
A Resilient Feedback Linearization Control Scheme

for Smart Grids under Cyber-Physical Disturbances

Eman M. Hammad, Abdallah K. Farraj, and Deepa Kundur

Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

Email: {ehammad, abdallah, dkundur}@ece.utoronto.ca

Abstract—A cyber-enabled parametric control scheme is pro-
posed for efficient transient frequency and phase stabilization
in the power grid. Different implementations of the proposed
control are investigated in this work. First, a centralized control
scheme is proposed where the controller relies on timely phasor
measurement unit (PMU) information about the grid to employ
fast-acting energy storage systems for stabilization. Further,
a decentralized controller implementation assumes information
about the rest of the grid is not available, and hence acts based on
local PMU measurements. For the case of cyber attacks targeting
communication channels and resulting in large delays or absence
of PMU data, we propose a robust combined control scheme
where the controller operates in a centralized mode by default
and switches to the decentralized scheme if PMU information is
delayed or not available. Numerical results show the effectiveness
and robustness of the proposed controller against physical and
cyber-physical disturbances in the 39-bus 10-generator New
England power system.

I. INTRODUCTION

Smart grid systems combine control, communications and

sensor technologies for an enhanced operation of the power

system. Articulate sensors such as phasor measurement units

(PMUs) are placed at specific locations to collect timely infor-

mation about the system operation. The cyber communication

network then transmits the collected measurements to related

controllers, where the controllers analyze the data to determine

the sequence of actions that need to be applied to improve the

power system operation.

The incorporation of advanced telemetry devices and com-

munication technologies in the cyber-physical smart grid has

motivated the development and design of various new and non-

traditional controllers. Several wide area monitoring and con-

trol systems have evolved as a result. Additionally, controllers

can being utilized to enhance the overall resilience of the smart

grid to traditional abnormalities and to new vulnerabilities

such as cyber attacks.

Recently, Wei et al. [1] employed the concept of flocking

in multi-agent systems for the design of distributed controllers

that address transient stability of synchronous generators

against faults. Real-time PMU data of all synchronous gen-

erators is employed in [1]–[3] to compute control actions that

are actuated via fast-acting energy storage systems. Further,

the recent work of Andreasson et al. [4]–[6] proposed using a

consensus proportional integral (CPI) control scheme to affect

the mechanical power of a generator in order to achieve an

automatic frequency control strategy; the CPI controller needs

to collect the frequency of all system generators in order to

find the value of the control output.

From a multi-agent system view, control approaches classify

into three schemes based on how much sensor data needs to

be collected for the controller input [7]. A centralized control

requires complete sensor data of the system to enable efficient

control strategies. However, sensor data is conveyed through

communication channels as a cyber media; consequently, sen-

sor data is vulnerable to delays and possible cyber attacks. This

motivates distributed and decentralized schemes of control. A

distributed control relies on data from a subset (neighbours)

of the agents in the system to calculate its control action,

and a decentralized control follows a worst-case scenario and

acts independently based on local measurements only. There

are essential tradeoffs between the three schemes in terms of

performance, complexity, and robustness.

In this paper we present a low-complexity cyber-enabled

parametric controller that easily integrates with generator gov-

ernor control. The proposed solution utilizes external power

sources to achieve transient frequency stability and phase

cohesiveness among generators. To achieve stability, sensor

measurements are periodically communicated to controllers

that then actuate change through fast-acting power injection

and absorption entities such as flywheels. The actuation sta-

bilizes the power grid by shaping the dynamics of the closed-

loop system to resemble that of a series of stable decoupled lin-

ear systems with tunable eigenvalues. Feedback linearization

control theory is used to convert the nonlinear power system

into an equivalent linear system. Feedback linearization was

previously investigated for transient voltage stability in [8] to

control the excitation system of the generators in a decentral-

ized approach.

We develop centralized and decentralized versions of the

parametric feedback linearization controller. Numerical analy-

sis are conducted to compare the centralized and decentralized

schemes using the 39-bus 10-generator New England power

system. We also proposes a combined control that switches

from the more efficient centralized control into the decen-

tralized control when sensor data is critically delayed or not

available during, for example, a denial-of-service (DoS) attack,

communication channel congestion or outage. The proposed

combined control exhibits a robust and efficient performance

of the overall system against severe cyber-physical distur-

bances.

