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ABSTRACT 

Classical linear image restoration 
that the linear shift invariant blur, 
point-spread function (PSF), is known 

techniques assume 
also known as the 
prior to restoration. 

in many practical situations, however, the PSF is unknown 
and the problem of image restoration involves the simul- 
taneous identification of the true image and PSF from the 
degraded observation. Such a process is referred to as bl ind  
deconvolution. This paper presents a novel blind deconvolu- 
tion method for image restoration. The method is flexible 
for incorporating different constraints on the true image. 
An example of the method is given for situations in which 
the imaged scene consists of a finite support object against a 
uniformly grey background. The only information required 
are the nonnegativity of the true image and the support size 
of the original object. For situations in which the exact ob- 
ject support is unknown, a novel support-finding algorithm 
is proposed. 

1. INTRODUCTION 
Image restoration refers to the task of recovering an image 
from a degraded observation. Although classical linear im- 
age restoration techniques have been thoroughly studied [I], 
the more difficult problem of bl ind  image restoration has nu- 
merous research possibilities. 

In applications such as artificial satellite imaging, remote 
sensing, and medical imaging, improved image quality is of- 
ten costly or physically impossible to obtain. In addition, 
little is known about the image to be restored, and it is 
often difficult to calculate or measure the PSF explicitly. 
The problem of simultaneously estimating the PSF (or its 
inverse) and restoring an unknown image is called bl ind  de- 
convolution. The goal is to obtain a shifted scaled version of 
the original image. Theoretically, the scale and shift of an 
image are not recoverable in general by blind deconvolution 
algorithms [3]. 

Initial research into blind deconvolution of images as- 
sumed that the degradation of the image resulted from lin- 
ear camera motion or an out-of- focus camera lens. Based 
on these models a parametric form for the PSF was de- 
rived, and the parameter values were estimated using the 
frequency domain nulls of the degraded image [2]. 

More recent methods estimate the image and PSF simul- 
taneously in the restoration process [3]-[lo]. They can be 
grouped into four classes based on their assumptions about 
the true image and PSF. The major drawback of existing 

from poor convergence properties; the algorithms converge 
to local minima [4], [5], [7], [8] or are so compiitationally 

blind deconvolution methods for images is that they suffer 
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demanding [3], [9] that they are impractical for imaging 
applications. 

This paper presents a novel technique for the class of non- 
parametric deterministic image constraints methods that 
overcomes the limitations of existing techniques. The gen- 
eral method involves the itera.tive minimization of a convex 
cost fcnction. The image is restored by filtering the blurred 
image to produce an image estimate which is restricted to lie 
on a convex set representing the known deterministic con- 
straints of the true image. The approach can incorporate 
a variety of constraints on the image such as pixel ampli- 
tude bounds, support, maximum energy, and smoothness, 
among others. 

This paper focusses the particular situation in which an 
object of finite extent is imaged against a uniformly grey 
background. The edges of the object are assumed to be 
completely or almost completely included within the ob- 
served frame. This often occurs in a.pplications such as 
astronomy and medical imaging. Statistical knowledge of 
the original image or a parametric model of the PSF are 
not needed. The only information required for restoration 
is the nonnegativity of the true image, and support size 
of the original object. This particular algorithm, referred 
to as the Nonnegativity and Support constraints Recursive 
Inverse Filtering (NAS-RIF) technique, involves numeri- 
cally minimizing a convex cost function. All other meth- 
ods incorporate the minimization QE nonconvex cost func- 
tions; the advantage of the proposed NAS-RIF technique 
is that convergence to the global minimum is guaranteed, 
even in the presence of noise. In addition, the proposed 
technique shows faster convergence speed than existing it- 
erative techniques and does not require heavy memory re- 
quirements. The superior performance of the NAS-RIF al- 
gorithm is demonstrated by computer simulations and com- 
parisons with existing methods of its class. 

The proposed technique and the methods of [7]- [9] be- 
long to the class of nonparametric finite support blind image 
rest,oration methods. They are included for comparisons 
and make the following assumptions to achieve blind im- 
age restoration. The degradation process is assumed to be 
represented by the following linear model: 

g(z, Y) = f ( z ,  Y) * W E ,  Y) + 4 2 ,  Y) 
where f(z, y) is the true image, h ( z ,  y) is the PSF, n ( z l  y) is 
the additive noise, g(z, y) is the degraded image, (z, y) is the 
discrete pixel coordinate, and * represents two-dimensional 
linear convolution. The true image is required to  be non- 
negative with known finite support (the support is defined 
as the smallest recta.ngle containing the entire object). In 
applications such as astronomy, this information is some- 
times available. In our method, i t  can be estimated using 
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a novel technique introduced in section 3. .  In addition to 
the assumptions stated above, the methods of [7]-[9] require 
that the blur also be nonnegative with known finite support 
for proper restoration. In contrast, the only assumption our 
algorithm makes about the blur is that  its inverse exists. 

