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1 Introduction

The electric smart grid promises increased capacity,
reliability and efficiency through the marriage of
cyber technology with the existing electricity network.
This integration, however, creates a new host of
vulnerabilities stemming from cyber intrusion and
corruption potentially leading to devastating physical
effects. The security of a system is as strong as its weakest
link. Thus, the scale and complexity of the smart grid,
along with its increased connectivity and automation
make the task of cyber protection particularly challenging
(Amin, 2005, 2008; Boyer and McBride, 2009; McDaniel
and Smith, 2009).

Recently, smart grid researchers and standards
bodies have developed technological requirements and
solutions for protecting cyber infrastructure (Watts,
2003; Committee, 2007; Pietre-Cambacedes et al., 2007,
2008; Endoh, 2008; Falk, 2008; McDonald, 2008;
Ericsoon, 2009). However, grid protection remains
daunting to asset owners because of resources limitations
(Madani and Witham, 2008; Mertz, 2008). Important
questions arise when identifying priorities for design and
protection: Which cyber components, if compromised,
can lead to significant power delivery disruption?
What grid topologies are inherently robust to classes
of cyber attack? Is the information available through
advanced cyber infrastructure worth the increased
security risk?

Vulnerability analysis for electric power utilities has
begun to aid in answering these questions (Dagle,
2001; Depoy et al., 2005; Jiaxi et al., 2006). However,
before such evaluation can have practical significance,
it is necessary to quantitatively study the potential
severity of physical impacts of cyber attacks. This
requires identifying cascading failures within and between
the cyber and physical domains. To address this
challenge we study the development of a cyber security
analysis methodology that accounts for the complex
cyber-to-physical interactions.

The research presented in this paper represents
a work in progress towards the development of a
comprehensive and practical framework for electric smart
grid cyber attack impact analysis shown in Figure 1
that has been influenced by the needs of electric power
utilities.

The contributions of this paper are two-fold:

• Due to the emerging nature of the field of smart
grid cyber security, we provide a necessary
introduction to motivations and fundamental
research and development questions in this active
area. We focus on the topic of cyber attack impact
analysis.

• We then introduce a graph-theoretic dynamical
systems approach for modelling the interactions
between the cyber and the electricity networks
focusing on the model synthesis stage.

Section 2 introduces and motivates the problem of
smart grid cyber security. Sections 3 and 4 introduce
the proposed impact analysis framework based
on a graph-theoretic dynamical systems approach
for modelling the cyber-physical interactions. We
demonstrate how model synthesis can be applied to two
test systems. Empirical results and discussion are found
in Sections 5 and 6 followed by conclusions in Section 7.

2 Smart grid cyber security

2.1 Overview

A smart grid is defined as

“the integration of real-time monitoring, advanced
sensing, and communications, utilising analytics and
control, enabling the dynamic flow of both energy and
information to accommodate existing and new forms of
supply, delivery, and use in a secure and reliable electric
power system, from generation source to end-user”

(definition by North American Electric Reliability
Corporation). From a technical perspective there
is increased opportunity for cyber attack in a
smart grid because of the greater dependence
on Intelligent Electronic Devices (IEDs), flexible
communications infrastructures, distributed control
centres and advanced metering infrastructure. Such cyber
infrastructure increases communications connectivity,
automation and control, and employs standardised
information technologies (that often have documented
vulnerabilities). Coupled with increased motivations for
attack (that stem, in part, from privatisation of the
energy industry), cyber security of a smart grid represents
a timely engineering problem.

Table 1 summarises statistics of recent media reported
cases of disruptions to electric power delivery around the
world. As can be seen, from the report cases, a majority
are due to malicious cyber attack.

Securing a smart grid is also important for
protecting the public from terrorism, vandalistic hackers,
disgruntled insiders of the electric power industry
and cascading failures from the loss of other critical
infrastructures. The associated attacks on availability
can result in damaging instability such as blackouts and
brownouts. Moreover protecting a smart grid makes
business sense. Protection of cyber devices is needed to
establish compliance to cyber security requirements to be
able to compete in the electricity marketplace. Security
also represents a means to reduce or divert technical
liability and assure revenue by discouraging competitor
component cloning.

