions.
In this paper, we take a similar approach of hypothesis testing
in analyzing semifragile watermarking regarding to two classes
of multimedia changes. In our formulation, authentication ver-
ification is modeled as a problem of differentiating two classes
of changes (i.e., two composite hypotheses) and the role of wa-
termark embedding is modeled as side information to assist the
authentication verification procedure. Using the composite hy-
pothesis testing approach, the best authentication verification
strategy is derived and relative entropy is also employed in this
paper to evaluate the authentication differentiation ability due to
the watermark side information. This new composite hypothesis
testing approach attempts to address the multimedia authentica-
tion challenges in a statistical sense, which enables us to reveal
the nature of watermark embedding and provide insightful de-
sign for watermark-based authentication systems.

Within this design methodology using hypothesis testing, this
paper also investigates a fundamental question as to the type of
embedding that works well for authentication. Empirically, it

Fig. 1. General authentication watermarking model.

has been found that the quantization-based method is better than
the spread-spectrum method for authentication watermarking
since many new proposed semifragile systems adopt the quan-
tization-based embedding method [4], [6], [10], [25]. Through
the hypothesis testing framework, our analytical results show
that the quantization-based embedding method is better than the
spread-spectrum method to achieve the tradeoff between two
error probabilities. This paper complements our previous paper
[26]. In [26], we derived a coding structure for watermark-based
authentication and analyzed the security aspects of semifragile
systems. In this work, we are more focused on semifragility re-
quirements of authentication watermarking systems. Our goal is
to determine the most effective way to embed a watermark for
differentiating legitimate and illegitimate multimedia changes.

This paper is structured as follows: Section II formulates
authentication watermarking as a semifragile hypothesis testing
model and identifies the role of watermark embedding. In
Section III, for tractability of the solution, a simple case of ad-
ditive white Gaussian noise channels with a Gaussian source is
considered to confirm the analytical result that quantized-based
embedding is more effective in authentication watermarking.
Section IV focuses on common image-processing distortions,
such as JPEG compression and image filtering, and analyzes
test statistics for authentication. Finally, conclusions are made
in Section V.

II. SEMIFRAGILE HYPOTHESIS TESTING MODEL

We now describe our hypothesis testing approach, and inves-
tigate how semifragility can be characterized by error proba-
bilities arising in a hypothesis testing model. In the context of
detection theory, our theoretical analysis attempts to address a
fundamental question as to the type of embedding that is better
for authentication.

A. Mathematical Model

We consider the general authentication watermarking system
shown in Fig. 1 which contains three components: 1) an em-
bedder (Alice), 2) a distortion channel, and 3) the corresponding
watermark verifier (Bob). The -dimensional multimedia signal

is the host signal, which is a
block of data or transform coefficients from an image, video,
audio, or other signal which Alice wants to authenticate. The
host signal vector takes values from signal space where the
alphabet could be for image pixels,
or for discrete cosine trans-
form (DCT) coefficients of images. The watermark message
is secret information which is unique to each transmitter. In this
model, we assume for simplicity a symmetric key scheme in
which Alice’s secret key is also available to Bob, but not to
the opponent. Secret information shared between the sender and
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receiver may include the traditional key in cryptographic tech-
niques as well as the watermark in some semifragile authentica-
tion systems. For example, in the Yeung–Mintzer scheme [2], a
watermark logo image is shared between the transmitter and the
receiver; thus this is also part of the secret message. In the Wong
scheme [3], the secret message is an encryption key as well as a
binary watermark image. In these two examples, the secret in-
formation is long, but we can index it by using a lookup table.
Thus, without loss of generality, we suppose is an integer from
an index set where is the total number of
messages.

Alice wants to send the host signal to Bob through a public
channel. In order for Bob to be ensured that the signal did orig-
inate from Alice, Alice authenticates the host source with the
secret watermark to produce an authenticated signal
without introducing perceptible visual distortion. The authenti-
cation embedding procedure is described as a function which
takes the host and the watermark as inputs to produce the
composite signal

(1)

The signal is often referred to as the au-
thenticated signal or the watermarked signal. The authentication
distortion or embedding distortion is defined as

(2)

where is a distortion measure, and is
also used to denote the distortion between two vectors. The
embedding procedure should not introduce visual artifacts, so
the embedding distortion must be below a given maximum al-
lowed value. A common and analytically convenient distortion
measure for real-valued signals is the squared difference, i.e.,

. Under this distortion measure, the em-
bedding distortion is the mean square error (MSE) defined as

between the host and the com-
posite signal. A commonly used measure of visual distortion for
images is the peak signal-to-noise ratio (PSNR), defined as

(3)

Other practical but sophisticated visual-quality assessment
measures for images include Watson’s visual model [27], [28]
and the structural similarity index [29] which take advantage of
known characteristics of the human visual system (HVS).

At the receiver end, knowing Alice’ secret key , Bob at-
tempts to verify whether the received signal is an au-
thentic copy from Alice. In authentication systems, authenticity
implies that the integrity of the data communicated as well as the
origin of the source are verifiable. In other words, if is a legiti-
mate copy of the data originating from Alice with watermark ,

should be accepted by Bob as authentic. In general, the verifi-
cation procedure is described as a binary function with

and as inputs. The received signal is authentic from Alice
if , and inauthentic if .

