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ABSTRACT

This paper proposes a secure semi-fragile authentication wa-
termarking algorithm for natural images by embedding two
complementary watermarks for content change analysis. Two
authenticator watermarks are generated and embedded in
different regions of the images: one for detecting malicious
modifications and the other for estimating the degree of the
changes. The proposed scheme is able to distinguish common
content-preserving changes from malicious content-changing
modifications. Simulations on real images demonstrate the
effectiveness of the authentication watermarking scheme.

Index Terms— Multimedia authentication, Digital water-
marking, Semi-fragile authentication.

1. INTRODUCTION

Many research efforts have been made on designing practi-
cal semi-fragile authentication schemes for natural images.
Natural images such as journalist photos, typically contain
objects which define the visual content of the images. Semi-
fragile authentication should be able to distinguish inciden-
tal changes from malicious tampering attacks. Incidental
changes are content-preserving manipulations, which include
image compression or transcoding, filtering, and other com-
mon noises. These modifications keep the content recogniz-
able although sometimes the visual quality may be degraded.
In contrast, malicious attacks are content-changing manipu-
lations, which include removing image objects and adding
new objects. Such malicious modification could result in an
image with a totally different meaning. A malicious attacker
may actively exploit vulnerabilities of the authentication al-
gorithm to produce a modified image which does not preserve
the original visual meaning but can be wrongly authenticated.

Most of the existing work measures the similarity or cor-
relation of the extracted watermark and the given watermark,
then compares it with a given threshold to decide if the distor-
tion is incidental or malicious. However, such measurement
on the degree of overall distortion is not sufficient to detect
active malicious tampering which could occur in a very small
portion of the image. This is because the cumulative impact
of an incidental distortion in the entire image could be more

severe than a local malicious tampering. Some existing semi-
fragile work [1, 2] assumes that malicious tampering occurs
in only a local area, thus employs a semi-fragile scheme to
detect the image area which is modified. This approach fails
to address active malicious tampering in which the attacker
can first apply an incidental distortion on the entire image and
then modify certain image objects. In this way, the affected
area is global but the malicious attack is concealed behind
an incidental change. Another approach is just to detect the
change in the highest order bits of the image pixels [3] since
incidental distortions are unlikely to change the most signifi-
cant bits. However, the approach leads to a security vulnera-
bility since the attacker can modify less significant bits with-
out being detected, and hence modify the image content also.

To distinguish incidental and malicious attacks, we em-
ploy two authenticators; one is a cryptographic authentica-
tor to detect content changes, and the other is a smooth au-
thenticator to estimate overall degree of changes. The crypto-
graphic authenticator is employed to detect the amplitude of
local changes, which is the key step to separate malicious and
incidental changes. We use the other smooth authenticator to
measure the impact of the changes in local areas for tampering
localization. In order to locate the area of possible distortion,
the second authenticator is independently generated in every
local block. Using these two authenticators, we are able to not
only detect malicious tampering on image content, but also to
measure the degree of distortion locally. In addition, our pro-
posed scheme is secure against malicious attacks on even a
small area of an image, and is able to measure the degree of
distortion and determine the location.

2. OUR PROPOSED ALGORITHM

2.1. Our Approach and System Diagram

Based on the above design ideas, we propose our approach
as shwon in Fig. 1. We employ the 8 × 8 discrete cosine
transform (DCT) and transform an image to the DCT domain
similar to JPEG compression. The quantized values of the DC
coefficients are extracted to represent salient image features.
Then a message authentication code (MAC) is generated from
the image features and embedded in middle DCT frequency
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bands. In order to be forgiving of incidental changes, the val-
ues of DC coefficients are possibly modified to create a dead
zone so the same features are extracted even under incidental
changes. The second authenticator generation is performed
independently on all 8× 8 blocks. In each 8× 8 image block,
the DCT coefficients are quantized to compute a probabilis-
tic checksum, called approximate message authenticator code
(AMAC) [3]. The generated AMAC is then embedded in the
middle or low frequency coefficients in the same block. Both
AMAC generation and embedding are carried out indepen-
dently on all DCT blocks, so possible incidental or malicious
distortion in each block can be localized and the degree of
distortion is measured locally by comparing the embedded
AMAC watermark and the generated AMAC.