Preliminary studies and mechanisms for cyber
protection focus on data flow between the IEDs and
control centres and employ traditionally information-
centric metrics of performance. However, there is
a significant need to quantitatively account for the
physical impacts of a cyber attack since the ultimate
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Figure 1 Stages of proposed impact analysis approach (see online version for colours)

Table 1 Summary statistics of recently reported cases of disruptions to power delivery in recent media

Attribute Percentage (%) Attribute Percentage (%)

Malicious attack 71.4 Operator error 28.6
Resolved within 48 h 76.4 Resolved after 48 h 23.6
Affected > 100, 000 People 71.4 Affected < 100, 000 26.6
Solved internally 50.0 Solved externally (gov’t intervention) 50.0

objective of a smart grid is to provide reliable and
secure power delivery. Hence, it is important to
understand the influence a given data set has on power
delivery capabilities to prioritise mitigation. Specifically,
fundamental research and development questions arise:
What attack scenarios are plausible to achieve a
significant electric supply interruption? What realistic
impacts can be achieved assuming certain vulnerabilities
or successful attacks?

Risk analysis approaches for electric power utilities
aim to understand the answers to such questions.
However, strategies are as-of-yet ad hoc by nature.
Mathematical models of these interactive subnetworks
are typically vague or often do not exist (Amin, 2005).
One of the stumbling blocks is the inability to formally
measure the impact of a cyber attack on power delivery
metrics of importance to the power industry.

2.2 Cyber attack impact analysis

One of the initial activities on cyber security
assessment of power systems was a result of the
Department of Energy Infrastructure Assurance
Outreach Program (Dagle, 2001). Almost a decade ago,
they set forth a vulnerability assessment process for
energy infrastructure providers that included a series of
analysis stages including

• the characterisation of information threats by
financially-motivated individuals/organisations,
information warfare by other nations,
environmental or political terrorists and
unstructured adversaries such as hackers

• cyber network architecture analysis to identify
information assurance procedures

• penetration testing to identify network
vulnerabilities exploitable by tools available on the
internet

• interdependency analysis with other critical
infrastructures such as telecommunications and
transportation

• impact analysis of unauthorised access to cyber
infrastructure on physical system operations.

Risk characterisation is to be conducted based on the
tasks above (and others outlined in Dagle (2001)). Risk
of a given failure F is related to plausibility and
severity of system vulnerabilities, threats, and attack
processes causing F as well as the impact quantifying the
consequence of F on the power service (Liu et al., 2009;
Dondossola et al., 2009).

Simply, risk is defined as follows:

R(F ) = L(F ) × I(F ) (1)

where R(F ), L(F ) and I(F ) represent the risk, likelihood
and impact of a given failure F due to a cyber attack.
The likelihood L(F ) can further be broken down into the
product of the likliehood of threats and vulnerabilities to
give a three-dimensional method of evaluating risk.

R(F ) = L(F ) × I(F ) = T (F ) × V (F ) × I(F ) (2)

where T (F ) and V (F ) denote the likelihood of threats
and vulnerabilities associated with F . It is well known
that there is currently a lack of historical data
to sufficiently estimate any of the above quantities
necessitating the development of appropriate analysis
tools focused for emerging power systems. It may
be possible to estimate L(F ), T (F ) or V (F ) using
conventional analysis methodologies for systems security,
but the impact I(F ) is difficult to assess given the
complex system interdependencies that characterise a
smart grid and the evolving nature of modern power
systems.