Fig. 2. Distinction between hypothesis testing approaches in semifragile water-
marking and robust watermarking. (a) Semifragile authentication watermarking.
(b) Robust watermark detection.

B. Authentication Semifragility Verification: Composite
Hypothesis Testing Approach

During the transmission in the public channel, the authen-
ticated signal may be altered by distortions, as depicted in
Fig. 1. Possible modification of the watermarked signal is mod-
elled as a distortion channel where is the channel
input and is the channel output. The behavior of a distortion
channel is characterized by its probability density function
(PDF) of conditioned on , denoted by . The random
distortion channel includes deterministic modifications as a spe-
cial case.

We introduce two categories of channels: 1) the legitimate
channel set and 2) the illegitimate channel set . Depending
on the application, may include minor modifications, such as
high-rate JPEG compression, image enhancement filtering, and
other unobtrusive manipulations. The illegitimate channel set

may include severe modifications, such as low-rate compres-
sion, image blurring filtering, and malicious tampering, such as
image object removal or substitution. With channel input data
originating from , if a channel , the channel output
should be considered authentic, while the channel output of an
illegitimate channel should be considered inauthentic.

At the receiver end, the receiver attempts to verify whether
is a legitimate copy of the data originating from the sender

with watermark . This is equivalent to determining whether
or is based on the received signal and the sender’s

watermark . Semifragile watermark verification can therefore
be viewed mathematically as a composite hypothesis testing
problem to identify legitimacy of a channel. Two composite hy-
potheses are present: 1) the null hypothesis is and 2) the
alternative hypothesis is , defined as

for (4a)

for (4b)

that are tested by using the observation and the sender’s water-
mark . Here, the watermark represents the side information to
the receiver and is used to help make an appropriate hypothesis
testing decision. This side information helps decision making
because it serves to reveal partial information about the signal
to authenticate . However, the embedding function

influences the level of side information available at the verifi-
cation end. This is, in part, due to the fact that the host signal
represents a form of interference for the channel differentiation.

From the model of (4), we can identify a fundamental differ-
ence between hypothesis approaches for semifragile and robust
watermarking, which is illustrated in Fig. 2. The purpose of hy-
pothesis testing in semifragile watermarking is to identify the
type of the channel by leveraging the watermark characteristics
to provide useful side information for detection. The purpose of
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hypothesis testing in robust watermarking is to determine which
watermark message or has been embedded in a host with
some channel noise as interference [22]. Due to the diversity
of the characteristics of legitimate and illegitimate changes and
blind nature of the source signal in authentication watermarking,
the hypothesis testing problem in Fig. 2(a) is, in some ways,
more challenging than that of robust watermarking. That is also
why the watermark is needed in Fig. 2(a) to assist semifragile
hypothesis testing.

1) Semifragility: Two Types of Errors: With respect to the
hypothesis testing model, there are two types of authentication
errors in semifragile watermarking [26], [30]. Type I error, often
called false positive error, or false alarm, results when the dis-
tortion channel is identified to be in when it is actually in

. This type of authentication error characterizes the robust-
ness of the semifragile authentication system. Let be the de-
cision region in -dimensional signal space, which the receiver
uses to verify authenticity of the received signal . Type I error
probability is given by

(5)

Type II error, often called false negative error, or miss, occurs
when has been illegitimately tampered but the received signal

is incorrectly verified by the receiver as authentic. This type of
authentication error characterizes the fragility of the semifragile
system. Type II error probability is given by

(6)

In general, two hypotheses and are composite, so there
are two families of authentication error probabilities for a given
decision region. These competing families of error probabilities
are sensitive to the selection region , resulting in a natural
performance tradeoff. The most attractive decision region gives
the best tradeoff between two families of authentication error
probabilities under the Neyman–Pearson criterion [31], [32].

2) Common Approach to Composite Hypothesis Testing:
The most commonly used approach for composite hypothesis
testing is the generalized likelihood-ratio test (GLRT) [30]. In
the GLRT approach, the most probable individual hypothesis is
used to determine the likelihood of the composite hypothesis.
The associated generalized likelihood ratio is defined as the
ratio of the maximum value of the likelihood under to the
maximum under . That is

(7)

where is the likelihood of the received sequence
under the hypothesis with the side in-

formation . For ease of computation, we employ the following
generalized log-likelihood ratio normalized by the dimension :

(8)
Hypothesis is accepted if the aforementioned test statistic is
greater than a given threshold ; otherwise, is accepted. The
predefined threshold is chosen to tradeoff two types of error
probabilities.

The presented work utilizes the GLRT approach to develop a
practical test statistic to verify the authenticity of a given signal.
By introducing this composite hypothesis testing and GLRT
framework to semifragile analysis, we are able to investigate the
role of watermark embedding in enhancing the ability to differ-
entiate legitimate from illegitimate distortions.

C. Authentication Embedding: Reducing Interference From
the Host Signal

The authentication performance criterion and the compar-
ison of watermark embedding strategies are now considered.
The performance of two predominant classes of embedding
methods is studied: spread-spectrum- and quantization-based
approaches. Specifically, we provide an information-theoretic
explanation of how quantization-based embedding helps the
receiver distinguish the two channel classes. For semifragile
authentication, a quantization-based scheme will be shown to
allow the receiver to achieve the best tradeoff between Type I
and II error probabilities.