Contributions of this work include proposing a centralized
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and decentralized feedback linearization control schemes for

smart grids to achieve transient frequency stability and phase

cohesiveness. Further, a combined control scheme is proposed

for robustness against cyber-physical attacks. Moreover, a

comparative performance analysis of the control schemes is

provided.

The rest of this paper is organized as follows. The problem

setting is presented in Section II and the proposed controller is

detailed in Section III. Section IV investigates the performance

of the proposed controller. Conclusions and final remarks are

discussed in Section V.

II. PROBLEM SETUP

We model the smart grid as a multi-agent system with N

agents, where each agent contains a synchronous generator, a

PMU that measures the corresponding generator’s rotor angle

and frequency, and a controller that utilizes the PMU data

to control a local fast-acting power injection and absorption

energy storage system (ESS) such as a flywheel. In addition,

a communication network connects the system’s PMUs and

controllers. The overall smart grid is a cyber-physical system

in which the physical subsystem includes the classical power

delivery components as well as the fast-acting ESS, and the

cyber subsystem contains the PMU sensors, controllers, and

the associated communication network.

In the considered system the dynamics of each agent depend

on its own state and the states of the other agents in the multi-

agent system. In such setting, a centralized control refers to a

scheme where the states of all the agents in the system need

to be collected. For a distributed control the controller of a

certain agent needs the state of that agent and its neighbors,

and a decentralized control scheme requires only the local state

of its own agent to be observed. Fig. 1 depicts the centralized

and decentralized control schemes [7] cinsidered in this paper.
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We consider the New England 10-generator 39-bus physical

power system.We use the swing equation model to describe

physical synchronous generator dynamics. The time evolution

of the rotor’s angle and frequency in the swing equation

model enables the study of transient stability. We assume

the swing equation parameters remain constant through the

system instability duration. We further utilize Kron-reduction

to reduce the order of the interconnections in the power system

and determine effective mutual physical couplings between

the synchronous generators. Kron-reduction is a graph-based

technique used in power systems to reduce the order of an

complex interconnected system [9] into an equivalent grid

between generators.

Let N denote the number of generators in the power system

(i.e., N = 10). And let Ei represent the internal voltage of

Generator i,every Generator i ∀i ∈ {1, . . . , N} is described

by its rotor angle (δi), relative normalized rotor frequency

(ωi), inertia (Mi), damping coefficient (Di), and electrical and

mechanical powers (Pe,i, Pm,i) respectively.

We define the relative normalized frequency of Generator i

as ωi =
ωact

i
−ωnom

ωnom , where ωnom is the nominal angular

frequency (in radians per second) of the power system and

ωact
i is the actual angular frequency of Generator i. Define

δ̇i and ω̇i to be the derivatives of δi and ωi with respect to

time, respectively. Then, the swing equation for Generator i

is expressed as [10], [11]

δ̇i = ωi

Mi ω̇i = −Di ωi + (Pm,i − Pe,i) ,
(1)

where the electrical power of Generator i is defined as [12]

Pe,i =
N
∑

k=1

|Ei| |Ek| [Gik cos (δi − δk)+

Bik sin (δi − δk)] ,

(2)

here Gik = Gki ≥ 0 and Bik = Bki > 0 are the Kron-

reduced equivalent conductance and susceptance, respectively,

between Generators i and k. Further, we assume that there is

no power control in the system. Let Pa,i = Pm,i−Pe,i denote

the accelerating power of Generator i, then the swing equation

in Eq. (1) is represented as

δ̇i = ωi

ω̇i = 1
Mi

[−Di ωi + Pa,i] .
(3)

We next introduce the proposed cyber-enabled controller

that facilitates the overall cyber-physical smart grid system

to achieve stability against disturbances.