MAC
embedding

embedding IDCT
8x8

key k

key k

evacuation

MSB
component

Deadzone

Feature
extraction

8x8
DCT

Block−based processing

Host

image

image

WatermarkedAMAC

MAC
generation

AMAC
generation

Fig. 1: Proposed authentication scheme.

2.2. MAC Generation and Embedding

2.2.1. Feature Extraction and MAC generation

To assure robustness under acceptable manipulations and
fragility under malicious manipulations, the DC component
of the DCT coefficients is sought to represent the visual
meaning of an image. For an image I of size M × N , let
Cu,v(i, j) denote the DCT coefficients at frequency band
(i, j) for 1 ≤ i, j ≤ 8 in DCT block (u, v) 1 ≤ u ≤
�M/8�, 1 ≤ v ≤ �N/8�. The content feature is extracted
from the DC component Cu,v(1, 1) as follows,

Fu,v =

⌊
Cu,v(1, 1)

Δc

⌋
for 1 ≤ u ≤

⌈
M

8

⌉
, 1 ≤ v ≤

⌈
N

8

⌉
(1)

where �x� denotes the floor function, which gives the largest
integer less than or equal to x, and Δc is the quantization
step for content extraction. In our implementation, the step
size Δc is set to be 256 for the DC coefficients in the range
of [0, 2048). Our experiments show that such choice of Δc

makes it almost infeasible for the attacker to construct a
meaningful fraudulent image without changing the extracted
content feature. The attacker may damage the quality of the
authenticated image by slightly changing the DC values in
the same quantization interval but such quality change will
also be detected in the second watermark in Section 2.3.

A traditional message authentication code (MAC) is
applied on the feature sequence in binary representation
Fu,v, 1 ≤ u ≤ �M/8�, 1 ≤ v ≤ �N/8� using secure hash-
ing algorithms such as HMAC based SHA-1, or SHA-256
algorithm with the use of the key k.

2.2.2. Dead-zone Evacuation

From the feature extraction and MAC generation process, it
is possible to have a totally different authenticator even when
the DC component is slightly changed. This happens when
Cu,v(1, 1) is around quantization segment boundary iΔc for
some integer i. To improve the robustness of the content fea-
ture, we introduce a dead-zone evacuation strategy by creat-
ing a gap around the segment boundary. Let Td be the max-
imum allowable change for the dead zone and Td ≤ Δc/2.
We prohibit the DC coefficient values in the dead zone around
the segment boundary. Given a DC coefficient Cu,v(1, 1), we
change Cu,v(1, 1) to the nearest point outside the evacuation
zone as follows,

Ĉu,v(1, 1) =

⎧⎪⎪⎨
⎪⎪⎩

[
Cu,v(1,1)

Δc

]
∗Δc + Td if 0 ≤ e ≤ Td[

Cu,v(1,1)
Δc

]
∗Δc − Td if − Td ≤ e < 0

Cu,v(1, 1) Otherwise
(2)

where e = Cu,v(1, 1) − [Cu,v(1, 1)/Δc] ∗ Δc is the quanti-
zation error. In our implementation, Td = 20, which provides
both a slight evacuation distortion with PSNR = 53.22 dB
and a sufficiently wide dead zone with gap width 40.

2.2.3. MAC Embedding

Denote the generated MAC bits by (m1, m2, . . . , mLm
)

where Lm is the length. Now we embed these MAC bits
to DCT coefficients. In order to increase robustness of the
embedded watermark, we adopt a Spread-Transform-Dither-
Modulation (STDM) embedding scheme [4], which is a bi-
nary QIM scheme in the coefficients projected to a given
spread spectrum vector. This scheme retains the security ad-
vantage of spread spectrum method and robustness advantage
of QIM scheme over other one-bit embedding schemes.