Let and denote the probability density functions
of the two most probable single hypotheses corresponding to
legitimate and illegitimate channels, respectively, discussed in
relation to (7). A well-known result in hypothesis testing pro-
vides a relationship between the error probabilities and and
the relative entropy

as follows: , where is defined as
[24]

[33], [34]. In particular, for , we have .
In other words, characterizes the error exponent of
Type II error probabilities for . Although it is mathemat-
ically not a true distance measure, the aforementioned relation-
ship suggests using as a figure of merit to measure
the receiver’s capability to verify the authenticity of a received
signal. Note that the counterpart is also a measure of
figure of merit to evaluate the Type I error rate. Within the con-
text of the semifragile watermarking problem depicted in Fig. 1,
where , , , and are random variables corresponding to
the source, the watermark, the channel input and output, respec-
tively; the associated figure of merit for semifragile verifica-
tion is since the watermark is known to the
receiver.

With the relative entropy as the figure of
merit, we are able to explain two extreme embedding methods
that provide performance bounds for any watermark-based au-
thentication. It is shown in the Appendix that with any method
of watermark embedding

(9)

The lower bound corresponds to the scenario that the
hypothesis testing decision is made only based on the received
signal, without any help from the watermark. In this scenario,
the channel input itself serves as interference-to-channel dis-
tortion hypothesis testing since no information about is avail-
able at the receiver through the watermark . This lower bound
result also justifies our intuition that the side information helps
to alleviate interference from the host signal. The upper bound
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corresponds to the nonblind authentication sce-
nario that the host signal is fully known to the receiver through
the watermark . With the known host signal, authentication er-
rors are merely due to the fuzzy boundary between legitimate
and illegitimate distortions and, thus, the receiver can make
the best judgement on the legitimacy of a test signal. In prac-
tical watermark-based authentication systems, due to the limited
length of the watermark, it is impossible to know fully about the
host signal through the watermark , so this upper bound is
not achievable. Nevertheless, the nonblind scenario provides us
with an upper bound to evaluate any watermark-based systems.

For general authentication watermarking schemes, the
watermark should be embedded so that the figure of merit

is maximized over possible embedding func-
tions. This optimization problem is very complex to solve
since the embedding function should also satisfy an embedding
distortion constraint. In this paper, we provide an intuitive
explanation of how a good embedding function helps channel
differentiation. Since the channel input serves as a form of
interference to distortion channel differentiation, the watermark
should be embedded to reduce the degree of this interference.
It is intuitively straightforward that the more random the signal

is, the more difficult it is to distinguish between two hy-
pothesis probability functions and [34]. Therefore,
one would like to reduce the uncertainty of conditioned on

. In other words, the conditional entropy should
be minimized in order to reduce its interference to distortion
channel differentiation.

In quantization-based embedding schemes, the water-
mark is embedded in the source by using a corre-
sponding quantizer, and the embedded signal is repre-
sented as , where is a watermark-re-
lated quantization operation. From information theory [34]

since quanti-
zation is not a bijective function. Therefore, quantization-based
embedding reduces interference from the blind host signal. In
general, a larger quantization step will result in less entropy of

. However, a larger quantization step will also result in
larger embedding distortion . Therefore, there is a tradeoff
in determining the quantization step. In practice, a multidi-
mensional lattice quantizer will give less entropy of than a
uniform quantizer for given authentication distortion.

In standard spread-spectrum watermarking, a key-related
watermark sequence is added in the original host ,
so the watermarked signal . Therefore,

. This is equivalent to the worst case that
no watermark is embedded and used for verification since the
watermark does not give any help to reduce the interference
from the host signal. In some authentication schemes, the wa-
termark sequence is generated to be dependent on the
source for security reasons. However, the source-dependent
sequence is often designed to be pseudorandom with respect
to the source, so such dependence is not intended to reduce
the randomness of the watermarked signal. The embedded
watermark still suffers almost full interference from the host
signal in channel differentiation.

Based on the aforementioned discussion, we can see that
since the quantization-based method reduces the interference of

the watermarked signal to distortion channel differentiation,
it is superior to spread-spectrum watermarking for achieving
semifragility in multimedia authentication.

III. ANALYSIS OF AWGN CHANNELS

WITH A GAUSSIAN SOURCE

To support our assertion of the superiority of quantiza-
tion-based embedding, in this section, we analyze a simple
case of additive white Gaussian noise (AWGN) channels with
a Gaussian source. The legitimacy of an AWGN distortion
channel is specified as follows: an AWGN distortion channel
is legitimate if its variance for a constant , and
illegitimate if for a constant . It is also assumed
that the host signal is Gaussian distributed with zero mean and
variance . We use the GLRT to derive the optimal decision
region for the nonblind scheme, the spread-spectrum method,
and the quantization-index-modulation (QIM) scheme. These
methods are assessed and compared by using the relative
entropy between two hypothesis distributions as well as the
receiver operating characteristic (ROC) curves.

A. Nonblind Authentication

We start with the ideal case where is known since it gives a
performance upper bound for watermark-based authentication.
The composite hypothesis testing is to distinguish two sets of
Gaussian noise as follows:

for (10a)

for (10b)

where is a zero mean white Gaussian sequence with vari-
ance . Writing with known, the optimal decision
region is derived by using the following generalized log-likeli-
hood ratio test:

(11)
for some threshold . Here, the likelihood for Gaussian
noise is given by

(12)

where . For a fixed , is
minimized at . Now we have

if
otherwise.