In this paper we consider the problem of cyber attack
impact analysis which involves quantifying the effects of
given classes of cyber attack on the physical electrical
grid, hence, providing information on the degree of
disruption to power delivery that a class of cyber attacks
can enable. This information is vital for vulnerability
assessment (Stamp et al., 2009). Furthermore, based on
this information sophisticated dependencies between the
cyber and physical systems can be identified also shedding
light on behaviours of complex interdependent networks.
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Recent research that has focused on the interaction
between the cyber and physical aspects of a smart grid
to aid in cyber attack impact analysis takes on a variety
of flavours. These techniques can be classified into a
number of groups. Static approaches (Conte de Leon
et al., 2002) consider the topological information
about the smart grid in order to study vulnerabilities
often using graph-theoretic means. Empirical
approaches (Dudenhoeffer et al., 2007; Rozel et al.,
2008; HadjSaid et al., 2009; Stamp et al., 2009) harness
research and development of realistic communications
and power systems simulators. These two forms of
simulators are combined such that an attack is applied
in the communication simulator that transfers data to
the power systems simulator which makes decisions
based on this possibly corrupt information. Typical
traditional power system reliability metrics are used to
assess impact of the cyber attacks. In cyber-physical
leakage approaches (Tan, 2007; Tang and McMillin,
2008; McMillin, 2009) confidentiality of the cyber
network is studied by identifying how voltage and
current measurements of the physical power system can
be analysed for any clues about cyber protocol activity.
Mechanistic techniques (Sheng et al., 2007; Edwards
et al., 2007; Mander et al., 2007; Xiao et al., 2007)
involve cyber protocols, algorithms and architectures
that account for the physical power system. Testbed
systems research addresses the exploration of practical
vulnerabilities through SCADA testbed development
and construction (Davis et al., 2006; Giani et al., 2008;
Dondossola et al., 2009). Finally, research on attacks on
control systems (Cárdenas et al., 2008a, 2008b, 2008c)
focus on how data corruption of denial of information
access can affect the control of the power grid.

Our work builds on this body of research by
focusing on mathematically representing grid component
interactions to better identify non-cookie-cutter
vulnerabilities, the relative physical impact of cyber
attacks, and cost-benefit trade-offs for potential
countermeasures. Thus we aim to obtain a better
compromise among computational complexity, generality
and modelling accuracy.

Based on these problem requirements, we propose a
paradigm for cyber attack impact analysis that employs
a graph-theoretic structure and a dynamical systems
framework to model the complex interactions amongst
the various system components.

3 Application of graphs and dynamical systems

A graph is a mathematical structure that
represents pairwise relationships between a set of
objects. A graph is defined by a collection of vertices
(also called nodes) and a collection of edges that
connect node pairs. Depending the use of a graph,
its edges may or may not have direction leading to
directed or undirected classes of graphs, respectively.
Graphs provide a convenient and compact way

to show relationships and relate dependencies within
cyber physical power systems as witnessed by recent
papers that employ this tool (Conte de Leon et al., 2002;
Dudenhoeffer et al., 2006, 2007; Dawson et al., 2006;
McQueen et al., 2006; Xiao et al., 2007; Eberle and
Holder, 2009; Ekstedt and Sommestad, 2009; HadjSaid
et al., 2009; Hadeli et al., 2009). However, as cited
in Ekstedt and Sommestad (2009), purely graph-based
approaches do not sufficiently model the state changes
within the physical system. Moreover, they do not
effectively account for the unique characteristics of the
system at various time-scales nor provide a convenient
framework for modelling system physics. We assert that
modelling the electrical grid is a vital component to an
effective impact analysis framework.

One approach to physically modelling complex
engineering interactions employs dynamical systems.
A dynamical system is a mathematical formalisation
used to describe time-evolution of a state x, which can
represent a vector of physical quantities. In continuous-
time the deterministic evolution rule describes future
states from current states as follows:

ẋ = f(x, u) (3)

where ẋ is the time-derivative of x and u an input
vector. Dynamical systems theory is motivated, in part,
by ordinary differential equations and is well-suited to
representing the complex physical interactions of the
power grid (Feng et al., 2010).

We assert that a graph-based dynamical systems
formulation is effective for a smart grid cyber attack
impact analysis framework for a variety of reasons. First,
smart grid impact analysis necessitates relating the cyber
attack to physical consequences in the electricity network.
A dynamical systems paradigm provides a flexible
framework to model (with varying granularity and
severity) the cause-effect relationships between the cyber
data and the electrical grid state signals and ultimately
relate them to power delivery metrics. Furthermore,
secondary effects whereby the consequence of an attack
itself influences the continued degree of attack can be
represented.

