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ABSTRACT
This paper studies the potential for passive steganalysis in
correlated image frames using non-classical detection the-
ory. In particular, an algorithm for digital video steganaly-
sis, named MoViSteg for Motion-based Video Steganalysis,
is developed that exploits the temporal correlation among
individual image frames in video signals to enhance ste-
ganalysis performance. The method differs from prior art
in the use of motion interpolation and non-classical asymp-
totic memoryless detection that we believe is well-suited for
video steganalysis. Results and discussion are provide in or-
der to demonstrate the potential of our ideas for intrusion
detection in a broad class of emerging multimedia applica-
tions.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls)

General Terms
Security

Keywords
Steganalysis, Detection theory, Motion estimation

1. INTRODUCTION AND MOTIVATION
Given the high degree of collaboration and cooperation in

modern information systems such as emerging multimedia
sensor networks, covert communications is a greater threat
than ever. Network-level approaches to covert transmission
have classically involved passing information innocuously via
shared resources by having one communicating entity mod-
ulate network characteristics (such as transmission times or
storage elements) such that a second party (who can moni-
tor the resources) deduces the secret message. More modern
approaches to covert transmission in networks have included
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the use of steganographic mechanisms in network protocol
packets [8]; however, recent research [9] has suggested that
communicating covertly at such a structured level is easily
detectible making it more attractive for attackers to employ
subversive communications at the multimedia content level.

Studies in enabling and preventing covert transmissions
have repeatedly demonstrated a fundamental trade-off be-
tween the reduction of covert communications capacity and
the performance of overt communications. As communica-
tions, computation and sensing converge to create advanced
multimedia sensor networking, we assert that it will be-
come practically impossible to design high performance net-
works that prevent covert communications. The high levels
of redundancy of such networks provide a rich environment
for data hiding without significantly affecting network per-
formance. In addition, the scalable network design often
requires collaboration on the part of network entities en-
abling subversive communications to a much greater extent.
Furthermore, the acquisition of highly correlated multime-
dia provides fertile ground for advanced steganographic ap-
proaches.

Covert communications in multimedia networks is of spe-
cial concern for several reasons. Given recent interest in
employing multimedia sensor systems for tactical military
and healthcare applications, such networks are natural tar-
gets for attack. A distinguishing assumption in threat mod-
els of these systems is the high likelihood of insider attack
via corrupt network entities that facilitate subversive be-
havior. In addition, sensor network security strategies often
entail intrusion detection mechanisms that only exploit de-
viations in overt communication statistics to assign a trust-
level to each network entity encouraging stealthy behav-
ior [10]. Moreover, covert communications among select net-
work participants allows for strategic cooperation amongst
corrupt nodes resulting in highly effective denial-of-service
attacks [11].

Thus, we believe it is imperative to investigate methods to
detect and discourage covert communications in multimedia
networks that acquire highly correlated data. In this paper,
we focus on the particular problem of passive digital video
steganalysis; modern detection theory strategies suitable for
video steganalysis and multimedia networking applications
are proposed and evaluated as to their potential. Video
information can be interpreted as a sequence of correlated
image readings. Therefore, the straightforward problem of
video steganalysis allows us to also determine more effective
principles that we can apply to more general content net-
works where entities acquire correlated sensor readings. In
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addition, our proposed strategies can be placed in context
within the large body of steganalysis literature providing ex-
isting tools as well as an effective means of evaluating per-
formance. Moreover, the formalism presented through the
use of detection theory provides an effective methodology to
develop steganalysis techniques suitable for a broad family
of emerging multimedia networking applications.

The paper is organized as follows. In Section 2, we briefly
overview related prior work in the field of steganalysis and
detail the assumptions of our problem. Section 3 discusses
and motivates our proposed method entitled MoViSteg (Mo-
tion -based Video Steganalysis) and Section 4 presents per-
formance results. Final comments and future work conclude
the paper.