(13)

if
otherwise.

(14)
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Then, the generalized log-likelihood ratio is given by

if

if

otherwise
(15)

which is a strictly decreasing function of . Therefore, the op-
timal decision region given by (11) can be simplified to

(16)

for some positive constant , which is related to , , and .
This result is consistent with the fact that the mean square av-
erage statistic is a sufficient statistic for the variance
of a Gaussian distribution.

Type I error probability for a legitimate AWGN
channel with variance and Type II error probability

for an illegitimate channel with variance are,
respectively, given by

for (17)

for (18)

where denotes chi-square distribution with degree , and
is the complement set of .

B. Spread-Spectrum Scheme

The embedding function for the spread-spectrum scheme is
given by

(19)

where is an additive watermark signal related to the mes-
sage and independent of . The verification procedure for
spread-spectrum embedding is the following hypothesis testing
problem:

for (20a)

for (20b)

The receiver knows the watermark and, thus, the spread-spec-
trum signal . However, the original signal is not known to
the receiver and, thus, serves as noise to the hypothesis testing
of two channels. Using the generalized log-likelihood ratio test,
the optimal decision region is given by

(21)

for some positive constant . Equation (21) gives the best
authentication detector structure for spread-spectrum wa-
termarking, which is a distance detector to the embedded
watermark. In contrast, in robust watermarking with Gaussian
noise, testing the existence of the embedded watermark is
best performed by a correlation detector. This illustrates an
important distinction between robust and semifragile authen-
tication watermarking. Therefore, the best detector for robust
watermarking is not good for authentication watermarking

in terms of sem-fragility characterized by two types of error
probabilities.

Given the decision region in (21), the Type I and II error prob-
abilities are given by

for (22)

for (23)

respectively, where denotes chi-square distribution with
degree , and denotes the complement set of . From
the aforementioned results, we can see that the additive spread-
spectrum signal does not help tradeoff the two error prob-
abilities. One would essentially obtain the same results if no
signal is embedded, thus confirming the intuitive expla-
nation of the spread-spectrum method in Section II-C.

C. Quantization-Based Embedding

In quantization-based schemes, a watermark is embedded
by quantizing the host by using a quantization function associ-
ated with the watermark. The embedding function is described
as follows:

(24)

where is the quantization function corresponding to the
watermark . Let (i.e., the re-
construction point set of the quantizer). Then, is the nearest
neighbor of in in order to reduce embedding distortion.
The authenticated signal is discretely distributed over the code
set . Its probability function for condi-
tioned on watermark can be derived from the distribution of
the source as follows:

where is the Voronoi region around
associated with , and is the PDF of the host .
The composite hypothesis testing problem for a QIM embed-

ding scheme becomes the following:

for (25a)

for (25b)

where is distributed over with the probability mass
function derived in the above for some given water-
mark . Let be the PDF of the zero mean Gaussian
sequence with variance , as given in (12). The PDF of

is given by a convolution of and , which is
. The generalized log-likelihood

ratio test is given by

(26)

for some constant .
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Fig. 3. Decision region for the QIM scheme contains blocks around the recon-
struction set of the quantizer associated with the watermark �.

The GLLR depends on finding the value of , which
maximizes the summation of a weighted likelihood,
which is difficult to obtain explicitly. Since the term

is
a decreasing function of , the codeword closest to
has the smallest distance , thus it is the dom-
inant term in the summation, especially for large . Since
the probability function of over is relatively flat
between neighboring codewords, the effect of the term
in the summation is not so significant, compared with the

term. Therefore, we use the dominant term of the
closest codeword to approximate the test statistic.

Let be the closest codeword in to the received signal
. The generalized likelihood ratio test is simplified to the fol-

lowing equation by just using the dominant term of :

(27)

Using a similar calculation in the nonblind authentication case,
the decision region is obtained as follows:

(28)

for some positive constant . For QIM schemes in which
is a scalar dithered uniform quantizer, the closest codeword to

is given by . The decision region for
the QIM scheme is illustrated in Fig. 3. The decision region can
be represented by where is an -dimen-
sional sphere with radius (i.e., ).

Now we compute Type I and II error probabilities associ-
ated with the derived decision region in Fig. 3. The Type I
error probability for a legitimate noise with variance
is given by

, which is the
probability that is not in any of the blocks in Fig. 3. This
error probability is less than the probability that is just
not in the block around . So we have

(29)

The Type II error probability for an illegitimate noise with vari-
ance is given by

,

TABLE I
RELATIVE ENTROPY BETWEEN LEGITIMATE AND ILLEGITIMATE CHANNELS

FOR NONBLIND (NB), SPREAD SPECTRUM, AND QIM SCHEMES

where is the decision block around
for as shown in Fig. 3. In QIM schemes where

for a base quantizer and a dither vector
, , so the aforementioned Type II probability

is represented by

(30)

where denotes the Voronoi region around .

D. Comparison Results

In this section, we compare three scenarios by computing
the relative entropy between two hypothesis distributions and
two families of error probabilities by using the generalized like-
lihood-ratio test. We assume a Gaussian host with variance

. In our simulation, we set . In other
words, the AWGN channel is legitimate for but illegit-
imate for .