Second, graphs enable a tighter coupling between
the cyber and physical domains. For a smart grid,
the cyber-to-physical connection is often represented
through control signals that actuate change in the power
system and the physical-to-cyber connection is typically
due to the acquisition of power state sensor readings.
These connections can be conveniently expressed as
specifically located edges of the graphs. Furthermore, as
we will discuss, the graphs induce a dynamical systems
description of the overall smart grid, which conveniently
expresses complex time-varying interrelationships. This
way cascading failures and emergent properties from the
highly coupled system can be represented. Mitigation
approaches often involve islanding of the grid or
partitioning of the core smart grid components from
optimisation functions (Amin, 2005), and a graph-based
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dynamical systems formulation can naturally portray
such separation as well.

Last, a primary effect of including cyber attacks
in traditional reliability analysis is that it increases
the size of the system under study by several orders
of magnitude (Stamp et al., 2009). Our proposed
mathematical formulation has the potential to keep
studies tractable because our granularity of detail
can be tuned and the use of dynamics can enable
sophisticated behaviours without a corresponding
increase in complexity.

4 Graph-based dynamical systems model synthesis

An overview of our impact analysis approach, which
is currently a work-in-progress, is shown in Figure 1.
The three stages of model synthesis, system analysis and
system validation are present. In addition, the output of
the validation stage is used to recalibrate our synthesis
approach.

In our model synthesis stage, which is the focus of
the remainder of this paper, we use dynamical systems
for the systematic modelling of the cyber and electrical
grids; this affords the flexibility to tune the granularity
of detail. The use of graphs conveniently facilitates
incorporating complex dependencies within and between
the cyber and electric components. This stage is critical as
it determines the relative accuracy of a smart grid impact
analyses and dictates the possible analysis tools available
to glean insights about vulnerabilities and strategies
for system hardening. We have developed a general
and systematic approach to modelling a smart grid
system using graph-based dynamical system approach.
To elucidate our approach, we focus on two case studies.

4.1 Single generator system

First, we present an ‘elementary’ example of Figure 2
that represents a potential system overload and instability
situation. Then we focus on a microgrid test example
modified from the IEEE 13 node distribution test system.

Figure 2 One line diagram of elementary power system
example. Cyber attack is applied to tamper with
sensor s3 effecting load management decisions by
the control centre (see online version for colours)

In the initial single generator system, G represents
a conventional generator (such as nuclear, coal and

natural gas) that serves two loads denoted Z1 and
Z2. The transformer T1 steps down the voltage and is
connected to Cable 1. Cables 2 and 3 are connected to
loads as shown. The hexagon symbols represent cyber
infrastructure. The system control centre is shown and
it communicates control signals to each of the three
switches shown. For switch i (denoted with a hexagon
with an i in the centre), the control centre communicates
control signal ci(t) where ci(t) = 0 denotes open switch
and ci(t) = 1 denotes close switch at time t. The control
centre senses information at the output of the generator
denoted s1, and at the outputs of Cables 1, 2, and 3
denoted s2, s3 and s4, respectively. This information is
passed to the control centre which employs a simple
load shedding algorithm to ideally avoid an overload
situation if load demand exceeds generation. If the
sensed overall load demand exceeds generation, then load
management sheds one or both loads to avoid instability
by opening their corresponding switches using control
signals. If sensed information reveals that neither load
can individually be served by G then both are shed.
If it appears that only one can be served, then the smaller
load is shed assuming the larger load can be served by G;
otherwise, the smaller load is served.

A typical cyber attack can involve fabricating or
tampering with the sensor information, so that load
management involves incorrect decision-making. In such
a situation loads are dropped when it is possible to serve
them or loads are not dropped when demand exceeds
generation leading to decrease of generator frequency and
finally generator trip out.

As a first modelling step, electrical and cyber graphs
are formed such that each node represents associated grid
elements; in this representation, nodes can be generators,
transformers, loads or plug-in hybrids, circuit-breakers
(electric), switches and control centres, sensors and
breaker actuator controls (cyber). Given this granularity
of detail, edges are selected in order to represent state
dependencies amongst the various components. As an
instructive example, we show the graph corresponding
to Figure 2; in Figure 3, the electrical and cyber graphs
are shown along with edges representing dependencies
amongst components within the same network or at
the cyber-physical bridge. Thus, there is a node for
every generator, transformer, load/plug-in hybrid, circuit
breaker, switch, control centre, sensor and actuator.
Directed links exist between nodes if there is an energy
or information flow dependence. The grid elements are
mapped to nodes based on the fact that it is feasible to
model their behaviour using dynamical equations. For
simplicity, communication links are modelled ideally, but
this does not have to be the case in general. The cyber
attack node A influences the sensor signal s3(t) at the
output of Cable 2.