2. PRIOR ART AND PRELIMINARIES
It is well-known that a steganalyst (classically referred to

as the “warden”) can be either passive or active. A passive
steganalyst only detects the presence or absence of stegano-
graphic content and may infer other characteristics of the se-
cret message such as its length. An active steganalyst often
non-discriminately alters multimedia signals while in transit
from the stego-sender to the stego-receiver in order to de-
stroy or distort the presence of any secret message before it
reaches its destination. In this paper, we focus on the prob-
lem of passive steganalysis because it has the potential to
provide discriminating intrusion detection information that
is vital to detect corrupt network entities; in this way, they
can be subsequently prevented from participating in the net-
work.

Most research on passive steganalysis has focused on de-
tecting steganography in still images [1, 2, 3, 4, 5, 16, 17].
However, given the high levels of redundancy present in
video, we believe that there is tremendous potential for cre-
ative data hiding and inspired steganalysis that extend to
multimedia sensor networks. We therefore, take a structured
and formal approach to this problem providing a solution
amenable to adaptation to a family of related applications.

Early steganalysis methods were reactive, meaning that
they targeted only a specific embedding algorithm. For in-
stance, Westfeld and Pfitzmann [1] developed both visual
and statistical attacks to counteract the EzStego method
employing least significant bit (LSB) embedding. Later meth-
ods were applicable to a broader range of embedding meth-
ods. For example, Fridrich et al. developed RS-steganalysis
[2], which can identify the application of a class of LSB em-
bedding methods. Subsequently, in [3], Fridrich et al. used
the characteristics of JPEG compressed images as “signa-
tures” in order to detect data hiding.

More proactive steganalysis approaches that apply to a
broad class of embedding methods have also been proposed.
These methods are often called blind or universal steganal-
ysis techniques since no (or very few) assumptions on the
embedding process are made. Within this class, Farid et al.
employed the higher order statistics of image features [4].
Here, the image is decomposed via a wavelet transform and
the mean, variance, skewness and kurtosis of associated co-
efficients and their features are used to differentiate cover-
images from stego-images. Since few assumptions on em-
bedding are made, training to estimate thresholds and soft
computing are employed. In [5], Avcibas et al. introduced
the use of image quality metrics (IQMs) in order to dis-
cern between cover and stego-images by taking into account

the more global characteristics of natural images. Their
approach uses discriminative image statistics such as the
Minkowsky metric, the spectral magnitude and the normal-
ized mean square error as well as regression analysis to build
a composite measure to identify the presence of hidden data.

More recently methods founded on detection theory have
been presented with the hope of leading to a more universal
and high-performance steganalysis solution. In [16, 17], Sul-
livan et al. developed a detection theoretic approach that
employs a Markov chain (MC) model for spatial correlation
in the cover-image order to identify the presence of hidden
data. The authors argue that their approach provides a
fundamental benchmark for evaluating the security of data
hiding algorithms. Their detection algorithm is based on
the observation that the divergence of the transition ma-
trix, comprised of conditional probability values governing
the MC source model, behaves somewhat predictably when
data is embedded in an image; in particular, significant ma-
trix values“spread out” from the main diagonal. To quantify
this characteristic, features are extracted from an empiri-
cally generated transition matrix of the suspect-image and
classification based on supervised learning strategies is em-
ployed to deduce whether the suspect is a cover-image or
stego-image. Their approach illustrates the necessary in-
teraction between detection theory and signal processing to
develop a practical method governed in well-developed the-
ory.

In this paper, we argue that this interaction is especially
important for the problem of video steganalysis in which
the temporal complexity should be taken into account and
the subsequent detection complexity may be of great con-
cern for emerging applications. To the best of the authors’
knowledge, only one other video steganalysis method has
been proposed to date by Budhia et al. [6, 7]. The pro-
posed technique leverages the differences in correlation from
frame-to-frame between the watermark and the cover-video
in order to statistically separate the components. In partic-
ular, the method assumes that each frame of a stego-video
contains a hidden spread spectrum watermark and employs
the collusion attack on adjacent video frames in order to es-
timate the cover-video. Features of the difference between
the suspect-video and cover-video are then classified using a
kNN classifier that is trained a priori.

