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Abstract 

We propose a novel concept for the restoration of locally 
degraded images based on telltale fragile watermarking. In 
our approach a data stream culled a watermark is embed- 
ded in the wavelet domain of an image such that munipula- 
tion of the image is reflected in the embedded stream. The 
altered stream is used for  semi-blind restoration to undo 
tampering. It is assumed that the embedded watermark 
is known, and the degradation is in the fbrm of localized 
jiltering in which the explicit jilter characteristics are un- 
known. Simulation results demonstrate the potential of the 
approach for  practical tamper recovery. 

1. Introduction 
The ease in which digital data can be manipulated has 

created a need for techniques that determine the credibil- 
ity of digital information. Traditional approaches verify in- 
tegrity by using additional data which is often in the form 
of an encrypted hashed version of the information to au- 
thenticate, but are not well-suited for the authentication and 
recovery of the information in digital images, sound and 
video. In such applications, it is desirable to be able to char- 
acterize and undo unwanted distortions [6]. Applications 
for tamper detection and restoration include authentication 
of digital data for courtroom evidence and journalistic pho- 
tography. 

In this paper we examine the feasibility of performing 
semi-blind restoration on images degraded by localized fil- 
tering. The problem of blind image restoration for global 
linear shift invariant (LSI) blurs has been addressed by re- 
searchers in various fields of study [2, 3, 5,7, 91, (Also see 
the survey paper [4] and reference therein). To the best 
of the authors' knowledge this paper is the first to tackle 
the issue of restoration for localized image blurring when 
the blurring function is unknown. Our design is part of an 
overall image security and authentication framework based 

Figure 1. The image tampering and restora- 
tion scenario. 

on digital watermarking. We extend our previous work on 
telltale watermarking [6] and propose a novel semi-blind 
restoration approach which both detects the degraded im- 
age regions and estimates elementary characteristics of the 
associated blurring functions. 

In the next section we formulate the problem we address. 
In Section 3 we introduce our novel approach of restoration 
based on telltale watermarking and analytically demonstrate 
how we can estimate elementary characteristics of the local- 
ized blurs to partially undo tampering. Simulation results 
are presented in Section 4. A discussion of the limitations 
of the technique and directions for future work is provided 
in Section 5 followed by concluding remarks in Section 6 .  

2. Problem Formulation 
2.1. The General Tamper Recovery Problem 

We address the problem of image tamper recovery. Fig- 
ure 1 provides the basic scenario considered in this paper. 
An authentic (untampered) image f is transmitted from the 
source to a destination. The signal received at the destina- 
tion g is modified in an unknown way. The goal of tamper 
recovery is to undo any modifications without use of the 
original image f .  

We limit ourselves to situations in which the tampering 
is in the form of localized linear blurring. We make the 
following assumptions on the image degradation: 

A1 P > 0 disjoint image regions experience localized fil- 
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tering. The degraded image for each region Rp can be 
modeled as 

for (m, n) E R,, where g is the locally blurred image, 
f is the undistorted image, h, is the associated blurring 
function for region R,, and p = 1,2, . . . , P. 

A2 The mean value of the image is preserved by the blur- 
ring. That is, h,(m, n)  = 1 for all p .  

A3 The blurring function is low pass in nature. Specifi- 
cally, we assume that the non-DC frequencies of the 
tampered image regions are attenuated by the blurring. 

Localized lowpass filtering is one of the most common 
types of image tampering as incriminating details of the im- 
age can be easily removed and the effects are unnoticeable 
without access to the original image. 

We do not assume that any information about the true 
image is available or that the explicit filter characteristics 
h, are known. Thus, our recovery process attempts to solve 
a blind image restoration problem. 

2.2. Semi-Blind Image Recovery Based on Telltale 
Watermarking 

In all blind image restoration techniques some reference 
information is necessary to undo the degradation. In ad- 
dition, for applications of tamper recovery we must incor- 
porate our restoration stage within the basic image security 
and authentication framework. In recent studies digital wa- 
termarking has been proposed as an effective means to pro- 
tect both the intellectual property and credibility of digital 
information in images [ 11. 