To reduce the embedding distortion, we embed the MAC
bits in the middle frequency bands. In each 8 × 8 block, we
choose the frequency band (4, 4) for MAC embedding in our
implementation. Therefore, for an image of size M × N ,
there are �M/8��N/8� coefficients available for embedding.
Since there are Lm bits of MAC authenticator, we can embed
the MAC authenticator with one bit in Nm coefficients where
Nm = ��M/8��N/8�/Lm�. Table 1 describes the detailed
algorithm of embedding one bit into Nm coefficients using
STDM scheme. In our experiment for images of size 512 ×
512, Lm = 400, Nm = 10 and Δm = 40, the distortion due
to MAC embedding is evaluated by PSNR = 45.84, which
is acceptable.
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Embedding Algorithm: Embed one bit m in Lm coefficients,
E1, E2, . . . , ELm

with key k.
1. First, a pseudorandom antipodal binary sequence

w1, w2, . . . , wNm
is generated by the key k where

wi = ±1, i = 1, 2, . . . , Nm. The sequence is used as
a spread spectrum sequence to correlate with the coefficients

R =
1

Nm

Nm∑
i=1

wiEi. (3)

2. The watermark bit m is embedded in R using the standard
QIM scheme. The watermarked signal is given by

Rm =

[
R− d(m)

Δm

]
Δm + d(m) (4)

where Δm is the quantization step for MAC embedding,
d(m) is the dither value corresponding watermark bit m, and
d(0) = −Δm/4 and d(1) = Δm/4.

3. Finally, the embedding distortion in R is equally distributed
over all coefficients. The watermarked coefficients Em

i are
given by

Em
i = Ei + (Rm −R)wi, 1 ≤ i ≤ Nm. (5)

Extract Algorithm: Extract one bit m̂ from Lm coefficients,
Ê1, Ê2, . . . , ÊLm

with key k.
1. First, the same pseudorandom antipodal sequence

w1, w2, . . . , wNm
is generated by the key k and corre-

lated with image coefficients,

R̂ =
1

Nm

Nm∑
i=1

wiÊi. (6)

2. The watermark bit m̂ is extracted from R̂ as follows

m̂ =

[
R̂ − d(0)

Δm/2

]
mod 2 (7)

where Δm is the quantization step for MAC embedding,
d(0) = −Δm/4.

Table 1: STDM embedding and extraction algorithms.

2.3. AMAC Generation and Embedding

We also generate a soft authenticator to determine the degree
of distortion and its location. Approximate message authen-
tication codes (AMAC) have been proposed which are able
to estimate probabilistically the degree of bitwise similarity
of two digital messages [3]. The AMAC generation function
is basically a majority function which has the following im-
portant feature: similar messages are likely to have similar
AMACs. We use its insensitivity feature to estimate the de-
gree of possible distortion on a protected image.

In order to localize possible distortion and estimate its de-
gree of severity in individual 8× 8 DCT blocks, we generate
and embed AMACs in every 8×8 image block independently.

The steps described next are carried out independently in each
8× 8 block, denoted by Cm(i, j), 1 ≤ i, j ≤ 8.

2.3.1. MSB Component Extraction and AMAC Generation

Given 64 coefficients in one coefficient block, we generate
2 bits of AMAC and then embed them in the coefficients
Cm(5, 5) and Cm(6, 6). First, we carry out a quantization
on coefficients as MSB(i, j) = [Cm(i, j)/Δa] where Δa be
the quantization step. On those two coefficients at (5, 5) and
(6, 6) for embedding, we take a further MSB-LSB decompo-
sition: LSB(i, j) = MSB(i, j) mod 2, and MSB(i, j) =
�MSB(i, j)/2�.

We then generate AMAC from the extracted MSB com-
ponents MSB(i, j), 1 ≤ i, j ≤ 8. Let La be the AMAC
length. Choose a positive odd integer Na such that La ×Na

is greater than or equal to the length of the binary sequence of
MSB components. The binary sequence of MSB components
is padded with zeros, if necessary, to the length La × Na.
Next, the padded sequence is permuted using a pseudoran-
dom permutation according to a key (and possibly the block
index) to enforce security. The permuted sequence is masked
by XORing all of its bit with a pseudorandom binary sequence
generated by the key.

