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Electric power substations are experiencing an accelerated pace of digital
transformation including the deployment of LAN-based IEC 61850 com-
munication protocols that facilitate accessibility to substation data while
also increasing remote access points and exposure to complex cyberattacks.
In this environment, machine learning algorithms will play a vital role in
cyberattack detection and mitigation and natural questions arise as to the
most effective models in the context of smart grid substations. This paper
compares the performance of three autoencoder-based anomaly detection
systems including linear, fully connected, and convolutional autoencoders,
as well as long short-term memory (LSTM) neural network for cybersecurity
enhancement of transformer protection. The simulation results indicated that
the LSTM model outperforms the other models for detecting cyberattacks
targeting asymmetrical fault data. The linear autoencoder, fully connected
autoencoder and 1D CNN further outperform the LSTM model for detecting
cyberattacks targeting the symmetrical fault data.

CCS Concepts: • Computer systems organization→ Embedded and
cyber-physical systems; • Computing methodologies → Anomaly
detection.

Additional Key Words and Phrases: cybersecurity, data analytics, machine
learning, transformer protective relays

1 INTRODUCTION
The rapid integration of standard and interoperable information
and communication technologies (ICT) in substations [12, 33] has
accelerated the frequency and complexity of electric utility cyberat-
tacks [13]. Attacks against electric power substations such as that
on the Ukrainian grid in 2015 have caused significant societal and
economic damage including loss of life [10, 28, 30]. As such, the
North American Electric Reliability Corporation (NERC) has taken
initial steps towards safeguarding cyber-assets by mandating the
critical infrastructure protection (CIP) standards [1].

The emergence of standardized and interoperable communication
protocols such as IEC 61850 and industrial internet of things (IIOT)-
based applications renders traditional security-by-obscurity and
perimeter defense security strategies obsolete [2]. Yet, these trans-
formations facilitate accessibility to high fidelity substation data to
lay a powerful groundwork for developing machine learning-based
data analytics for cybersecurity enhancement [20]. Cybersecurity
of substations has been analyzed in the literature from two perspec-
tives; 1) cybersecurity risk assessment/impact analysis [7, 18, 26] and
2) cyberattack detection, mitigation and prevention [5, 15–17, 29].
Most of the approaches solely focus on information technology
(IT) data. For instance, some of these approaches attempt to detect
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cyberattacks by examining the intruders’ footprints on the commu-
nication packets. This is while the cyberattack signatures on the
operational technology (OT) data have been commonly neglected.
This trend is expected to rapidly change in the coming years by the
introduction of novel cyberattack detection systems that rely on
both information technology (IT) and operational technology (OT).
Anomaly-based techniques have three main advantages over

misuse-based techniques. First, anomaly-based techniques can adap-
tively learn the time varying dynamics and operating points of
power systems to establish comprehensive baselines for system be-
haviors. Second, anomaly-based detection techniques only require
training on normal (non-attack) data, which is available in abun-
dance compared to cyberattack data making it possible to easily
obtain the necessary training sets for model optimization. Third,
anomaly-based techniques are capable of detecting unencountered
zero-day cyberattacks. The primary disadvantage of anomaly-based
techniques is the potential for high false detection rates because pre-
viously unseen system behaviors can be categorized as anomalies
[4, 11, 34].
Machine learning-based anomaly detection systems have been

extensively examined for cyberattack detection in smart grids. An
artificial intelligence-based approach has been proposed in [23] to
identify compromised meters. An intrusion detection system has
been proposed in [3] for wide area measurements. An unsupervised
anomaly detection system has been proposed in [21] to differen-
tiate cyberattacks from disturbances and faults in smart grids. A
machine learning-based method has been proposed in [6] to detect
cyberattacks against state estimation. In [32], the margin setting
algorithm has been employed to defend smart grids against false
data injection attacks.
Despite the considerable potential of machine learning-based

anomaly detection systems, they have received less attention in
the literature compared to analytical approaches for cybersecurity
enhancement of substations due to the lack of high fidelity data
in traditional substations. A 1-dimensional convolutional based
autoencoder has been employed in [24] to identify cyberattacks
against distance protective relays. A fully connected autoencoder
has been employed in [19] to enhance the cybersecurity of the trans-
former differential protection. In [4], data analytics comprising long
short-term memory neural network and ridge based regression clas-
sifier have been used to identify the root causes of the transmission
protection mal-operation. Yet, different autoencoder-based anom-
aly detection systems for cybersecurity enhancement of protective
relays have not been compared previously in the literature.
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This paper compares the performances of different autoencoder-
based anomaly detection systems as well as LSTM for cybersecurity
enhancement of transformer protection. Specifically, we employ a
variety of autoencoder-based anomaly detection systems as well
as the LSTM neural network for cybersecurity enhancement of
transformer protection using OT data. The performance of different
autoencoder-based anomaly detection systems and the LSTM neural
network for identifying different types of cyberattacks are measured
and compared.