Given the success of video steganalysis in incorporating
temporal correlations of the cover-video as well as the funda-
mental nature of detection theory in helping develop bench-
marks and methods suitable for a variety of situations, we
consider the development of a video steganalysis algorithm
incorporating asymptotic relative efficiency (ARE)-based de-
tection. Our contribution can be considered a performance-
enhancing extension of [6, 7] and the extension of [16, 17] em-
ploying a non-classical detection-theoretic framework, new
to the field of steganalysis. In the next section, we summa-
rize our assumptions.

2.1 Assumptions
We make the following assumptions:

A1 The suspect-media consists of a sequence of correlated
image frames; in this work we consider them to com-
prise a video signal.

A2 The watermark is independent (or has low dependence)
from frame-to-frame; this is a reasonable assumption
assuming high-capacity embedding.
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Figure 1: Steganalysis algorithm.

A3 The video signal obeys a Gauss-Markov correlation
model temporally (i.e., from frame-to-frame).

A4 The watermark is zero-mean.

In this paper, no explicit assumptions on the probability
density function (pdf) of the watermark are made other than
the requirement for zero-mean. In addition, we do not ex-
plicitly consider spatial correlations as we focus on the ste-
ganalytic capabilities of the temporal domain of video. It
is to be noted that although there are methods that do not
obey A2, video steganalysis is a new field and we believe cur-
rent video data hiding methods do not make use of informed
embedding. We strive to design a technique that is low-cost
for video data and leverages well-developed research fields
of signal processing and detection theory that are suited for
the problem at hand. Many steganalysis techniques inher-
ently estimate the cover features of a media signal from the
suspect and then evaluate features of the difference between
the two in order to detect hidden information. In this work,
we take a slightly different approach. We look at signal pro-
cessing to enhance the hidden data temporally.

3. MOVISTEG DEVELOPMENT
A steganalytic algorithm is usually comprised of two parts

as shown in Figure 1: a signal processing phase and a detec-
tion stage. The former step is often used to extract features
of the multimedia signal that are affected by steganogra-
phy; whereas the latter part provides the necessary decision-
making often using user-determined parameters. Various
signal processing techniques have been developed through
the years, however, except for a handful of methods [16, 17],
the detection approach has generally consisted of a form
of comparison of the output of the signal processing phase
to a simple threshold. We assert based on recent research
showing the potential of classical detection theory for image
steganalysis [16, 17] that the investigation of formal detec-
tion theory is a fruitful field with the potential to benefit
steganalysis in a diverse set of applications.

The signal processing phase is often first executed by at-
tempting to find an accurate estimate of the cover-media, or
associated statistical metrics, from the suspect-media. Once
this estimate is obtained, it is effectively subtracted from the
suspect and the difference is input to the detection stage,
which categorizes the suspect-media as being a cover-media
or stego-media. In many techniques, a simple threshold is
used for the detection step.

We use the same general process for MoViSteg. However,
instead of estimating the cover-media, we attempt to create
a new video signal, which when subtracted to the suspicious
one will enhance the presence of steganography, if it exists.
To do so, we use a motion estimation algorithm. The reason
that we taken this alternative approach from existing meth-
ods is to make our approach more suited to applications in
which only a subset of video frames are watermarked instead
of all of them as in [6, 7].

The second stage of the steganalysis is an adapted detec-
tor. The use of a detector is crucial here as steganalysis
basically boils down to a detection problem. Hence there
is a need for a well-designed detector to take the best deci-
sion possible on the potential steganographic content of the
suspicious sequence. We assert that the added complexity
compared to simple detection schemes will prove to be worth
it.