Each node has an associated state x (consisting of
appropriate system voltages and currents) governed by
dynamical system equations that model the physics of
the entity (for the case of power system elements) or
the functional or computational processing (for the case
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Figure 3 Electrical and cyber graphs for system of Figure 2. Nodes are comprised of a generator G, circuit breakers Bi, cables, a
transformer T and loads Zi of the electrical network and a control centre cc, sensors si and actuator controls ci of the
cyber network. The cyber graph is distinguished with shaded nodes and dashed edges. Attack A targets the sensor s3

(see online version for colours)

of cyber elements). The exact expression for f depends
on the edges of the associated node. Nodes can be
grouped to form dynamic agents to represent interactions
within a smart grid as highlighted in Figure 3 based
on functionally or to balance subsystem order to aid in
analysis. We leave agent-based analysis for future work.

4.2 13 node distribution test system

The second system we consider is based
on the IEEE 13 node test feeder system
(http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.
html), but has been modified in two significant ways.
First, three Distributed Energy Resources (DERs) have
been added at Nodes 634, 646, 680. Second, a switch
has been added after node 650 in order to enable the
overall distribution system to operate in islanding mode.
In the study of this system, the switch is assumed to
always be open. Therefore, the three DERs in the system
are responsible to supply as much of the system load as
possible. The overall system is shown in Figure 4.

DER1 represents a 150 kW wind power generation
unit that is connected to Node 634 through a power
electronic interface. DER2 and DER3 are 2000 kW and
500 kW small synchronous generators, respectively that
are directly connected to Nodes 680 and 646. Thus, the
total generation capacity is 2650 kW. The loads in this
system add up to 3466 kW and thus must be selectively
prioritised if the system is operating in islanding mode.
Table 2 shows the priority levels for each of the nine
loads.

The load serving logic is designed such that if the
generation capacity is not sufficient to supply a load,
but a smaller lower priority load can be supplied with
the available capacity, the control centre will bring the
smaller lower priority load in. Thus, in normal operation
(when no attack is present) the control centre supplies
loads 1–5 and loads 6–9 are disconnected in islanding
mode. By taking into consideration approximately 30 kW
of system loss, the generation margin in this situation is
about 40 kW.

The cyber infrastructure encompasses the sensors,
s1, s2, . . . , s12 that collect measurements from various
system points, communication infrastructure, 12 breaker

Table 2 Priority levels of system loads. Please note that
percentages do not add up to 100% exactly due to
rounding

Load % System
Priority Node power (kW) load

1 671 1155 33.3
2 675 843 24.3
3 632-671 200 5.77
4 692 170 4.92
5 611 170 4.92
6 646 230 6.6
7 645 170 4.9
8 634 400 11.5
9 652 128 3.7

actuator controls denoted with numbered hexagons and
the control centre as shown in Figure 4. The sensor
measurements can include active and reactive power,
voltage and current phasors and on/off statuses of the
switches. The control centre acts as the overall system
brain to connect or disconnect the loads to and from
the grid based on their priorities and available generation
capacity. The control centre commands are sent to the
switch actuators through communication links.

As in the previous test case, we model each DER,
switch, load, capacity bank and cable as nodes in
the electrical graph. Each sensor, breaker actuator and
control centre are modelled as distinct nodes of the cyber
grid. The overall electrical and cyber graphs are shown in
Figure 5. A ‘composite’ cable node is used to represent
the five physical cables connected to Nodes 632–671 of
the test system. This has the effect of simplifying the
graph while leading to the need for higher dimensional
dynamical system equations at this node.