2 THE FALSE DATA INJECTION ATTACK AGAINST
TRANSFORMER PROTECTION

Cyberattackers may target confidentiality, integrity, or availabil-
ity (C-I-A) of data. Confidentiality aims to prevent users/devices
from accessing unauthorized data. Integrity is about validity and
correctness of data. Availability deals with the accessibility of data
within a reasonable amount of time to an authorized user/device.
Availability and integrity of data are paramount for OT systems
like protective relays because they rely on real time data to iden-
tify abnormal conditions such as faults to actuate circuit breakers.
Prominent examples of cyberattacks on the availability and integrity
of data include distributed denial of service (DDoS) and false data
injection (FDI) attacks, respectively.

The main protection of transformers are typically differential pro-
tective relays. Differential relaying monitors the currents entering
and leaving a transformer calculating the geometrical sum (called
the differential current) of the current phasors at all the terminals
of the transformer. If the differential current takes a value of zero
or a very small value due to measuring inaccuracies, the differential
relay will stay inactive because the system is considered to either
be operating normally or have an external fault. If the differential
current takes a large value, it indicates an internal fault, within
the scope of the relay, and the differential relay will trip the circuit
breakers of the transformer [8, 22].
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Fig. 1. Transformer differential protective relay.

In this paper, we consider IEC 61850-based substation automation
as illustrated in Fig. 1. Here, the merging units (MU) collect analog
measurements from the current transformers CT1 and CT2 and send
them to the differential protective relay using SV packets through
the process bus after performing the analog-to-digital conversion.

Moreover, the merging units receive the commands from the differ-
ential protective relay in the form of GOOSE packets through the
process bus and send the trip signals to the circuit breakers after
performing the digital-to-analog conversion.
An FDI attack is considered here where the intruder manipu-

lates the magnitude and phase angle of the current measurements,
yielding different elements of the differential protective relay to
issue false tripping commands to the transformer circuit breakers.
Multiple scenarios can be considered for the execution of the FDI
attack against transformer protection including: 1) the installation
of malicious firmware on the merging units through a supply chain
attack or by physical access to the merging units, and 2) the injection
of false data to the process bus through remote rogue connections
using stolen legitimate substation operator credentials.

3 MACHINE LEARNING-BASED ANOMALY DETECTION
SYSTEMS

The main objective of the proposed anomaly detection systems is
to detect the malicious tampering of current measurements by an
attacker to illegitimately trigger different elements of the differential
protective relay of a transformer. The differential protective relay of
a transformer is designed to detect different types of faults including
three-phase-to-ground, two-phase-to-ground, and single-phase-to-
ground. Therefore, we design and train a separate anomaly detection
system for each type of fault. Each of the anomaly detection sys-
tems becomes operational by the activation of the corresponding
element of the differential protective relay. We further investigate
the possibility of considering a universal architecture for anomaly
detection systems for different types of faults by comparing the
architectures obtained for each type of fault.
The choice of machine learning models for anomaly detection

depends on the nature and dimensionality of the input data. The
input data to the anomaly detection system for differential protec-
tive relays is composed of two time series of three-phase current
measurements. This results in high dimensionality of the input data
and complicates feature extraction for machine learning. Moreover,
the evolving and clandestine nature of cyberattacks limit the possi-
bility of effective modeling of anomalous behaviour of cyberattacks
in contrast to normal behaviour in substations for which there is
significantly more data and more predictable characteristics. In this
environment, semi-supervised and unsupervised machine learning
approaches are in a superior position for cyberattack detection in
contrast to supervised machine learning approaches. Advances in
semisupervised and unsupervised machine learning has made it pos-
sible to solve classification problems, including anomaly detection,
with high-dimensional data sets that can suffer from complex struc-
ture, sparsity or overfitting [25]. The autoencoder-based anomaly
detection systems and LSTM neural network learn to compress the
input data into a smaller latent space, then reconstruct the input
data from the latent space with a low reconstruction error. Since we
train the autoencoders and LSTM neural network with benign or
attack-free current measurement sequences, we expect to observe
high reconstruction error when feeding malicious current measure-
ment sequences as input [31]. We define the reconstruction error
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for a data sequence 𝑋𝑖 as given in (1). A data sequence is consid-
ered anomalous if the reconstruction error is above a predefined
threshold as given in (2).