3.1 Motion Interpolation
As mentioned previously, the purpose of this stage is to

maximize the difference between the suspicious and esti-
mated sequences in order to make the detection of steganog-
raphy easier.

3.1.1 Motivation
Motion estimation and interpolation techniques have of-

ten been used for the purpose of video restoration [12].
When a frame is poorly transmitted and hence is missing
data, it is possible to retrieve most of the data by using the
surrounding frames because of the high correlation existing
between each frame.

The same idea is used here for the purpose of steganalysis.
One frame, Fn, at a time is assumed to be “missing” from
the video and needing interpolation. By using the imme-
diately adjacent frames, denoted Fn−1 and Fn+1, the esti-
mated frame F ]

n is reconstructed. It is to be noticed that
frame Fn does not contribute to the reconstruction of frame
F ]

n. This ensures that if Fn is corrupted by steganography
it will not contaminate F ]

n.
In presence of hidden data the associated disruption added

to the frames will make the motion estimation more difficult
and hence will introduce greater discrepancies between both
the suspicious and estimated sequences. Ideally, the larger
these deviations, the easier the steganalysis goal.

3.1.2 Algorithm
The first step in finding F ]

n is to compute the motion vec-
tors between Fn−1 and Fn+1. It should be noted that some
video codecs provide these motion vectors directly making
this stage unnecessary. However this is not true in general,
which is why we propose a lightweight estimation step.

The motion estimation method we adopt is the sum of
absolute differences (SAD) technique. It is attractive for
our purposes because it is commonly employed, simple con-
ceptually (which is convenient for analysis), yet still gives
satisfying results for our purposes. It provides an effective
and computationally simple estimation technique. More ad-
vanced motion estimation algorithms are available in the
literature; however, in this case, the use of the SAD tech-
nique is not just for performance, but for lower complexity
too, and straightforward assessment of this new approach.
The algorithm needs to be lightweight in order not to waste
considerable amounts of time and resources, especially if one
must use video steganalysis continuously or in emerging re-
source constrained multimedia content networks.

To compute the motion vectors from Fn−1 to Fn+1, the
SAD technique takes each N × N block of pixels, Bn−1,k

(where k represents the block index) in Fn−1 and determines
the best matching block Bn+1,k in Fn+1 that minimizes the
SAD:

Bn+1,k = mini|Bn−1,k −Bn+1,i| (1)

Because there are approximately 25 and 30 frames per sec-
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ond in a sequence in PAL and NTSC standards respectively,
we assume that Fn−1 and Fn+1 are close and therefore that
the displacement between both frames is small. As a re-
sult, the search area to find Bn+1,k is then confined to the
coordinates adjacent to Bn−1,k.

For model simplicity the displacement from one frame to
another is also considered linear. Therefore the interpola-
tion step to find F ]

n reduces to taking half the length of the
motion vectors previously obtained. The same algorithm is
repeated for each frame of the suspect-video sequence to gen-
erate the newly estimated sequence, which is subsequently
subtracted from the suspect-sequence.

We can classify the motion interpolation of a frame as be-
ing associated with one of several distinct cases summarized
in Table 1. Case 1 considers the situation in which Fn−1, Fn

and Fn+1 all do not contain a watermark (i.e., they are “not
corrupted” (NC) by the embedded data). When motion in-
terpolation is applied, the resulting estimated frame F ]

n also
is NC. Therefore, we expect that the difference between Fn

and F ]
n to be minimal if interpolation is successful. In Case

2, only frame Fn is watermarked and thus “corrupted” (C)
by the embedded data. Therefore, F ]

n generated from Fn−1

and Fn+1 will be NC and there will ideally be a detectable
deviation between Fn and F ]

n. Similarly in Cases 4 to 8 there
is some deviation even when both Fn and F ]

n are corrupted
by embedding because we assume that the embedding from
frame-to-frame is independent (or nearly so). Thus, other
than Case 1, there ideally should be a measurable devia-
tion in the difference: Fn − F ]

n. This difference-sequence is
directly processed by the detector.