III. CYBER-ENABLED CONTROL FOR SMART GRID

Synchronous generators typically utilize power control

schemes (e.g. exciter and governor controls) to help adjust

a generator’s internal settings to respond to dynamics in the

power grid. However, these local power control systems are of-

ten insufficient because of their slow reaction to rapid system-

wide changes. Moreover, synchronous generators, without

external power control as described in Eq. (3), cannot achieve

transient stability alone in the presence of a fault or when a

fault is cleared after the critical clearing time either due to a

malfunction or cyber attack. We develop a parametric feedback

linearization (PFL) controller that utilizes an external power

source at Generator i to achieve transient stability. Thus, the

swing equation for Generator i after including PFL control

input Ui becomes



δ̇i = ωi

ω̇i = 1
Mi

[−Di ωi + Pa,i + Ui] .
(4)

The proposed controller responds to the dynamics of the

power system by absorbing or injecting a specified amount

of real power, this is facilitated by the incorporation of a fast-

acting ESS at the designated generator. Specifically, a positive

Ui value would correspond to the controller of Generator i

injecting power into the generator bus, and a negative Ui value

indicates that power is being absorbed from the generator bus.

The PFL controller is designed to asymptotically drive the

frequency of the system generators into stability following the

occurrence of a disturbance; i.e., after the activation of the PFL

controller it is required that lim
t→∞

ωi(t) = 0 ∀i ∈ {1, . . . , N}.

Additionally, the PFL controller is to maintain phase cohesive-

ness between the generators of the power system, the absolute

difference between the phases of any two generators should

be less than 100◦ [1], [13].

Feedback control depends on measurements from the sys-

tem to generate the control signal required to drive the overall

system (or one of the system variables) into a desirable state. In

feedback control the controller compares the measured value

with a desired value, and consequently generate a control

signal to minimize the difference. Feedback linearization [14,

Ch. 13] transforms a nonlinear plant into an equivalent closed-

loop linear system. One approach to implement feedback

linearization is to introduce a control signal to cancel out

the nonlinear terms in the system dynamics, this would result

in the closed-loop system exhibiting (full or partial) linear

dynamics.

We next detail the design of the proposed centralized and

decentralized control schemes.

A. Centralized Control Scheme

A centralized parametric feedback linearization (CPFL)

controller relies on receiving timely PMU measurements from

all generators in the power system to calculate the control ac-

tion. Mathematically, the CPFL control for frequency stability

and phase cohesion is expressed as

Ui = − (Pa,i + αi ωi + βi (δi − δ∗i )) , (5)

where αi ≥ 0 is called the frequency stability parameter, βi ≥
0 is the phase stability parameter, and δ∗ = [δ∗1 , δ

∗
2 , . . . , δ

∗
N ]T

is the desired phase of the system generators. The βi (δi − δ∗i )
term will drive the CPFL controller to settle the phase of the

system generators on δ∗. The values of δ∗ are selected such

that |δ∗i −δ∗j | ≤ 100◦ ∀i, j ∈ {1, . . . , N}. Consequently, phase

cohesiveness is maintained during and after the controller’s

active time.

The CPFL control will fully cancel the nonlinear terms in

the swing equation provided that all PMU measurements are

obtained. Consequently, the swing equation of the intercon-

nected power system reduces into a decoupled linear equation

after implementing the CPFL controller.

We next present the stability analysis of the CPFL control.

Substituting the CPFL control in Eq. (5) into the swing

equation in Eq. (4) results in

ẋi = Ai xi + bi δ
∗
i , (6)

where xi = [δi, ωi]
T

is called the state variable of Generator i,

bi =
[

0, βi

Mi

]T

, and Ai =

[

0 1
−βi

Mi

−(Di+αi)
Mi

]

. To check

the stability of the power system after implementing the

proposed CPFL control, the eigenvalues of Ai are calculated

and checked to determine if they lie in the left-hand complex

plane. The eigenvalues of Ai are calculated as

λ1,2 =
1

2Mi

[

−(Di + αi)±
√

(Di + αi)2 − 4βiMi

]

. (7)

When evaluated, both eigenvalues are found to lie in the left-

hand complex plane. Further, Re(λ1,2) < 0; consequently,

the power system is globally asymptotically stable under the

proposed CPFL controller [14, Theorem 4.5].