First, we compute the relative entropy
between a legitimate channel and an illegitimate
channel in the three embedding scenarios. Since there
is a set of legitimate channels, we choose two representative
legitimate channels with parameter and . Sim-
ilarly, we select two representative illegitimate channels with

and . In the nonblind (NB) scheme, since
and are zero-mean Gaussian probability functions

with variance and , respectively, the relative entropy
.

In the spread-spectrum scheme, a spread-spectrum watermark
signal of zero mean and variance 5.33 is added to the
host signal. So the conditional distributions and are
zero-mean Gaussian probability functions with variance
and , respectively, so

.
In the QIM scheme, a scalar uniform quantizer with step size 8
is employed, which results in the same embedding distortion as
the SS scheme. The relative entropy is numer-
ically computed by using its definition. The values of relative
entropy for different legitimate and illegitimate channels are
shown in Table I. Recall that the relative entropy character-
izes the error exponent of error probabilities and so the error
probabilities follow a decreasing trend of for
a signal of length . The values of the relative entropy in the
table show that the ideal nonblind scenario expectedly has the
largest values, and the spread-spectrum scheme has the smallest
values. The QIM scheme achieves greater relative entropy than
the spread–spectrum scheme. These results show that the QIM
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Fig. 4. ROC curves when � � � and � � �.

scheme can achieve better tradeoff between the two types of
error probabilities than the spread-spectrum scheme.

We also compute two families of error probabilities by
using the generalized likelihood-ratio test associated with a
decision region. A common approach in the assessment of
hypothesis testing is the ROC. The ROC is a curve of Type
I error probability versus Type II probability as the threshold
for decision region varies. In our composite hypothesis testing
model, we have two families of error probabilities. To obtain
an ROC curve, we again choose a representative parameter
from each parameter set. Let be the representative
parameter from the legitimate set, and be the
one from the illegitimate set. An ROC curve is obtained as

versus as the threshold parameter or
varies. The ROC curve moves from left to right as T or
increases. Fig. 4 shows the ROC curves of three different
schemes for sequence length 2 and 6. We can see from both
figures, that the spread-spectrum scheme is the worst scheme,
and the ideal nonblind scheme is the best with the QIM
in between. When is increased from 2 to 6, all schemes
achieve lower error probabilities (i.e., better semifragility)
since more channel outputs are observed in the hypothesis
testing. Moreover, with larger , the improvement of the
QIM scheme over the spread-spectrum method also becomes
larger. Such improvement will be more significant in a typical
authentication system where the number of total pixels
in an image is at least thousands. These simulation results
confirm our analytical observation that the quantization-based
embedding method outperforms the spread-spectrum method
in the ability to distinguish the legitimacy of a distortion
channel.

IV. COMMON IMAGE-PROCESSING DISTORTIONS

Our hypothesis testing approach on the analysis of AWGN
noise with Gaussian source confirms our intuition that quan-
tization-based watermarking provides the better tradeoff in

semifragility. In this section, we analyze certain signal-pro-
cessing distortions and show how to distinguish effectively
between minor and severe changes in quantization-based
schemes. Malicious tampering, such as image object removal
or substitution, always results in changes of large amplitude;
thus, the tampered signal is out of the detection region with high
probability. Therefore, we only focus on common signal-pro-
cessing attacks in this paper.

In quantization-based schemes, a watermark is embedded
by quantizing the host. The structure of the quantizer should
provide a compromise among semifragility, embedding distor-
tion, and security [35]. For authentication verification, given
a test signal, the closest codeword in the quantizer set
corresponding to the watermark is found, and the quantization
error is used to estimate the legitimacy of channel
distortion. The test statistic based on the quantization error
plays an important role in determining the degree of distortion
in order to distinguish minor and severe incidental changes.
Based on the hypothesis testing model, we examine the relevant
test statistic for specific types of distortions: JPEG compression
and filtering.

In general, authentication watermarking, the legitimate set
, and the illegitimate set may include many types of

common distortions. For example, may include high-rate
JPEG compression, image enhancement filtering, and other
unobtrusive manipulations while may include low-rate com-
pression, image blurring filtering, and malicious tampering. For
such composite specifications, it is complicated to derive the
best test statistic for all types of distortions even in the nonblind
case because a decision criterion best for one type of distortion
may not be optimal for others. Based on the GLRT, the most
probable individual type of distortion should be considered.
In this section, we therefore focus on only individual types
of distortions and derive the test statistic to distinguish minor
and severe changes. These single distortion situations reveal
the design insight of the problem and, thus, provide general
guidelines for general composite distortions.
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A. JPEG Compression

JPEG compression is one of the most common incidental
modifications due to its widespread use. Thus, many water-
marking systems have been proposed to be semifragile to
specific degrees of JPEG compression [4], [5], [10], [25]. They
consistently utilize a common property of the uniform scalar
quantizer that the quantization error due to JPEG compression
is bounded in the range of , where is the
quantization step for compression quantization in the DCT do-
main. However, in these systems, fragility against illegitimate
JPEG compression is not investigated. The Type II authenti-
cation error probability cannot be eliminated since illegitimate
quantization may still result in small quantization error in the
detection region. In this section, we view quantization noise as
a uniformly distributed signal, analyze both error probabilities,
and derive the test statistic to identify the legitimacy of the
JPEG compression distortion channel.