The reader should note that we do not extract features
from Fn − F ]

n prior to the detection as in the case of many
existing algorithms as we intend for the detector to work on
all the information available to it.

3.2 Detector

3.2.1 Prior knowledge
Detection theory is generally used to detect the presence

of a signal in some form of additive noise. It is necessary
when one needs to make a choice between a finite set of
hypotheses such as the following:

• H0 : Yi = Ni

• H1 : Yi = Ni + θ · Si

where Ni and Si represent the noise and the signal distri-
butions of the i − th frame, respectively, and θ denotes the
strength of the hidden signal.

In MoViSteg, the video represents the classical notion of
“noise” in detection theory, whereas the embedded message
represents the “signal.” In much of classical detection the-
ory, the signal is considered to be a constant, which is not
the case in our situation because the watermark must be
necessarily random throughout the cover-media to have a
non-trivial payload capacity. Therefore, we model both the
“signal” and “noise” for detection as random variables neces-
sitating and motivating the use of non-classical detection.

The optimal Neyman-Pearson detector is not used here
because it requires the knowledge of the signal distribution.
As we strive to be more proactive such an assumption would
be too strong. Instead, we employ a detector based on the
asymptotic relative efficiency (ARE) [15]. This particular

Figure 2: Proposed MoViSteg Detection Stage.

detector is efficient for large samples and weak signals, which
fits our application model; to be transparent perceptually,
the secret hidden data must be overpowered by the cover-
video itself. The detector also needs to be tractable for prac-
tical algorithm design; for that reason we choose the ARE
detector to be memoryless and dependent to account for
the highly correlated suspect data to be analyzed. Figure 2
provides an overview of the detection scheme.

The input of the detector corresponds to the difference
between the suspect-video and the estimated video from the
motion interpolation phase with {Yi} = Fi − F ]

i . Without
going into specifics, the use of the ARE detector requires
the knowledge of a nonlinearity g(x) =

∑M
i=0 ai · xi. This

nonlinearity is a polynomial where coefficients ai can be ob-
tained once the efficacy η is maximized. The efficacy is a
performance measure used in the ARE tests in which the
larger the value of the efficacy the more efficient the tests.
It is defined as follows [13]:

η(g) =

[
∂2

∂θ2 Eθ{g(Y1)}|θ=0

]2

σ2
0(g)

(2)

with, by definition [13]:

σ2
0(g) = E{g(N1)

2}+ 2 ·
∞∑

j=1

[E{g(N1) · g(Nj+1)}] > 0 (3)

Once the efficacy is maximized, the chosen detector becomes
optimal over the set of suboptimal dependent and memory-
less detectors [14].

3.2.2 Calculations
In order to optimize the efficacy, we use the Lagrange

multipliers technique which, while holding the denominator
constant (σ2

0(g) = α2), maximizes the numerator by finding
the extrema of the function f defined as:

f =

[
∂2

∂θ2
Eθ{g(Y1)}|θ=0

]2

− λ(σ2
0(g)− α2) (4)

This infers that the coefficients ai of the nonlinearity g
can be determined by solving ∂f

∂ai
= 0 for i = 1...M which

boils down to the system W ·A = c · Z with:

1

2
·Wn×n(i, j) = E{N i+j

1 }+
∞∑

k=1

[
E{N i

1N
j
k+1}+ E{N j

1N i
k+1}

]

(5)

Zn×1(i) = i · (i− 1) · E{N i−2
1 } (6)

An×1(i) = ai and c is a constant (7)

Because of the N i
1N

j
k+1 moments, further analyzes and com-

putations are only possible if a distribution model is assigned
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2 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8
Fn−1 NC NC C C NC C NC C
Fn NC C NC NC NC C C C