A majority calculation is performed on the permuted and
masked sequence. First, re-format the sequence into La rows
and Na columns. Denote the array by B(i, j), 1 ≤ i ≤
La, 1 ≤ j ≤ Na. For each row i, compute the majority
bit, i.e., the bit which occurs most frequently in the row, as
follows,

bi =

{
1 if

∑Na

j=1 B(i, j) > Na

2

0 otherwise
(8)

for i = 1, 2, · · · , La. Since Na is odd, there is no ambigu-
ity to have a majority bit. The majority bits (b1, b2, . . . , bLa

)
constitute the generated AMAC sequence.

2.3.2. AMAC Embedding in LSB Component

The generated AMAC bits (b1, b2, . . . , bLa
) are embedded in

the LSB components of the coefficients at (5, 5) and (6, 6).
Suppose bl, 1 ≤ l ≤ La is embedded in coefficient Cm(i, j).
The embedding function is as follows,

Ca(i, j) =
(
MSB(i, j) ∗ 2 + bl

)
Δa (9)

where Δa is the quantization step for AMAC embedding.

2.4. Authentication Verification

To verify authenticity of a test image, the same MAC and
AMAC generation algorithms are performed. The embedded
MAC and AMAC watermarks are extracted and compared
with the respective MAC and AMAC authenticators to verify
whether the test image is maliciously or incidentally modi-
fied, whether the modification is significant or not, and where
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the modification is. The watermark extraction algorithm is
basically the “inverse” operation of the embedding one.

The bit error rate (BER) between the generated MAC
(ms

1, m
s
2, . . . , m

s
Lm

) and the extracted MAC watermark
(mw

1 , mw
2 , . . . , mw

Lm
) is given by

BERM =
1

Lm

Lm∑
i=1

ms
i ⊕mw

i (10)

where ⊕ denotes exclusive-or operation. The BER of the
MAC authenticator is used for authentication judgement
whether the test image has been modified maliciously or in-
cidentally. When the content feature is modified, the output
of the MAC will be totally different, which leads to a BER
around 1/2. However, when only the embedded watermark
is modified, the BER will be small. Thus, BERM = 0 rep-
resents no modification, BERM < T1, for some threshold
0 < T1 < 0.5, represents corruption only on the embedded
watermark, and BERM > T1 represents corruption on the
content feature, which constitutes a malicious attack.

The bit error rate (BER) of the generated AMAC se-
quence (bs

1, b
s
2, . . . , b

s
La

) and the extracted AMAC watermark
(bw

1 , bw
2 , . . . , bw

La
) in block (u, v) is given by

Au,v =
1

La

La∑
l=1

bs
l ⊕ bw

l . (11)

The BER Au,v tells the degree of distortion locally in block
(u, v). Since the AMAC extraction algorithm is repeated in
all blocks, so we obtain a matrix Au,v, 1 ≤ u ≤ �M/8�, 1 ≤
v ≤ �N/8�. This AMAC BER matrix shows a distribution of
distortion in the entire image. When only part of the image
is tampered, the matrix Au,v can locate the tampered area by
showing its nonzero elements. The overall BER of the AMAC
in the entire image is defined as the average over all blocks,

BERA =
1

�M/8��N/8�

�M/8�∑
u=1

�N/8�∑
v=1

Au,v (12)

In general, small value of BERA stands for slight modifica-
tion on the image while large BERA around 0.5 tells severe
distortion on the image.

Combining the BERs of the MAC and AMAC, we can dis-
tinguish different types of distortions. Different authentica-
tion decisions can be made from the detection values BERM

and BERA (or Au,v), which are summarized in Table 2.

3. SIMULATION RESULTS

We test the proposed algorithm on real images. Three real im-
ages are tested: Lenna, Baboon and Boat. These images are
first authenticated using a key to generate the watermarked
images. Different incidental and malicious distortions are
applied to the watermarked images and the detection values

Decision BERA < T2 BERA > T2

BERM <
T1

Image content un-
changed. Minor inci-
dental distortion

Image content un-
changed. Major inci-
dental distortion.