5 Results

A graph-theoretic formulation of distributed control
is well-suited to this smart-grid representation because
of the common mathematical treatment of cyber and
physical components using graphs. It also enables the
use of recent contributions to the field of dynamical
systems on graphs within the multi-agent control systems
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Figure 4 Single line diagram of the modified IEEE 13 node distribution test system (see online version for colours)

Figure 5 Electrical and cyber graphs for system of Figure 4 in islanding mode. Nodes are comprised of DERs, circuit breakers
Bi, cables, a transformer T and loads/capacitor banks Zi of the electrical network and a control centre cc, sensors si

and actuator controls ci of the cyber network. The ‘composite cable’ graph node represents the five physical cables
connected to Nodes 632 and 671 of the IEEE 13 node distribution test system. Edges represent state dependencies for
dynamical modelling. The cyber graph is distinguished with shaded nodes and dashed edges. Attack A targets the sensor
s10 (see online version for colours)

community (Jadbabaie et al., 2003). Here, we present
results pertaining to the graph and dynamical systems
modelling of cause-effect relationships of a cyber attack
on a test system.

5.1 Case study: single generator system

We first implement the graph-based dynamical system
model of Figure 3, which models the system of Figure 2.
A 12-parameter ordinary differential equation generator
model with generator capacity 0.8 MW is employed that
incorporates a governor, threshold limiter, and prime
mover elements as shown in Figure 6. The threshold
for the generator under-frequency relay is set to 58 Hz;
thus, when the system frequency drops under 58 Hz, the
generator will be tripped out.

All breakers are assumed to be ideal and controlled
by a corresponding control signal ci(t) from the
system control centre. An ideal transformer with
conversion factor 15 is assumed. Both of these types
of components represent trivial dynamical systems since
they can be modelled as (time-varying in the case

of the switch) amplification systems. All three cables
are represented with lumped resistive and inductive
models that are easily represented with differential
equations and as dynamical systems. Specifically, for
Cables 1, 2 and 3, R = 0.001, 0.001, 0.001 Ω and L =
0.000027, 0.000027, 0.000027 H, respectively. The first
load denoted Z1 is an resistive-inductive load with rating
0.6 MW and 0.8 PF (power factor); it is modelled with
R = 0.2158 Ω and L = 0.0004293 H. The second load
denoted Z2 is a resistive-capacitive load with rating 0.4
MW with 0.8 PF with R = 0.606 Ω and C = 0.0032 F.
The control centre employs load management and in
our elementary example controls all three switches. The
second and third switches before loads Z1 and Z2,
respectively, allow load shedding at appropriate times
to avoid system instability. As previously discussed load
shedding occurs only if an individual or the combined
load demand exceeds generation. The sensor information
si, i = 1, 2, 3, 4 is employed for this decision-making
process. If any of the sensors readings are tampered with
through a cyber attack, then there is potential to reach an
unwanted outcome.
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Figure 6 Dynamical system model for generator

Figure 7 (a) [top-left] Output of s3; (b) [top-right] output of s4; (c) [bottom-left] total power generation and (d) [bottom-right]
generator frequency (see online version for colours)

The graph-based dynamical system model of Figure 3 was
simulated in MATLAB/Simulink using the fourth-order
Runge-Kutta method with a step size of 0.001 seconds
and simulation duration of 20 s. We present the results of
one of our case studies to demonstrate how a cyber attack
on sensor reading s3 will result in a disruption in power
delivery. In the system of Figure 2 s3 is biased through
cyber tampering. Thus, we can model the sensor output
as:

s3(t) = B(t) + P3(t) (4)

where s3(t) is the tampered sensor reading, B(t) is an
unwanted bias that represents the tampering and P3(t) is
the true power at the output of Cable 2 that s3 is intended
to track. Continuous-time modelling is conducted to
integrate the cyber-physical graphs, but this can also be
modified to discrete-time with some additional overhead
at the cyber-physical boundary.

The generator G has capacity of 0.8 MW. Since Loads
1 and 2 have ratings 0.6 MW and 0.4 MW, respectively,
it is clear that G cannot simultaneously serve both.
The control centre will choose to shed Load 2 in favour of
Load 1 should they both demand service simultaneously.
In the simulations, at 0 seconds Load 1 is assumed to
come on and thus Load 2 is shed (if it were one prior to
0 s) as it is the smaller rated load. In this study a cyber
attack is applied at 7 s on s3 by adding a bias B(t) such
that it may effect load management by the control centre.
A load management delay of 0.2 s is assumed.