Fn+1 NC NC C NC C NC C C

F ]
n NC NC C C C C C C

Table 1: Results of Motion Interpolation for various levels of frame-watermarking. Other than Case 1, there
ideally exists a measurable difference between Fn and F ]

n.
NC = Not Corrupted, C = Corrupted
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Figure 3: Correlation models for Real Video ’Paris’
and Gauss-Markov distribution.

to the noise N (i.e., cover-video). This is not an assump-
tion about the watermark signal statistics and therefore still
provides some proactivity to our steganalysis approach. One
model that has been used in order to model video-sequences
is the Gauss-Markov model representing a noise process so-
lution to the equation:

Nn = e−a ·Nn−1 + Gn (8)

With a ∈ R+ and {Gn}∞0 ∼ ℵ(0, 1 − e−2a) are iid. This
model has potential because it provides a practical detec-
tor for steganalysis wile modeling reality to some extent.
For example, in Figure 3 we show the temporal (frame-
by-frame) correlation of the video ‘Paris’ (found at http:
//trace.eas.asu.edu/ MDC/ index.html) and the Gauss -
Markov distribution for a = 0.01. It is clear that the corre-
lation models are reasonably close. The reader should note
that the correlation is somewhat dependent on the video
content (frames 1-10 vs. frames 11-50) eventually causing
mismatching between the practical and theoretical models.
However, the Gauss-Markov model can be triggered by mod-
ifying the value of the constant a in the previous equation.
Here a is equal to 0.01 which is the most common value
observed during the tests for matching real videos.

Employing this assumption leads to the following simpli-
fication:

N i
1N

j
k+1 = Gi

1 ·
(

k+1∑
m=1

e−(k+1−m)·a ·Gm

)j

(9)

From this simplification and the properties of the iid gaus-
sian {Gn}∞0 , it becomes easier to solve the equation ∂f

∂ai
=

0 for i = 1...M , as we can now define numerically the

N i
1N

j
k+1 moments. Finding the optimal coefficients ai still

involves heavy calculations because the system remains com-
plex, however this is a one-time computation as the nonlin-
earity g remains the same whatever the suspicious video is.
For the case where videos are tested five frames at a time,
five coefficients are needed for g; these five coefficients are:

{a0, a1, a2, a3, a4} = {8.2643, 0,−51.729, 0, 23.27} (10)

3.2.3 Threshold Selection
In theory, the detector’s threshold T should remain con-

stant. Each suspicious video would be seen as a different
realization of the same noise. However, the size of the videos
varies as well as its content that is why an adaptative thresh-
old is needed.

Examples of salient video characteristics that vary from
one sequence to another include the size of the video as well
as its standard deviation and its correlation coefficient; these
therefore must be accounted for in our threshold selection.
The number of frames to be analyzed at each passing into
the detector also influences the decision and should appear
into the threshold T assignment. Preliminary tests were
conducted in order to find the best threshold as a function of
these four parameters. Tests results demonstrate satisfying
performance when the threshold is assigned to be:

T =
[
C · StD(F1) · Corr(F1, F2) · x · y

288 · 352

]2

·
[

Nf

5

]
(11)

where C is a constant, StD(F1) the standard deviation of
the first frame of the video, F1; Corr(F1, F2) the correlation
between the first and the second frames of the video, x·y

288·352
the size of each frame relative to the size of the videos used
for the preliminary tests, (xtest, ytest) = (288, 352), and

Nf

5
is the number of frames analyzed at each passing into the
detector relative to the number of frames analyzed during
the preliminary tests (Nf,test = 5).

4. PERFORMANCE ANALYSIS
The detector has been derived to amplify the difference

between cover-videos and stego-videos. For example, Fig-
ure 4 shows the output of the steganalyzer without and
with detector for the sequence ’Paris’. In this case, the av-
erage ratio between the output for cover-videos and stego-
videos is around 5 and 697 without and with detector re-
spectively. Therefore the ratio becomes larger with the de-
tector, hence making the differentiation between corrupted
and non-corrupted sequences easier and proving the added
performance of the detector.