B. Decentralized Control Scheme

As previously motivated in Section I, the cyber communi-

cation channels relaying PMU measurements from sensors to

the controllers are vulnerable to congestion or DoS attacks.

A decentralized PFL (DPFL) controller only utilizes the mea-

surements from the PMU situated near the local generator bus.

Mathematically, the DPFL control is expressed as

Ui = − (αiωi + βi(δi − δ∗i )) . (8)

The DPFL control utilizes local measurements only, and as a

result the accelerating power term (Pa,i) cannot be estimated

and consequently cannot be cancelled, resulting in a partially

linearized control system.

Next, we present the stability analysis of the DPFL control.

Similar to our analysis for the CPFL control, the following is

found as we substitute Eq. (8) into Eq. (4)

ẋi = Ai xi + bi δ
∗
i +

[

0, 1
Mi

]T

Pa,i . (9)

Using the approximations for the relevant terms in Pe,i in

Eq. (2), it can be shown that Pa,i reduces to

Pa,i ≈ Pm,i − δi∆i +∆k , (10)

where ∆i =
N
∑

k 6=i

|Ei| |Ek|Bik and ∆k =
N
∑

k 6=i

|Ei| |Ek|Bikδk.

Consequently,

ẋi = Âi xi + bi δ
∗
i +

[

0,
Pm +∆k

Mi

]T

, (11)

where Âi =

[

0 1
−(∆i+βi)

Mi

−(Di+αi)
Mi

]

. The above equation

takes the form of Eq. (6). To check the stability of the power

system after implementing the proposed DPFL controller, the

eigenvalues of Âi are calculated as
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Fig. 2. System performance when CPFL control is activated
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Fig. 3. System performance when DPFL control is activated

λ1,2=
1

2Mi

[

−(Di + αi)±
√

(Di + αi)2−4Miβi∆k

]

. (12)

Both eigenvalues are found to lie in the left-hand complex

plane. Consequently, the power system is stable under the

proposed DPFL controller.

C. Combined Centralized-Decentralized Control Scheme

We propose the combined centralized-decentralized PFL

(CDPFL) controller as a mediator solution for the power sys-

tem when communication latency or DoS attack impacts the

cyber-enabled centralized control performance. While cyber-

enabled centralized control is efficient and effective, the delay

or lack of PMU information hinders it highly ineffective. An

intuitive approach is to switch from centralized to decentral-

ized control in the absence of PMU information; hence, we

propose the combined mode of our PFL control.

Let τ ≥ 0 be the latency between the PMUs and the

controller, and let τ∗ denote the maximum latency below

which the CPFL control can effectively stabilize the system.

The proposed CDPFL is then expressed as

Ui=

{

− (Pa,i + αiωi + βi(δi − δ∗i )) if τ < τ∗ (CPFL)

− (αiωi + βi(δi − δ∗i )) if τ ≥ τ∗ (DPFL).
(13)

It is important to observe that the CDPFL control waits until

τ∗ before activating the DPFL control, and this results in

a considerable deviation in the system state following the

disturbance. To address this issue, the parameter αi can be

optimized for a more aggressive control action to stabilize the

power system.

CPFL DPFL CPFL & DPFL &
Generator Control Control Governor Governor

1 3.3244 5.5922 3.2769 6.0496
2 3.5231 5.4885 3.4676 6.0210
3 3.4860 5.4782 3.4415 6.0279
4 3.1767 5.4031 3.1156 6.0314
5 3.0014 5.3857 2.9388 6.0270
6 3.2762 5.3972 3.2278 6.0333
7 3.1423 5.3985 3.0783 6.0308
8 2.9837 5.5162 2.9093 6.0451
9 3.1847 5.4103 3.1329 6.0430

TABLE I
STABILITY TIME (SECOND)

Case CPFL DPFL CPFL & DPFL &
Study Control Control Governor Governor

1 3.2332 5.4522 3.1765 6.0343
2 2.8495 3.9111 2.7879 5.1188
3 2.9183 3.9749 2.8588 5.3608
4 2.9552 5.3177 2.8987 6.0039

TABLE II
AVERAGE STABILITY TIME (SECOND)
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Fig. 4. Performance of the CPFL control versus communication latency

IV. NUMERICAL RESULTS

The different PFL control schemes proposed in this work

are numerically evaluated. The CPFL and DPFL controls are

first evaluated for different balanced three phases faults with

and without the governor control activated at the generators.