In digital watermarking, a binary sequence called a wa- 
termark is embedded into a host image with the use of a 
user-specified key. The embedding process involves imper- 
ceptibly modifying the host image such that the watermark 
can only be extracted with the use of the key. The wa- 
termarking algorithm can be designed such that any mod- 
ification of the marked image is reflected in the extracted 
watermark. Thus, the differences between the embedded 
and extracted watermarks can be used as reference for semi- 
blind tamper-recovery. The authors have proposed one such 
technique called telltale watermarking in which elementary 
space-frequency characteristics of the tampering can be de- 
rived [6].  In this paper, we attempt to undo the tampering 
by assuming that the degradation is in the form of localized 
filtering as suggested by Equation (1). We provide details 
of our technique in the next section. 

3. The Proposed Approach to Semi-Blind Im- 
age Restoration 

3.1. General Overview 

We summarize our approach in Figure 2. The semi-blind 
restoration stage is a part of an overall security system in 
which an image f is watermarked with a binary data stream 
w to produce a watermarked image f. The tampered ver- 
sion of fl is denoted g. At the destination, the watermark 
is extracted to produce the binary string w. If w and w 
are identical then it is assumed that no tampering has taken 
place. Otherwise, tampering is detected. The differences 
between the embedded and extracted watermarks are used 
to estimate the blurring functions and to partially restore the 
image. 

The watermark w is embedded in the wavelet domain of 
the image so that the tampering can be characterized in a lo- 
calized space-frequency domain. Thus, elementary charac- 
teristics of the localized blurring can be derived. Localized 
filtering is a form of linear shift-variant (LSV) image blur- 
ring. Since, computational complexity is of importance in 
our design, our approach does not try to explicitly solve the 
LSV image restoration problem. Instead, a multiresolution 
approach is employed to sub-optimally recover the image. 

3.2. Telltale Watermarking 

In this section we provide the relevant details of the wa- 
termark embedding and extraction stages for the restoration 
procedure. The reader is referred to [6] for the algorith- 
mic specifics. The general scenario is shown in Figure 3. 
User-defined keys, which we do not describe in this paper, 
are necessary to securely embed and extract the watermark. 
The only user-defined parameters are the positive integers 
L,,, and A which are called the maximum wavelet de- 
composition level and quantization parameter, respectively. 

(a) WATERMARK EMBEDDING PROCESS 

MULTIMEDIA MARKED 
SIGNAL SIGNAL 

> 

' I  I -  

AUTHOR WATERMARK 
KEY 

(b) WATERMARK EXTRACTION PROCESS 
SIGNAL EXTRACTED 

AUTHOR WATERMARK 
KEY I 

Figure 3. Proposed telltale tamper-proofing 
method. 
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Figure 2. Proposed semi-blind image restoration technique using telltale watermarking. 
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To embed the watermark, the L,,,th-level discrete 
wavelet transform (DWT) is applied to the: original image 
f ( m ,  n)  to produce 3L,,, detail coefficient images de- 
noted f k , l ( m ,  n) ,  where IC E {h ,  v, d }  (forhorizontal, verti- 
cal or diagonal detail coefficient) and 2 = 1 , 2 ,  . . . , L,,, is 
the resolution level. The gross approximation at the lowest 
resolution level L,,, is given by f,,~,,, (172, n).  

The following rule is used to embed the i1.h watermark bit 
w ( i )  in the coefficient f k , l ( m ,  n ) ) :  if Q ~ , l ( f k , l ( m ,  n ) )  is 
equal to w ( i ) ,  then no change is made to the coefficient; oth- 
erwise, -A2lsgn(fk,l(m, n ) )  isadded tofk,l(m, n ) )  where 

and sgn(f) = 1 if f 2 0 and sgn(f) = -1 other- 
wise. Thus, the coefficients are quantized to pre-specified 
bins to reflect the watermark bit values to embed. The 
L,,, th-level inverse discrete wavelet transform (IDWT) is 
performed on the marked coefficients to produce the water- 
marked image f”. 

Watermark extraction is performed by taking the DWT 
of the potentially tampered image, and extracting the water- 
mark bit values from selected coefficients. Specifically, if 
we let f k , l ( m ,  n )  be the wavelet coefficient containing the 
ith watermark bit, the corresponding extracted watermark 
bit is given by, 

G ( i )  = Q~, i ( j k , i (m ,n ) ) .  (3) 

To assess whether tampering has occurred we extract tlhe 
watermark from all or some of the wavelet coefficients in 
the particular spatial and/or frequency regions of interest. 
We compute the scaled Hamming distance between w and 
t2 which we call the tamper assessment function (TAF), 

- N+#, 

(4) 
1 -  

2 = 1  

T A F ( w ,  &) = - w(i) w( i ) ,  
Nul . 

where w is the true embedded watermark, tij is the extracted 
mark, Nw is the length of the watermark an,d 63 is the exclu- 
sive OR operator. The value of T A F ( w ,  w) ranges between 
0 and 1. 