𝑀𝑆𝐸𝑖 = | |𝑋𝑖 −𝑀 (𝑋𝑖 ) | |22 (1)
𝑀𝑆𝐸𝑖 > 𝜖 → 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑑𝑎𝑡𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (2)

where𝑀𝑆𝐸𝑖 is the Mean Squared Error,𝑋𝑖 denotes the input data se-
quence,𝑀 denotes the autoencoder or LSTM model,𝑀 (𝑋𝑖 ) denotes
the output data sequence, and 𝜖 denotes the threshold considered
on the reconstruction error for anomaly detection.

Linear Autoencoders. A linear autoencoder consists of an input
layer, a code layer with a size smaller than input/output layers, and
an output layer. In a linear autoencoder, all the activation functions
in each layer are linear. The linear autoencoder model is similar to
dimensionality reduction in Principal Component Analysis (PCA).

Fully Connected Autoencoders. In fully connected neural networks,
all the neurons in each layer are connected to all the neurons in the
subsequent layer. From a technical perspective, a fully connected
autoencoder consists of two parts; an encoder and a decoder, as
illustrated in Fig. 2. An encoder consists of an input layer, a variable
number of hidden layers, and a code (embedding) layer. The code
layer connects the encoder and decoder and its size is smaller than
input and output layers. The decoder consists of the same number
of hidden layers as the encoder and an output layer.

1D Convolutional Neural Networks. Unlike fully connected net-
works, neurons of each layer in CNN are not connected to all the
neurons in the following layer and parameter sharing exists that
reduces storage. 1D-CNN is a good candidate for anomaly detec-
tion because it is capable of detecting localized anomalies due to
its window-based nature. Different types of layers are used in CNN
autoencoders including convolutional, pooling, and upsampling
[25, 27]. The convolution layer works based on convolution opera-
tion as given in (3).

𝑆 (𝑖) = (𝑋 ∗ 𝑓 ) (𝑖) =
𝑛∑︁
𝑗=0

𝑋 ( 𝑗) 𝑓 (𝑖 − 𝑗) (3)

where 𝑋 denotes the input of the operation, 𝑆 denotes the output,
𝑓 denotes the convolution filter and 𝑛 denotes the length of the
convolution filter.

In convolution layers, various filters are applied in parallel to the
input to produce a set of linear activations. Each linear activation
is followed by a non-linear activation function. To reconstruct the
original input in the decoder, upsampling and convolution layers
are combined. This combination is also known as transposed convo-
lution or deconvolution. Fig 3 shows an example of an upsampling
operation.

Long Short-Term Memory Networks. Other types of networks,
called recurrent networks, consist of neurons that have self-connections
or connections to neurons from previous layers. This recurrency
provides the ability for the network to retain what happened in the
past (short-term memory). The new state ℎ𝑡 is expressed as:

ℎ𝑡 = 𝑓𝑤 (ℎ𝑡−1, 𝑥𝑡 ) (4)

where 𝑥𝑡 is the input vector at time step 𝑡 , ℎ𝑡−1 denotes the old state,
and 𝑓𝑤 is a function with parameters𝑤 .

Consider Fig. 4 as a simple example of an RNN. Using the recur-
rent formula in (4) at each time step, we can process a sequence of
vectors 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} using the same function 𝑓 and weights
𝑤 at every time step.

To address the vanishing gradient problem in RNNs, Long Short
Term Memory (LSTM) networks have been designed. An LSTM
network is a good candidate for anomaly detection because it is
capable of detecting non-local, long term anomalies. Fig. 5 shows an
LSTM unit. The horizontal line on top of the unit is responsible for
passing the cell state which facilitates the long-term memory for
relevant components of the data. LSTM unit consists of three gates.
Forget gate is responsible for removing the parts of the cell state that
are no longer needed. Input gate adds the information needed to the
cell state. Output gate produces the output. It is possible to stack up
arrays of LSTM units to enable more complex LSTM networks.