1) Composite Hypothesis Testing Model: JPEG compression
is essentially a quantization operation on image coefficients in
the DCT domain. Given the watermarked image coefficients
in the DCT domain, the quantized signal where the
step size is related to compression quality and the rate of the
compressed signal. The quantization error is defined as

. For a JPEG compression attack, the high
quality factor down to certain level is regarded as legitimate but
the low quality factor is illegitimate. The composite hypothesis
testing problem for JPEG compression is described as follows:

for (31a)

for (31b)

Often, the channel input is watermarked by quantizing the host
by using a dithered uniform quantizer

with the dither value randomly chosen from a uniform
distribution. The distribution of is thus continuous so that
the quantization error due to subsequent quantization can
still be assumed to be uniformly distributed in the range

for high-rate quantization.
We first consider the ideal nonblind scenario that the water-

marked signal is known, and make a decision based on the
quantization error . The decision region is obtained if

(32)
for some threshold , where is the likelihood of uni-
formly distributed quantization error, given by

if
if

(33)

We have

if
if

(34)

if
if

(35)

Fig. 5. Shaded region is the decision region � for the QIM scheme under
uniformly distributed noise with the embedding step size � . The dashed line
represents a uniform distribution � in the range of �������� ������. The prob-
ability � �� � � � is the area ratio of the decision region within the dashed line
to the entire area within the dashed line.

So (32) can be simplified to

(36)

where . With the aforementioned optimal
decision region, the Type I and Type II error probabilities are,
respectively, given by

if
otherwise (37)

for , and

for (38)

The above error probabilities are just those for the nonblind
case where the channel input is known. For quantiza-
tion-based schemes, has to be estimated from the closest
quantized signal. Since its decision region contains all decision
blocks around quantization points, the error probabilities in
other blocks should also be counted. Suppose the embedding
scheme is a QIM scheme by using scalar quantizers of step size

, and . The decision region for the QIM scheme
under uniformly distributed noise is illustrated in Fig. 5. From
the figure, the Type I and Type II error probabilities for the
QIM scheme are, respectively, given by

for (39)

for (40)

where the probability is the area ratio of the decision
region within the range of to the entire area
within the range, given by

(41)
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Fig. 6. Error probability curves associated with quantization noise for different choices of decision sets when � � �. (a) Analytical results. (b) Simulation results.

where (i.e., the nearest integer of the
ratio ), and is related to the rounding error

as follows:

if
if
if .

(42)

A detailed derivation of (42) can be found in [36].
2) Comparison Results: Existing semifragile systems for

JPEG compression employ a robust watermarking scheme.
Since all legitimate quantization steps , the quantization
error is bounded within . This is equivalent to
using the decision threshold . For this setting, the quan-
tization error due to legitimate quantization falls in the decision
region, so Type I error probabilities are all zero. However, Type
II error probabilities are not taken into consideration. From the
equations of Type I and Type II error probabilities that were
previously shown, an optimal choice of should balance two
error probabilities. We choose so that the maximal values
of both Type I and II error probabilities are equal. Since Type
I error probability achieves its maximum at and Type
II error probability achieves its maximum at , we have

.
We compare the traditional scheme with our scheme by set-

ting , , and . The error curves are
shown in Fig. 6(a). The error curve when describes the
robustness property and the curve when describes the
fragility property. We can see that the traditional scheme does
not have any Type I error probability, so the robustness objec-
tive is fully achieved. However, for all , the scheme has
greater Type II error probability than our scheme, so the fragility
objective is worse. We see from the figure that our scheme has
smaller average overall error probability.

In practice, quantization is a deterministic process, and the
quantization error is also dependent on the watermarked signal.

Therefore, we also simulate the semifragile scheme to quanti-
zation distortion in the channel. We simulate the semifragile
QIM scheme on 8 8 blocks of image Lenna. In the simula-
tion, medium DCT coefficients from frequency band 5 to 40 in
zigzag order of 64 bands are used for embedding and the same
quantization step size is used for all coefficients as
in Fig. 6(a). Type I and II error rates are measured by the per-
centage of estimated quantization noise greater than the decision
threshold. Fig. 6(b) shows the error-rate curves associated with
quantization distortion as the quantization step varies. We see
results similar to those in Fig. 6(a). The traditional scheme does
not have any Type I error probability, so it is better than our
scheme in terms of robustness, but worse in terms of fragility
when the quantization becomes illegitimate. Our scheme can
achieve smaller average overall error probability associated with
fragility which is more important than robustness requirements
in semifragile watermarking.

B. Image Filtering

One common objective of image filtering is to remove noise
from an image, while still keeping good visual quality. Real nat-
ural images have energy concentrated in low frequencies in con-
trast to noise that can often occur at higher frequencies. There-
fore, image filtering is often low pass in order to remove those
components of noise without interfering with the signal com-
ponent. For image applications, there are three common cate-
gories of filters: 1) linear filters, including neighbor averaging
and Gaussian filters; 2) rank-value filters, such as median filters;
and 3) adaptive filters.