Assuming that the degradation on the wavelet coeffi- 
cients due to tampering can be modeled as additive Gaus- 
sian noise with variance c& it can be shown that the ex- 
pected value of the tamper assessment function for resolu- 
tion level 1 is approximated by [6] ,  

where erf(-) is the standard error function, and it is assumed 
that cn << 2’A. Due to the ergodic nature of the TAF statis- 
tics in the presence of filtering, the extent of tampering at a 
particular resolution level 1 and/or spatial region can be ap- 
proximated by the magnitude of the average value of the 
TAF at the corresponding wavelet coefficients. In the next 
section we show how this quantity can be related to the char- 
acteristics of the blurring functions 

3.3. Analysis and Estimation of Elementary Blur 

It can be shown that the blurred image pixels in region 

Characteris tics 

Rp are related to the original image pixels through 

g(P) = H(P)f(P), (6) 

where f (P) and g(P) are the lexicographically ordered vec- 
tors containing the original image pixels and blurred im- 
age pixels, respectively, and H(p) is th appropriate block 
Toeplitz blur matrix corresponding to region Rp. Further- 
more, if we assume that the DWT is implemented using fil- 
tering banks and that decimation is not applied during the 
decomposition process, the corresponding wavelet coeffi- 
cients at the lth resolution level are related by 

(7) 

where ft/ and gt; are the lexicographically ordered vec- 
tors of the DWT coefficients of the blurred image and true 
image, respectively, for region Rp. For the remainder of the 
analysis we will drop the superscript ( p )  for simplicity. 

We model the effects of the blurring as additive noise on 
the embedded watermark. This “noise” at resolution 1 and 
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detail component IC is is given by n k , l  = f k , l  - g k , l .  It can 
be shown that the autocorrelation matrix of n k , l  is 

where Rf(k,l) is the autocorrelation matrix of fk , l  in region 
Rp.  We assume that the localized image region Rp can be 
modeled as statistically stationary which restricts the struc- 
ture of Rf(k,l) to be symmetric Toeplitz. In addition, if the 
dimensions of the matrices are large enough (i.e., the region 
Rp is large compared to the spatial support of the blurring 
function hp) ,  all the matrices in Equation (8) can be suc- 
cessfully approximated with appropriate circulant counter- 
parts 181. Therefore, diagonalization can easily be carried 
out with the well-known Fourier matrix (which we denote 
P) 181. Thus, the power-spectral density components of the 
noise are approximated by the diagonal elements of 

which reduces to 

S n ( k , l )  = S f ( k , l )  + ShSf(k , l )S*,  - S f ( k , l ) S S ,  - S h S f ( k , l ) ,  
(10) 

where S f ( k , l ) ,  S n ( k , l )  and s h  are the diagonalized counter- 
parts of Rn(k,l), R f ( k , l )  and H, respectively, and (.)* is the 
complex conjugate matrix operator. 

Assumption A2 guarantees that the mean value of the 
image is preserved during blurring or equivalently that the 
expected value of n k , l  is zero. The variance of this zero- 
mean noise is given by the trace of S n ( k , l ) .  Therefore, 

2 
f l n ( k , l )  = W n ( k , l ) )  

= t r ( S f ( k , l ) )  + t r (ShS j ( k , l )S* , )  
- t r ( S f ( k , l ) S i )  - t T ( S h S f ( k , l ) ) ,  (11) 

where t r ( . )  is the trace matrix operator and Equation (1 1) 
follows since all the associated matrices are diagonal. 

We define the “elementary characteristics” of the blur- 
ring as the average attenuation at each resolution and detail 
component due to blurring. Because we are performing a 
multiresolution analysis, some frequency localization is ex- 
hibited for each 1. If we approximate the bandwidth of f k , l  
to be small relative to the rate of change in the values of the 
Fourier transform of the blur h,, it can be shown that we 
can replace s h  in Equation (1 1) with a ( k ,  i)I where a ( k ,  I) 
is a scalar constant and I is the appropriately dimensioned 
identity matrix. Thus, g i ( k , l )  can be estimated by 

Given the average value of the TAF for resolution 1 and 
detail component I C ,  we can use Equation (5) to estimate 
the corresponding variance of the noise due to tampering. 