4 TRAINING, VALIDATION AND OPTIMIZATION OF
THE ARCHITECTURE OF THE ANOMALY DETECTION
SYSTEMS

In this section, we provide information about the test system and the
training data set. We explain the approach employed for optimizing
the architectures of the proposed machine learning-based anomaly
detection systems. In addition, a set of metrics are presented for
measuring the performance of the anomaly detection systems.

4.1 Test System
The IEEE power system relaying committee (PSRC) D6 benchmark
test system is considered for generating the training data sets [14].
This test system connects a power plant with four 250 MVA genera-
tor units to a 230 kV transmission network through two parallel 500
kV transmission lines. The 230 kV transmission network is modeled
as an infinite bus. Differential protective relays protect the power
plant transformers as illustrated in Fig. 6.
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4.2 Training Data Set
OPAL-RT HYPERSIM is employed to implement and simulate the
PSRC D6 test system and generate the training data sets. The simu-
lations are performed for a duration of 1.5 seconds with the fault
start varying randomly between t=1 s to t=1.02 s to ensure the fault
occurs at different parts of the current waveforms. Note that the
period of one cycle is approximately 0.0167 s in a 60 Hz power sys-
tem. Moreover, the generation levels are changed between 350 MW
and 360 MW in 2 MW step size in each simulation to generate data
sets under different operating conditions. The simulations are per-
formed for different types of faults including three-phase-to-ground,
two-phase-to-ground and single-phase-to-ground faults. The fault
impedance is assumed to be zero. In total, 20,736 simulations are
performed to generate training data sets for each type of fault. The
anomaly detection systems are trained with 80% of the 20,736 simu-
lations for each type of fault. The validation and test data sets each
comprises 10% of the 20,736 simulations.
The three-phase current measurements are collected from CT1

and CT2 at the sampling rate of 4800 samples per second in compli-
ance with IEC 61850-9-2 standard for SV packet specifications [9].
An important parameter for training of the machine learning-based
anomaly detection system is the input data length. A sliding window
of 10 ms, i.e., 48 samples of current measurements per phase, is fed
to the anomaly detection systems as input. As such, the input data
to the anomaly detection systems contain 6 × 48 = 288 samples in
total. In order to obtain the input data, we extracted a 20 ms window
from each 1.5 s simulation containing 47 samples before the starting
point of the fault and 47 samples after the starting point of the fault.
Next, we slide the 10 ms input window of the anomaly detection
systems over the 20 ms window of data sample by sample. This
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Fig. 6. The IEEE PSRC D6 benchmark test system.

Table 1. List of hyperparameters for each model.

Model Parameter Set of values

Linear AE Learning rate {0.01, 0.001 }
Code Size {30, 40, 50}

Fully Connected AE
Learning rate {0.01, 0.001 }
Depth {1, 2, 3, 4, 5 }
Code Size {30, 40, 50}

1D CNN

Learning rate {0.01, 0.001 }
Depth {1, 2, 3, 4, 5 }
Convolution filter size {1, 2, 3, ..., 9}
Filter count {4, 8, 12, ..., 44 }

LSTM
Learning rate {0.01, 0.001 }
Depth {1, 2, 3, 4, 5}
LSTM Units count {5, 10, 15, ..., 50}

amounts to 48 windows of input data per simulation with 10 ms
duration.

4.3 Optimizing the Architecture of the Machine
Learning-Based Anomaly Detection Systems

We used the grid search method for hyperparameter tuning and
optimizing the architecture. In this method, we consider values in
Table 1 for each hyperparameter. Different possible combinations
of hyperparameters are then tested using grid search. The best
hyperparameter values are selected based on the validation error
observed in the grid search.

The test data set includes 2074 simulation data sets. We replaced
207 of the test data sets, i.e., 10% of the test data sets, with FDI
cyberattack data sets in order to create an imbalanced test data
set. We use an imbalanced test data set because cyberattacks in
power systems are rare events compared to normal behavior. The
hyperparameters considered and tested for each model are listed in
Table 1.

The FDI cyberattack data sets considered cover various situa-
tions ranging from naive scenarios where the cyberattacker only
understands the principles of transformer differential protective
relays to very sophisticated cyberattacks where the cyberattacker
has some knowledge of power system dynamics and transformer
fault signatures.