Figure 7(a) shows the output of s3. From 0 s to
7 s, Load 1 is being served thus, it is reading 0.6
MW as expected. At 7 s, the sensor is tampered and
three different bias values of B(t) = 0.9, 0.1, −0.3 are
considered. Figure 7(b) presents the output of the sensor
at Load 2. As expected, it is not being served. However,
for tampered Bias values of B(t) = 0.9 and B(t) = −0.3,
Load 2 is served. In the former case, this is because
it appears that the second load is being served, and
G (with capacity 0.8 MW) cannot serve both, thus,
Load 1 is shed (assuming it is the smaller load from the
tampered s3).

In the latter case, of B(t) = −0.3 it appears that
both loads can be simultaneously served, so they are
both switched on. As seen in Figure 7(c) this increases
the total power generation to be 1 MW, which is the
sum of the actual load ratings of 0.6 MW (for Load 1)
and 0.4 MW (for Load 2). However, as witnessed in
Figure 7(d), this has the effect of decreasing generator
frequency. At 18.579 s, the frequency runs below 58 Hz,
which instigates the under-frequency relay to trip out the
generator creating a system blackout. For a bias B(t) =
0.1, although the sensor reading is incorrect, it does not
actuate an incorrect load management decision.

5.2 Case study: 13 node distribution test system

The 13 node distribution test system is modelled in
PSCAD� which is a transient power system simulation
software. In this simulation, three DERs are integrated
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into the system to supply power to the isolated power
system. When more than one generator supplies power to
a system, one larger synchronous generator should be set
to isochronous mode to maintain the system frequency of
60 Hz. DER 1 consists of a wind turbine, a synchronous
generator, and a power electronic interface. A PQ mode
controller is implemented to keep the injected active
power and reactive power at desired values. It is also
assumed that the wind speed is 15 m/s, and the active
and reactive power set points are 150 kW and 120 kVAr,
respectively. DERs 2 and 3 are modelled as gas turbine
generators with governor and exciter and the inertia
constants (H) for these two generators are 1.03 s and
1 s, respectively. For DER 2, an isochronous governor
model is used. Hence, the power output of this unit is
regulated based on the load changes to maintain the
system frequency at 60 Hz. In contrast, DER 3 works
in droop mode and the power set point is 500 kW.
The synchronous generator model in PSCAD is a very
complex nonlinear dynamical system with more than
10 orders, which can help obtain more realistic simulation
results. The threshold for the generator under-frequency
relay is set to 58.8 Hz (2% mismatch from the normal
value). Obviously, when the system frequency drops
under 58.8 Hz, the generator will be tripped out.

For system cables, the PI model with non-symmetric
self and mutual impedances is used. The transformer
between nodes 633 and 634 with a conversion factor
8.67 is modelled with the PSCAD� non-ideal Y -Y
transformer model including leakage reactance, which
can be modelled using ordinary differential equations.
All the loads in the system are constant loads (constant
impedance loads, constant current loads, or constant
power loads), which can be modelled using differential
equations. Moreover, the constant impedance loads can
be modelled using RL or RC circuits directly. Breakers
are assumed to be ideal and controlled by a control
signal from the control centre. As mentioned before,
the control centre employs all of the sensor readings
(Si, i = 1, 2, . . . , 12) to decide to connect or disconnect
system loads based on load priorities and available
generation capacity. Then the control centre decision
is sent to the actuators through the communication
links. Note that the focus of this work is on the load
management functionality of the control centre which is
only one of many responsibilities of the control centre.
It is also worth mentioning that as this work tries
to show the effect of cyber attacks on the microgrid;
thus, the microgrid is assumed to be in islanding mode,
because it is more susceptible and fragile during islanding
operation. The step size of the PSCAD simulation is 50
microseconds.

We consider three attack scenarios in which the sensor
s10 at node 675 is compromised by adding a bias B(t) =
−400, 150, 70 kW to the measured active power. The
attack occurs at t = 0.5 s. Thus after t = 0.5 s, the attack
is modelled as:

s10(t) = B(t) + P10(t) (5)

where B(t) = −400, 150, 70 and P10 represents the actual
active power at Node 675.