Proposed Bl ind  Deconvolut ion Scheme 

2. THE P R O P O S E D  M E T H O D  

2.1. The Bl ind  Deconvolut ion A p p r o a c h  
The proposed NAS-RIF technique consists of a variable FIR 
filter u(z, y) with the blurred image g(z, y) as input. The 
output of this filter represents an estimate of the true image 
j ( z ,  y). This estimate is passed through a nonlinear filter 
which uses a non-expansive mapping to project the esti- 
mated image into the space representing the known char- 
acteristics of the true image. The difference between this 
projected image f ~ ~ ( z . ,  y) and f ( z ,  y) is used as the error 
signal to update the variable filter u ( z , y ) .  Figure 1 gives 
an overview of the scheme. 

We concentrate on the particular algorithm for which the 
image is assumed to be nonnegative with known support, 
so the N L  block of Figure 1 represents the projection of 
the estimated image onto the set of images that are non- 
negative with given finite support. This requires replacing 
the negative pixel values within the region of support with 
zero, and pixels values outside the region of support with 
the background grey-level LB.  The cost function used in 
the restoration procedure follows: 

r 1 2  

r 1 2  

where j ( z ,  y) = g(z, y) *U(%, y) ,  Dsup is the set of all pixels 
inside the region of support, and Dsup is the set of all pix- 
els outside the region of support. The variable y in third 
term of equation 1 is nonzero only when L g  is zero, ie., the 

background colour is black. The third term is used to con- 
strain the parameters away from the trivial all-zero global 
minimum for this situation. 

It can be shown that equation 1 is convex [ll], so that 
convergence of the algorithm to the global minimum is pos- 
sible using a variety of numerical optimization routines. 
The conjugate gradient minimization routine is used for 
minimization of J because its speed of convergence is much 
faster than other descent routines such as the steepest- 
descent method. The recursive algorithm, referred to as 
the NAS- RIF method is summarized in Table 1. 

Table 1. S u m m a r y  of the proposed NAS-RIF algo- 
r i t h m .  

I) Definitions: 

a J k ( z , y ) :  estimate of true image at  kth iteration 
a u k  (z, y): FIR filter parameters of dimension NZu x Nyu 

a 6: tolerance used to terminate the algorithm 
a J ( g k ) :  cost function at  parameter setting gk 
a V J ( g k ) :  gradient of J at gk 
a < ., . >: scalar product 
a Note: underlined letters represent lexicographically or- 

dered vectors of their two-dimensional counterparts. 

at  iteration k 

11) Set initial conditions (k = 0): 
Set FIR filter u k ( z , y )  to all zeros with a unit spike in the 
middle 
Set tolerance 6 > 0 

111) At iteration (k): k = 0 ,1 ,2 ,  ... 

f^k(",Y) = uk(z,Y) *g (z ,y )  

f ^ N L ( Z , Y )  = "x,y)l 
Minimization Routine to update FIR filter parameters. 
For example: (conjugate gradient routine) 

3a) F 7 J ( 1 L k ) l T  = r~a * " '  -1 
where 
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2.2. Uniqueness  of the Solu t ion  
Under ideal conditions of an infinite extent filter u ( z , y ) ,  
and in the absence of additive noise, the solution to the al- 
gorithm may not be unique. For example, if the background 
colour of the image is black, the true image is invertible, and 
the support of the image and PSF are identical, a restora- 
tion which globally minimizes the cost function can be the 
true image, the PSF or many erroneous intermediate solu- 
tions. The possibility of these erroneous solutions is one of 
the dilemmas of blind deconvolution algorithms. With the 
lack of sufficient information, i t  is difficult to often overcome 
this problem. 

Sufficient conditions for uniqueness of the solution for the 
NAS-RIF algorithm are developed in [ll], and are analogous 
to persistence of excitation for system identification. 

3. D E T E R M I N A T I O N  OF THE S U P P O R T  

A method for assessing the optimal support size automat- 
ically and objectively is proposed. It uses the hold-out 
(HO) method used for model validation in data analysis. 
The proposed support-finding algorithm is inspired by the 
constraint assessment algorithm of [12], but is modified for 
blind image restoration. 

Competing assumptions on the true image, such as dif- 
ferent support sizes, can be assessed using the hold-out 
method. A support size for the true image is assumed. The 
image estimate pixels p(z, y) outside the assumed region of 
support are collectively called the estimation set; they are 
used to obtain an estimate of the true image. This is ac- 
complished by minimizing a criterion, called the estimation 
error, which incorporates only the pixels within the esti- 
mation set. Specifically, the proposed blind deconvolution 
algorithm is applied using the assumed support and exclud- 
ing the nonnegativity constraint. The set of pixels within 
the assumed region of support is called the validation set, 
and is used to assess the “correctness” of the assumed sup- 
port size. This is performed by computing the validation 
error which measures the energy of negative pixels of the 
image estimate within the assumed region of support. The 
assumed support which produces the minimum validation 
error is selected as the true image support. The algorithm 
follows in Table 2. 