Equation (12) can then be used to estimate a ( k ,  1)  where 
tr(  S f ( k , l ) )  is estimated from an untampered region near R p .  
Since we assume condition A3, la (k ,  1)I < 1, the solution 
to (12) gives a unique value for a(k,Z). Thus, given an 
estimate of E { T A F }  for a particular resolution and detail 
component, we can determine the average attenuation that 
the corresponding image details have undergone. 

3.4. Semi-Blind Restoration Scenario 

The following steps are used for image restoration after 
the watermark extraction stage shown in Figure 2. 

1. Determine tampered regions Rp, p = 1,2,  . . . P [6]. 
2. Perform DWT on tampered image g. 
3. For each Rp, 

(a) Calculate TAF for a given ( I C ,  I). 
(b) Estimate g2(k,ll using Equation (5). 
(c) Estimate a ( k ,  I) with 

(d) Partially restore the image by amplifying the 
wavelet coefficients such that, 
If a ( k ,  1)  < 7, fk,l = 4 , l .  

If q I C ,  1) 2 7, fk,l = l/Cl.(IC, Z)fk,l. 
The threshold 7 is set to avoid noise amplifica- 
tion due to an ill-defined inverse problem. 

4. Perform the IDWT on the restored image wavelet com- 
ponents f k , l  to produce the restored image f. 

4. Simulation Results 
We implemented and tested the algorithm of Section 3.4 

to study the feasibility of our semi-blind restoration sce- 
nario. In the implementation described in 161, the Haar 
wavelet transform was used for its fixed point processing 
properties and computational simplicity; however, the inad- 
equate frequency localization properties makes it unsuitable 
for semi-blind restoration. Therefore, several other wavelet 
transforms were considered and we provide some encour- 
aging simulation results in Figure 4 of this section. 

Figure 4(a) shows the original host image and Fig- 
ures 4(b) and (c) show the corresponding watermarked tam- 
pered image, and restored image, respectively. The tam- 
pered region is outlined in the Figures. For the simulations 
we presented we used A = 2,T = 0.2 and the Daubechies 
4 point wavelet (called “db2” in Matlab). An 11 x 11 radi- 
ally symmetric blur given by h(m,  n )  = h 0 . 7 5 -  
was applied to locally modify the image in the outlined re- 
gion. The semi-blind restoration provides a peak signal-to- 
noise ratio improvement of 1.39 dB. In addition, it is easily 
seen that it improves the visual quality of the image to de- 
tails. 
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Figure 4. Simulation results. (a) Original image, (b) Tampered Image, (c) Restored Image 

Several other parameters and wavelets were used in sim- 
ulations. It was found that in general the larger the vdue 
of A, the better the restoration. This corroborates with 
our theoretical intuition as Equation (5)  is more accurate 
when the relative size of A is large compared to the effect 
of the blurring. However, for large values of A the water- 
mark becomes visible. In addition, larger extent Daubechies 
wavelets produced less watermark distortion which enables 
the use of larger values of A thus improving the restora- 
tion. Simulations also revealed that a larger tampered region 

6. Conclusions 

We studied the feasibility of automatic semi-blind image 
restoration within a digital watermarking protection sys- 
tem. Improvement in the visual quality of the restored im- 
ages was perceived due to the sub-optimal low complexity 
restoration. The performance of the algorithm is sensitive 
to selection of algorithm parameters, thus, further research 
is required to improve the reliability of the scheme. 

References significantly improves algorithm performance over smaller 
regions. We believe this to be because the estimates of 
E { T A F }  for each resolution level are more accurate. 

5. Discussion and Avenues for Further Study 

The fundamental limitation of the proposed approach is 
that the phase of the blurring cannot be determined. Further 
analysis not included in this paper shows that estimation of 
non-zero phase does not result in a unique solution. This 
is due to the fact that second order statistics are used in the 
estimation procedure. Use of third or higher order statistics 
can prove to result in poor statistical estimates due to the 
relatively small blurred data region involved in practical ap- 
plications. In addition, it should be pointed out that there is 
an inherent trade-off in our design. The lower resolutions 
are more localized in frequency which results in a better 
piecewise constant approximation of the blurring, however, 
due to the poor localization in time the approximation of 
E { T A F }  is less accurate as fewer watenmark bits are spa- 
tially embedded at these resolutions. 

Future work involves investigation into wavelet trans- 
forms such as wavelet packets which could potentially give 
a better estimate of the localized blurring function. In ad- 
dition, combining our blur estimation approach with other 
blind deconvolution techniques has the potential to improve 
overall restoration reliability. 
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