A robustness analysis of the CDPFL control against cyber-

physical disturbances is also conducted.

For the following numerical results, the stability time of

a Generator i is the time it takes the controller to keep the

frequency stable (i.e., |ωi| ≤ 0.02) permanently. Further,

for the purpose of clarity, the following figures show the

performance results for the first four synchronous generators;

however, similar behaviour is observed for the rest of the

generators.

The New England power system is considered. The power

system is assumed to be running in normal secure state from

t = 0 to t = 0.5 seconds. However, a balanced three-phase

fault occurs at Bus 17 at t = 0.5 seconds. Then, Line 17–18

is tripped out to clear the fault at t = 0.6 seconds. Finally, the

PFL controller is activated on all generators at t = 0.7 seconds.

For the balanced three-phase fault detailed above, the fre-

quency and phase of the first four generators in the New

England power system are shown in Fig. 2 for the case when

the CPFL control is activated. Moreover, Fig. 3 shows the

frequency and phase of the system generators under the same
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Fig. 5. System performance when CDPFL control is activated during a cyber-
physical disturbance

fault scenario with DPFL control activated. Compared to the

DPFL controller, these results show that CPFL control scheme

achieves more efficient performance.

As a summary of the above numerical results, a detailed

record of the stability time of each generator (except Genera-

tor 10) in the New England power system is shown in Table I.

The stability time is shown for the proposed CPFL and DPFL

control with and without the generators’ governor activated.

In addition, Table II shows the average stability time of the

system generators (except Generator 10) under different cases

of faults. In this table, Case Study 1 refers to the previously

studied case (i.e., a three-phase fault occurs at Bus 17 at t

= 0.5 seconds, Line 17–18 is tripped out at t = 0.6 seconds,

and the controller is activated at t = 0.7 seconds). Further,

Case Study 2 represents the situation when a fault occurs at

Bus 11 then Line 10–11 is tripped out. Moreover, a three-

phase fault occurs at Bus 22 and Line 21–22 is tripped out

in Case Study 3. Finally, the fault is located in Bus 39 and

Line 28–39 is tripped out to clear the fault in Case Study 4.

We further investigate the performance of the CPFL con-

troller versus communication links latency that affect the PMU

measurements arrival time at the controllers. Fig. 4 shows

that beyond a certain latency value (around 170 msec in

this case), the stability time jumps from about 4 seconds to

around 18 seconds (the simulation duration). In other words,

if the latency is above this value, the CPFL controller cannot

stabilize the power system.

Motivated by this analysis we investigate the CDPFL control

for the aforementioned system against a cyber-physical distur-

bance. Similar to Case Study 1, a physical fault occurs in the

power system at t = 0.5 seconds, the CPFL control is activated

at t = 0.7 seconds, and a worst-case cyber attack (where all

communication links to the control center are jammed or under

DoS attacks) occurs at t = 0.8 seconds. The CDPFL controller

tolerates a wait period of τ∗ = 150 msec before switching to

DPFL at t = 0.95 seconds. The proposed CDPFL is shown

to be able to stabilize the power system under the worst-case

DoS scenario as shown in Fig. 5.

V. CONCLUSIONS

This paper proposes a frequency and phase stabilizing con-

troller for smart grid systems under severe fault or malfunction

of protection devices. The design of the proposed parametric

controller is motivated by the feedback linearization control

theory, and the controller relies on receiving frequent sys-

tem state information to actuate fast-acting energy storages

to balance the swing equation and drive the power system

to stability. The controller is evaluated under centralized

and decentralized system designs, and further a combined

centralized-decentralized control scheme is proposed to en-

hance robustness against long communication delays or denial-

of-service attacks.

System performance is investigated when the proposed

controller is applied to the New England 39-bus 10-generator

power system. Further, the performance is studied when both

the proposed and governor controls are activated in the power

system. Results of this work show the effectiveness of the

proposed controller in stabilizing the power grid and making

it more resilient to cyber-physical disturbances.
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