The cyberattack data are generated by OPAL-RT HYPERSIM. We
considered three different scenarios for cyberattack data generation.
In the first scenario, random false data are generated by OPAL-
RT HYPERSIM with the appropriate magnitude to mimic a fault
condition. In the second scenario, the tap setting of the current
transformer in the test system are modified in OPAL-RT HYPERSIM
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Table 2. Selected Parameters for The Proposed Models. (A: One-Phase-To-
Ground Faults, B: Two-Phase-To-Ground Faults, C: Three-Phase-To-Ground
Faults)

Model Parameter A B C

Linear AE Learning rate 0.001 0.001 0.001
Code Size 40 50 50

Fully Connected AE
Learning rate 0.001 0.001 0.001
Depth 2 3 1
Code Size 40 40 40

1D CNN

Learning rate 0.001 0.001 0.001
Depth 2 1 2
Convolution filter size 4 6 4
Filter count 48 28 48

LSTM
Learning rate 0.001 0.001 0.001
Depth 1 1 1
LSTM units count 40 40 20

Table 3. 1D Convolutional Network Architecture for Anomaly Detection in
One-Phase-To-Ground Fault Measurements

index layer type Output Dimensions parameter
Length Count

1 Input 288 1 -
2 Zero Padding 292 1 pad size = 3
3 Convolution 292 32 filter size = 6
4 max pooling 146 32 window size = 2
5 Convolution 146 64 filter size = 6
6 max pooling 73 64 window size = 2
7 Convolution 73 128 filter size = 6
8 up sampling 146 128 window size = 2
9 Convolution 146 64 filter size = 6
10 up sampling 292 64 window size = 2
11 Convolution 292 32 filter size = 6
12 up sampling 292 1 window size = 2
13 cropping 288 1 size = 288

such that transformer differential protective relay receives current
measurements with larger magnitude, mimicking a fault condition.
In the third scenario, a fault condition is simulated in OPAL-RT
HYPERSIM and used as a replay attack.

4.3.1 Linear Autoencoder Architecture. We employed a fully con-
nected autoencoder with one hidden layer, one input layer, and an
output layer. All the activation functions in the model are linear.

4.3.2 Fully Connected Autoencoder Architecture. We used a fully
connected autoencoder with the same number of hidden layers in
encoder and decoder. In the encoder part, the number of neurons in
hidden layers monotonically decreases from the input to the code
layer. We used the Adam optimizer for model optimization. Fig. 7
shows the fully connected autoencoder architecture obtained for
anomaly detection considering the current measurements triggering
the three-phase-to-ground fault element of the differential protective
relay. For the sake of brevity, the autoencoder architectures obtained
for different types of faults are summarized in Table 2.

4.3.3 1D Convolutional Neural Network Architecture. In the 1DCNN
architecture, the first layer is zero padding. In the encoder part,
we use convolution and max-pooling layers. In the decoder part,
there are deconvolution layers, a combination of upsampling and
convolution layers. Max pooling and upsampling layers both have
window sizes of 2. Filter size for convolution layers is tuned in the

hyperparameter tuning step. Table 3 summarizes the details of the
architecture obtained for anomaly detection. For conciseness, the
hyperparameters selected for 1D CNN are summarized in Table 2.

4.3.4 LSTM Architecture. The many to many one direction LSTM
network is considered with input is a sequence of 48 vectors of size 6.
We considered stacks of LSTM unit arrays followed by a dense layer.
The learning rate, number of LSTM layers, and the size of LSTM unit
arrays are tuned in the hyperparameter tuning step and summarized
in Table 2. Fig. 8 shows the LSTM architecture obtained for anomaly
detection considering the current measurements triggering the two-
phase-to-ground fault element of the differential protective relay.
𝑋𝑡 represents the current sample at the time step 𝑡 .𝑌𝑡 represents the
output of time step t. ℎ represents the hidden state, and 𝑐 represents
the cell state.
The similarity of architectures obtained for anomaly detection

systems for different types of faults in Table 2 indicates that a uni-
versal architecture can be possibly designed for different types of
faults.

5 SIMULATION RESULTS
The performance of the anomaly detection systems are measured
using precision and recall metrics, which are more appropriate for
imbalanced datasets. It is worth noting that the accuracy metric
is not helpful because cyberattacks are rare events. The correct
selection of the threshold value plays a vital role on the performance.