It is better to analyze images in the frequency domain to in-
vestigate the effects of filtering distortions. Here, we focus on
linear filters since they provide a tractable channel representa-
tion. The effects of nonlinear or adaptive filters can be approx-
imated by linear filters. In the frequency domain, filtering is re-
garded as a product operation as ,
where , , and are the host image, the
filtered image, and the filter, respectively. Then, the filtering
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model can be represented by an additive model by taking a log-
arithm on the magnitude of the frequency as follows:

(43)

The additive term , representing the effect of a fil-
tering distortion on the host signal, is small for smooth filtering
and large for severe filtering. We then can apply our approach to
semifragile watermarking to detect the degree or legitimacy of
filtering distortions. The idea here is to apply quantization-based
watermarking in the signal at the frequency band

so that the severity of the filtering can be measured from
the quantization error of the test signal .

Whether filtering distortion is legitimate or not depends on
the marked image and the frequency band . We
do not attempt to produce a legitimate or illegitimate answer.
Rather, we provide a test statistic to measure the severity de-
gree of filtering distortion and let the receiver judge the legiti-
macy from the test statistic value. To better illustrate our idea
of quantization-based watermarking, we use a Gaussian filter as
an example and control its degree of degradation using a single
parameter.

1) Gaussian Filters: The Gaussian filter is a linear filter
whose low-pass filter curve is a Gaussian function with a single
degradation parameter. Gaussian filters have advantages of the
absence of ringing artifacts and noise leakage since there are no
sidelobes in the spatial and frequency domains [37].

A Gaussian filter is given by its impulse response

(44)

where is a parameter which determines the degree of degra-
dation. Its frequency spectrum is approximated by [37]

for (45)

which is also a Gaussian function. The parameter controls
the shapes of spatial and frequency responses of Gaussian fil-
ters. When is small, the filter has flat frequency response,
thus removing high-frequency components but preserving most
of the low- and medium-frequency components. When be-
comes large, the filter removes medium and high frequencies
or even low frequencies, which may blur the edges. Therefore,
Gaussian filters are legitimate when , but illegitimate
when , where , are two positive constant and .
Given the received image represented in the frequency
domain and the known embedded watermark in , the
composite hypothesis testing problem of Gaussian filtering is
described as follows:

for (46a)

for (46b)

2) Proposed Quantization-Based Scheme: We apply a
QIM scheme to embed a watermark by quantizing the signal

. In the frequency band , the dithered
quantizer set is designed to be that of , satisfying

for some integer and a

given dither value , where is the quantization step
size in frequency . We set
to allow correct recovery of under legitimate
filtering.

Assume that the host image has coefficients in the
frequency domain. The authentication embedder is to find an ap-
propriate codeword in the code set. The closest code-
word is obtained by

(47)
where denotes rounding to the nearest integer. The watermark
is only embedded in the magnitude of the coefficients and the
phase is kept unchanged.

At the receiver side, given a received image rep-
resented in the frequency domain, the watermarked signal

is first recovered from as follows:

(48)
where denotes the ceiling function, which gives the
smallest integer . The equation guarantees

. We then can estimate from
and the recovered as follows:

(49)

From individual estimates in all available frequencies,
we then estimate the overall degree of degradation . A natural
choice is the weighted average over all frequency bands, i.e.,

(50)

where is the weight function. Since natural images
have energy concentrated in low frequencies, we should trust
more of the individual estimates in low-frequency bands.
Generally, a larger weight should be given in low frequen-
cies than in high frequencies. In our experiment, we set

since the image magnitude
is larger in low frequencies than in high frequencies.

Such estimation of the overall degree of degradation can be
extended to general filtering operations which may not have a
nice closed-form expression of their frequency response. We can
again average the estimated distortions over all frequency bands
as follows:

(51)
for a certain weight function .

Finally, legitimacy decision is made from the estimated
overall degree of degradation . The effect of a filtering oper-
ation on visual quality heavily depends on the original image.
Whether filtering distortion is legitimate or not is a subjective
decision. Therefore, we just report the estimated overall degree
of degradation to the receiver, and leave it to the receiver for
judgement on whether the filtering distortion is legitimate or
not.
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Fig. 7. Estimate of � . The dashed line represents the results when additional Gaussian noise of variance 4 is added to the filtered image. (a) For Gaussian filters.
(b) For averaging filters.

3) Simulation Results: In this section, we simulate our pro-
posed semifragile algorithm for image filtering on the test image
Lenna. Given the host image of size , we first transform
it into the frequency domain by using discrete Fourier transform
(DFT). Since the coefficients in frequency domain are complex,
we only focus on their magnitude for embedding. Also, since
the Fourier representation of a real signal obeys conjugate sym-
metry, we can use, at most, of the coefficients in the fre-
quency domain for watermark embedding. In our simulation,
if the entire frequency coefficients are employed for authenti-
cation embedding, the watermark embedding results in visible
artifacts since the quantization step
in all frequency bands. Therefore, we secretly select part of the
frequency coefficients for authentication embedding. We choose
three frequency segments for embedding: 16 coefficients in low
frequency, 16 in medium frequency, and 8 in high frequency for
each dimension of the image. In total, 40 40 coefficients are
selected for watermark embedding.