Using the previously defined threshold, tests are executed.
Several videos, with or without embedding, are imported
into the steganalytic algorithm. The motion vectors are
computed and the estimated sequence is examined by the

165



1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2
x 104

Analysis index

O
ut

pu
t 

w
ith

ou
t 

de
te

ct
or

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5
x 107

Detector analysis index

D
et

ec
to

r 
ou

tp
ut

Non corrupted data
Corrupted data

Figure 4: Output of Steganalyzer without and with
Detector.
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Figure 5: MoViSteg ROC curve.

detector which takes the final decision regarding the poten-
tial presence of steganography.

The tests consist in 28 different gray-scale sequences of
25 frames each and are conducted with a 5 frame-analysis
during each passing into the detector. From each of these
28 uncorrupted sequences, 26 new sequences are derived,
each possessing respectively from 0 to 25 corrupted frames.
The corrupted sequences are generated by adding spread
spectrum watermarking to the frames. Therefore a total of
728 sequences have been used for these tests. For this first
series of tests, the corrupted frames are watermarked using
a high peak signal-to-noise ratio (PSNR) of 75dB.

The detector receiver operating characteristic (ROC) curve
is plotted in Figure 5. The varying parameter is the con-
stant C from the threshold definition. One important point
that differs from previous work on video steganalysis is the
assumption about the distribution of hidden data. In [6,
7], the watermark signal is assumed to be zero-mean and
present in every frame so that after doing a frame averag-

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Detector ROC curve

False positive rate

Tr
ue

 P
os

iti
ve

 ra
te
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ing the embedded data diminishes. However MoViSteg is
developed to identify the presence of steganography even
when a small number of frames are contaminated. It is also
naturally observed that the more frames that contain the
watermark the easier the steganalysis. In Figure 6 another
ROC curve is presented. In this case 80% of the frames in
the sequence are corrupted.

In Figure 5, MoViSteg achieves a 60% true positive rate
for a 10% false positive. Figure 6 shows a better performing
steganalysis as a 70% true positive rate is achieved for a
10% false positive, therefore supporting that the steganalysis
improves as the number of corrupted frames increases.

In order to test the performance of the detector against
the strength of the watermark, we present the case where
the embedding distortion, measured by the PSNR, is al-
lowed. The tests are consist in a smaller sample of sequences
than the previous ones as we only want to show the general
behavior of the steganalytic algorithm for different PSNR.
Figure 7 shows the ROC curves of MoViSteg for a PSNR
ranging from 60dB to 75dB. The results confirm what was
expected i.e., the stronger the watermark, the better the
steganalysis.

In theory, it is argued that for a steganographic algorithm
to be defeated, it is necessary for the steganography to be
detected with more success than a random guess i.e., with a
true positive rate greater than 50% and a false positive rate
less than 50%. However it is commonly agreed that the real
performance of an efficient steganalysis should be far better.
In Figure 5, MoViSteg achieves a true positive rate of 60%
for a false positive rate of 10% when the embedding distor-
tion is about 75dB, therefore demonstrating its potential for
practical steganalysis.

5. CONCLUSION
In the present paper, we proposed a steganalysis scheme,

MoViSteg, consisting in two distinct stages. The first stage is
the use of a signal processing algorithm that aims to empha-
size the presence of hidden information in the sequence using
a motion estimation scheme. The second stage is the formu-
lation of a detection theory algorithm based on asymptotic
relative efficiency. This algorithm uses a detection approach
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Figure 7: MoViSteg ROC curves for different
PSNR.

in which both the cover-video (“noise”) and watermark (“sig-
nal” to detect) are considered to be random variables. Mo-
ViSteg employs unrestrictive assumptions about the hidden
data except that it is zero-mean making it more proactive in
identifying a broader class of additive steganography. Future
works include testing MoViSteg with other steganographic
techniques than spread spectrum embedding and also adapt-
ing the correlation steganalysis scheme to visual sensor net-
works in order to detect and track node corruption.
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