BERM >
T1

Minor malicious dis-
tortion

Severe malicious dis-
tortion

Table 2: Authentication decisions from bit error rates of the
MAC and AMAC, BERM and BERA, where 0 ≤ T1, T2 ≤
0.5 are two given thresholds.

of the MAC and AMAC authenticators are calculated. Deci-
sion on the distortion type from the calculated detection val-
ues is compared with the actual distortion type to show semi-
fragility of the proposed algorithm.

3.1. Robustness to Incidental Noises

First, we test JPEG compression on all three test images. Au-
thentication detection values, e.g. BERs of MAC and AMAC
bits are calculated from the watermarked images after JPEG
compression with various quality factors. The BERs of MAC
and AMAC bits are shown in Fig. 2. The proposed scheme is
robust to JPEG compression with quality factor down to 30 if
the threshold T1 is set to be 0.4.
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Fig. 2: Authentication detection values under JPEG compres-
sion for test images.

The authentication detection values under Gaussian noise
attacks are plotted in Fig. 3 as the signal-to-noise ratio (SNR)
of the additive Gaussian noise varies. Our scheme is robust to
additive Gaussian noise with SNR down to 26 dB, or equiva-
lently with noise variance σ2

N up to 43.6.

3.2. Fragility against Malicious Tampering

To show fragility against malicious tampering taking place
even in a small area, we consider the following four malicious
tampering attacks: (A) minor tampering on a block of 8 × 8
pixels, (B) mild tampering on a block of 32 × 32 pixels, (C)
severe tampering on a block 128× 128 pixels, and (D) whole
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Fig. 3: Authentication detection values under Gaussian noise
for test images.

image replacement on entire 512×512 pixels. The location of
any malicious tampering is assumed to be random in the wa-
termarked image. In our experiment, when an image block is
tampered, the tampered block is replaced by a random block
of the same size from a different image.

Malicious tampering
Image A: Minor B: Mild C: Severe D: Whole
Lenna 76 100 100 100

Baboon 75 100 100 100
Boat 73 100 100 100

Table 3: The number of successful detection in 100 runs for
four types of tampering.

We test these four types of tampering on three test images:
Lenna, Baboon, and Boat. Each type of tampering runs 100
times. Each time the measured BER of MAC bits is compared
to the threshold T1 = 0.4 and the number of successful de-
tection of malicious tampering is counted and is shown in the
Table 3. We see that tampering is detected 100% except when
it happens in a very small block of 8× 8 pixels.

Malicious tampering
Image A: Minor B: Mild C: Severe D: Whole
Lenna 0.0004 0.0029 0.0370 0.5020

Baboon 0.0005 0.0028 0.0387 0.4998
Boat 0.0005 0.0033 0.0344 0.5015

Table 4: Measured BER of AMAC bits under 4 different tam-
pering attacks.

Table 4 shows the measured BER of AMAC bits under 4
different tampering attacks for three test images. The mea-
sured BER of AMAC bits approximately reflects how many
pixels are affected in the entire image. The location of mali-
cious tampering can be identified by displaying the bit error
matrix Au,v for all blocks. Fig. 4b is an example of Au,v cal-
culated from the tampered image Lenna shown in Fig. 4a, in

(a) Tampered Lenna. (b) BER matrix Au,v .

Fig. 4: Malicious tampering of an additional flower on the
hat is located by displaying the matrix Au,v, 1 ≤ u ≤
�M/8�, 1 ≤ v ≤ �N/8�.

which an additional flower is maliciously placed on the girl’s
hat.

4. CONCLUSION

This paper proposes and implements a practical secure semi-
fragile scheme for natural images. The most important fea-
ture of our proposed algorithm is security against malicious
tampering even if the attacker knows everything about the al-
gorithm except the secret key. Another important feature of
our system is that our system is able to differentiate malicious
tampering from incidental distortions even if the malicious
tampering modifies only a small portion of the protected im-
age. Furthermore, our scheme has the ability to determine the
degree of the distortion and its location in the entire image.
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