In the simulation, (50) is used to estimate the overall
degree of degradation from different frequency bands. We
set the embedding quantization step for watermark em-
bedding . These parameters
result in allowable embedding distortion, described by a
peak-signal-to-nose ratio 45.48 dB. In our sim-
ulation, to test the accuracy of the estimation, we also apply
additive Gaussian noise to the filtered image, so the received
image , where
is the AWGN. Fig. 7(a) shows the simulation results of esti-
mating the parameter from the noisy filtered image
using Gaussian filters of various degrees . We can see that
the estimation is very accurate for Gaussian filtering even if
additional Gaussian noise of variance 4 is added. When the
additive noise increases, the estimation becomes less accurate.
When the actual of the Gaussian filtering occurring on the
watermarked image is close to 16, the estimate value of
drops to 8. This phenomenon takes places because the estimate
of is computed from the recovered watermarked image.
When is close to 16, the additive noise may push the water-

marked signal into the next quantization segment. Therefore,
the resulting individual estimate of lies between 0 and 16,
so the overall estimate approaches the average of 8.

In our experiments, we also apply averaging filters to the pro-
posed system which was designed based on Gaussian filters in
order to demonstrate its ability in differentiating minor and se-
vere changes for general filtering operations. Fig. 7(b) shows
simulation results of the estimated degree of degradation from
(50) when averaging filters with various window sizes are ap-
plied to the watermarked image. We can see from the figure that
the degree of degradation increases as window size increases.
Analytic derivation by using the frequency response of the av-
eraging filter on the right-hand side of (49) also shows that
these two parameters are closely related. In the figure, when the
window size exceeds 12, the estimated value drops to 0, and then
increases again. Again, this is because the watermarking step
size is exceeded, so the quantized value jumps from down
to 0, then increases again. The simulation shows that although
our scheme is designed based on Gaussian filters, the estimated
degree of degradation is also a test statistic to detect the legiti-
macy of general filters according to filtering effects in different
frequency bands. Authentication decisions are then made based
on significance of the test statistic.

C. Remarks on Reducing Embedding Distortion

In the proposed quantization-based approach for compression
and filtering, the embedding step size is chosen to be the max-
imum allowed step size for legitimate processing so that legiti-
mate and illegitimate channel distortions can be effectively dis-
tinguished. Such embedding introduces as much distortion as
legitimate processing can introduce, resulting in possible vis-
ible artifacts in the host. To reduce embedding distortion, we
only employ a part of the coefficients for embedding instead of
the entire host in our simulation for image filtering. By partial
embedding, security on the remaining coefficients only relies
on secret selection; thus, it could be weak against active attacks.
Thus, such partial authentication embedding trades off between
embedding distortion and system security requirements.
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Another way to reduce embedding distortion is to use the
distortion compensation technique proposed to achieve greater
embedding channel capacity in communications with side in-
formation [38], [39]. In the distortion-compensated QIM em-
bedding, quantization is performed on the domain where
is a weighting compensation factor and in the
case of no compensation. The embedding function is described
as

(52)

where is the distortion due to standard QIM
embedding on . Our previous paper [26] has analyzed the dis-
tortion compensation technique to reduce embedding distortion.
We find that the distortion compensation technique results in
equivalent channel noise where is the
channel noise which needs to decide whether it is legitimate or
not. By taking an appropriate value of
where is the embedding distortion and

is the variance of the channel noise, the variance of the
equivalent channel noise is smaller than the embedding dis-
tortion , so can be recovered from the quantization em-
bedding on . However, with the self-noise term , it
becomes more difficult to make a correct decision as to whether
the channel noise is legitimate or not, based on the recovered

. Therefore, the distortion compensation technique results in
more Type I and II error probabilities than the no-compensa-
tion case. This is a tradeoff between embedding distortion and
semifragility (characterized by two error probabilities).

V. CONCLUSION

This paper studies watermark embedding to achieve
semifragile multimedia authentication through a composite
hypothesis testing approach. Our results show that the quanti-
zation-based embedding method outperforms spread spectrum
in the tradeoff between algorithm robustness and fragility.
Based on the hypothesis testing model, we also analyze cer-
tain common image-processing distortions, such as JPEG
compression and filtering, and demonstrate how our approach
can distinguish effectively minor changes from severe ones in
quantization-based authentication watermarking. The results
in this paper show that the hypothesis testing model provides
insights for authentication watermarking and allows better
control of robustness and fragility in specific applications.

APPENDIX

PROOF OF (9) IN SECTION II-C

Let , , and be the random variables corresponding to
the watermark key, the channel input, and output, respectively.
We use the notations and to denote different PDFs of certain
variables under different channels and , respectively.
For example, and represent the conditional PDFs of

with under channels and , respectively. Simi-
larly, and are two marginal PDFs of under channels

and , respectively.

Theorem 1: Assume the random variables , , and form
a Markov chain [34] in an authentication model as follows:

where is the conditional PDF of with due to the em-
bedding of in a source, and and are two-channel
PDFs to be differentiated. Then, the following inequalities hold:

(53)

Proof: We prove the first inequality. By the chain of rela-
tive entropy [34], we have two expansions

(54)

(55)

Since and are equal under different channels,
. Also from nonnegativity of ,

we have .
Similarly, we can prove the second inequality by using the

chain of relative entropy

(56)

(57)

Since the embedding mapping is the same under
two distortion channels from , both and are
equal to , hence . From the nonnega-
tivity of , we have

(58)

Since forms a Markov chain,
and . Therefore, the second inequality

holds.
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