Figure 8 considers the first case in which B(t) =
−400 and the attacker reduces the power measurement
at s10 from 850 kW to 450 kW (Figure 8(a)) making
the total measured system load decrease from 2575 kW
to 2175 kW. This is shown in Figure 8(b). At this time
the generation margin increases to 440 kW and with a
processing delay of 0.5 s, the control centre decides to
bring the next two higher priority loads in (i.e., Loads 6
and 7). By brining the loads at Nodes 645 and 646 in, the
total connected load exceeds the total generation capacity
by approximately 360 kW. Figure 8(c) shows how DER 2
and DER 3 are overloaded after t = 1 second. As a result,
the frequency of the overloaded synchronous generators
DER 2 and DER 3 starts to drop (Figure 8(d)). Finally,
0.83 s after the cyber attack, the frequencies of these
two generators fall below 58.8 Hz and at this time, the
under-frequency relays trip DER 2 and DER 3. As a
consequence, the control centre disconnects all the loads
and the remaining small DER (wind unit) and the system
experiences a blackout.

The second and third cases corresponding to B(t) =
150, 70, respectively, are presented in Figure 9. In the
second case, a bias value of +150 kW is added to
s10. This corrupted sensor value initiates the control
centre to disconnect the lowest priority served loads (this
corresponds to the 170 kW load at node 611) at t = 1 s, as
the generators seem to be overloaded by approximately
110 kW.

In the third case, a lower positive bias of +70 kW is
considered. As in the previous case, to prevent generator
overloading, the control centre disconnects the lowest
priority served load (this corresponds to the 170 kW load
at node 611) which results in an available generation
capacity of approximately 140 kW. This capacity is
sufficient to supply the 128 kW load connected to node
652. Therefore at t = 1 s, control centre disconnects the
load at node 611 and connects the load at node 652.
The effect of biased measurement on sensor s10 and on
the total measured load, variations in power outputs of
the DERs, and variations in DER frequencies for both
cases are shown in Figure 9(a) and (d), respectively. Note
that although the system does not experience a blackout
in the second and third scenarios, these attacks result
in unnecessary load shedding and serving a wrong load,
respectively. Thus an incorrect prioritisation of the loads
results.

6 Discussion

It is clear that our graph-based dynamical system
model synthesised from Figure 2 represents expected
behaviours. To have potential for realistic cases, it is
important to characterise how the approach scales to
larger systems.

The complexity of processing is dependent on graph
size (i.e., number of nodes), graph connectivity (related
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Figure 8 (a) [top-left] Output of P10 and s10; (b) [top-right] total system load; (c) [bottom-left] power generation of DERs
and (d) [bottom-right] frequencies of DER2 and DER3 (see online version for colours)

Figure 9 (a) [top-left] Output of P10 and s10; (b) [top-right] total system load; (c) [bottom-left] power generation of DERs
and (d) [bottom-right] frequencies of DER2 and DER3 (see online version for colours)

to number of links) and the particular dynamics (related
to its order) used to model the nodes. Thus, if the same
procedure of mapping a smart grid to a graph were
used for large studies, such as the IEEE power flow test
cases, it is apparent that the size of the graph would
grow incredibly. We assert that this may not necessarily
increase the complexity of the processing beyond
practicality. For instance, the graph-based dynamical
systems paradigm allows nodes to be grouped into
‘agents’ whereby each agent (instead of node) is modelled
using dynamical system equations. Appropriate grouping
of agents would allow necessary system behaviours to be
characterised while approximating others that are not as
salient to impact analysis. This method of grouping with
effective modelling of dynamics is currently the focus of
future work.

7 Conclusions

In this paper we have introduced an approach to cyber
attack impact analysis applicable to emerging smart
grids. The advantage of this graph-theoretic dynamical

systems paradigm is that continuous-time electrical,
discrete-event cyber and their interface can be modelled
within one framework allowing a single, but potentially
powerful analysis approach. Thus, cause-effect relations
for cyber-attacks are better managed for comprehensive
impact modelling and analysis. The paradigm has
attractive features particularly for realistic systems,
where incorporating high-order behavioural models are
necessary to assess dynamics, performance, stability and
emergent properties. Results for two test systems are
presented to show its potential to model cyber attack
effects. Future work will involve application of the
synthesis methodology to large-scale systems and the use
of PSCAD� and Powertech Labs’ DSAToolsTM to verify
our models results.
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