5.1 Performance Analysis of Autoencoder-Based Anomaly
Detection Systems

The performance of the linear autoencoder, fully connected autoen-
coder, 1D convolutional autoencoder, and LSTM are measured for
detecting cyberattacks against different elements of the transformer
differential protective relay. We use the precision-recall curve to un-
derstand the performances of the four models for different possible
thresholds.

input
Size:288

output
Size:288

code
Size:40

hidden	layer
Size:164

hidden	layer
Size:164

Encoder Decoder

Fig. 7. Autoencoder structure for three-phase-to-ground fault.

Table 4. Performance of the Anomaly Detection Systems. (A: One-Phase-To-
Ground Faults, B: Two-Phase-To-Ground Faults, C: Three-Phase-To-Ground
Faults)

Linear AE Fully-connected AE 1D CNN LSTM
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

A 1 0.992 1 0.995 1 0.995 1 1
B 1 0.990 1 0.981 1 0.975 1 0.993
C 1 0.991 1 0.989 1 0.986 1 0.969
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Table 5. Performance of The Anomaly Detection SystemsWhile Considering
Unseen Data with Finer Granularity.

Linear AE Fully-connected AE 1D CNN LSTM
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
1 0.84 1 0.8 1 0.61 1 0.58

The LSTM model outperforms the other three models for the
one-phase-to-ground and two-phase-to-ground faults as illustrated
in figures 9 and 10. However, the linear autoencoder, fully connected
autoencoder and 1D CNN approximately have similar curves and
outperform the LSTM model for the three-phase-to-ground fault
as illustrated in Fig. 11. Table 4 summarizes the results when the
threshold is selected such that the precision is equal to 1. It is worth
noting that even a subtle change in the performance of anomaly
detection systems for protective relays is significant because the
misoperation due to cyberattacks has the potential to cause major
disturbances and widespread blackouts in power systems. Given the
symmetry of three-phase-to-ground faults and asymmetry of single-
phase-to-ground and two-phase-to-ground faults, we conclude that
LSTM performs better for asymmetrical faults and is weaker than
the other models for symmetrical faults. We feel that such a trend
will generalize to other more complex systems beyond the bench-
mark system employed in this paper because of the inherent ability
of LSTM to recognize time series patterns and manage long-term
memory patterns in contrast to the other models.

5.2 Impact of Data Granularity on Anomaly Detection
Performance

In this case study, we investigate the impact of generation level
granularity on the performance of each of the machine learning
algorithms while considering the three-phase-to-ground-fault. Thus,
test data sets are generated for the three-phase-to-ground-fault
with finer generation level granularity compared to the training
data set, i.e.; the generation levels are changed with 1 MW step
size in each simulation. Next, we measured the performance of the
linear autoencoder, fully connected autoencoder, 1D convolutional
autoencoder and LSTM for detecting cyberattacks while considering
cyberattack data and data of finer generation level granularity that
have not been considered in the training step.
Table 5 summarizes the results when the threshold is selected

such that the precision is equal to 1. The comparison between the
results in Table 4 and Table 5 show that the performance of all four

models significantly drops when they are exposed to data captured
from other generation levels that are not included in the original
dataset. Yet, the linear autoencoder model outperforms the three
other models.

6 CONCLUSION
This paper presented four machine learning-based anomaly detec-
tion systems including linear autoencoder, fully connected autoen-
coder, convolutional autoencoder, and LSTM neural network for
cybersecurity enhancement of transformer differential protection
for anomaly detection in transformer relays. The simulation results
underscore that the LSTM model outperforms the other models for
one-phase-to-ground and two-phase-to-ground faults. The linear
autoencoder, fully connected autoencoder and 1D CNN further out-
perform the LSTM model for the three-phase-to-ground fault. The
impact of input data granularity on the performance of the deep
learning-based anomaly detection systems is further investigated us-
ing a sensitivity analysis. The results showed that the performance
of the all four models significantly drop when they are exposed to
the previously unseen system behaviors. Yet, the linear autoencoder
model outperformed the three other models when it is exposed to
the previously unseen system behaviors.
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Fig. 9. Precision-recall curve for one-phase-to-
ground faults
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Fig. 10. Precision-recall curve for two-phase-to-
ground faults
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Fig. 11. Precision-recall curve for three-phase-to-
ground faults
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