If the assumed support is exact or larger than the actual 
support a reasonable estimate of the true image can be ob- 
tained. Since the true image is nonnegative, the validation 
error for such an image estimate should be small. Thus, 
the assumed support which minimizes the validation error 
is intuitively a good estimate of the actual support. 

4. S I M U L A T I O N  R E S U L T S  A N D  
C O M P A R I S O N S  

The results of the proposed algorithm and the IBD algo- 
rithm described in [7] and modified in [8] are shown in fig- 
ure 2. The original toy and binary images shown in Fig- 
ures 2(a) and 3(a) of support 119 x 81 and 15 x 65 were 
blurred using a 21 x 21 truncated Gaussian PSF, and noise 
was added for a blurred signal-to-noise ratio (BSNR) of 70 
dB. The degraded images are displayed in Figures 2(b) and 
3(b). The proposed support-finding algorithm estimated 
the support of the toy image as 120 x 84, and the binary 
image as 15 x 65. Based on these supports, the NAS-RIF 
restorations and mean square error (MSE) plots are shown 
in Figures 2(c),(e), and 3(c),(e). The proposed NAS-RIF 
method converged to a very good estimate of the solution in 

Table 2. S u m m a r y  of the proposed  support Anding 
a lgor i thm.  

Assume an equally spaced grid of support parameter values 
(L,,L,) from (1,1) to the size of the blurredimage ( N , , , N y g ) .  
1) Assume a rectangular support S with dimensions (LI, Ly) 

from the grid. If all values in the grid have been selected 
before, either 

1. Go to step 5 if the exhausted grid contains successive 
elements. 

2. Form a finer grid centred about (Lz,mtn,Ly,mln) (the 
parameters giving the minimum of the validation error 
found so far), and select a parameters (L,,Ly) out of 
this new grid. 

2 )  Based on the assumed support S ,  find the restoration fil- 
ter u*(z,y) by using the conjugate gradient algorithm, to 
minimize the following estimation error function: J ( g )  = 

&,,E&>y) - LBIZ + Y  [Ca(r,u) “(”,Y) - 1]2 where 

f(z, y) = u ( z ,  y) * g(z, y) and 3 is the region outside the 
assumed support. 

3) Calculate the validation error based on the minimizing filter 
parameters U*(”,?/)  of the estimation error of step 2. 

where 1 1  . I /  denotes the number of elements in the argument 
set, and the ”restored” image estimate f*’(z,y) = u*(z,y)* 

4) Save the parameters (L,,,,,, Ly,min), which give the mini- 

5 )  Select the support parameters that minimize V(S) as the 

S(XClY). 

mum value of V ( S )  found so far. Go to step 1. 

optimal support size for restoration. 

approximately 300 iterations for the toy image and 100 iter- 
ations for the binary image. The results of the IBD method 
are shown in Figures 2(d),(f) and 3(d),(f). The image esti- 
mate which showed the minimum energy of negative pixels 
within the region of support and pixels deviating from the 
background grey-level was used as the restored image for 
both sets of results of the IBD algorithm. The restorations 
of the IBD algorithm, shown in Figures 2(d) and 3(d), are 
the image estimates at the 1000th and 3000th iterations, 
respectively. 

Although the IBD algorithm produces comparable results 
to the NAS-RIF algorithm for simple binary images, it fails 
to converge to a reliable image estimate for more compli- 
cated grey-scale images. The algorithm often exhibits insta- 
bility and, a t  times, begins to diverge even as it appears to 
be converging to a good solution. Simulation results of the 
IBD algorithm for exact support size a t  various different 
initial conditions and noise parameter values a produced 
similar results as those shown. 

The algorithm of [9] produced good results for very small 
images; however, for the images shown in this paper, i t  
was too computationally time consuming to produce a 
good estimate. The order of the algorithm per iteration 
is O(Nf4), where N j  is the number of pixel values of the 
image estimate. In contrast, the NAS-RIF method has or- 
der O ( N f N u N l , , k )  per iteration, where Nu is the number 
of FIR filter parameters of u ( z ,  y) and Nl,,k is the number 
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(a) True Image (c) NAS-RIF Rostoratio (e )  NAS-RIFmethod 

(a) True Image (b) Degraded image 

(c) NAS-RIF Restoration (d) IBD Restoration 

Iteration (b) Degraded Imagc (d) IBD Restoration ,on --.~-~ 

(e) NAS-RIF Method (1) IBD Method 

loo- loo- 

Iteration 
Figure 2. Simula t ion  Results of the proposed NAS-  
RIF and exis t ing IBD Res tora t ion  Methods for  the 
t o y  image.  

of line searches required in dlinmin. c [13] a t  the kth iter- 
ation, and the IBD method has order O(Nflog,(Nf)) per 
iteration. Since the number of filter parameters is usually 
much smaller than the image size, the NAS-RIF method 
requires much fewer computations than the IBD method to 
produce a good estimate in general. 

5 .  C O N C L U S I O N  
A general method for blind deconvolution of images is pre- 
sented which is flexible in incorporating different image con- 
straints, and shows superior convergence properties to exist- 
ing methods. An example of the technique for nonnegativity 
and support constraints, the NAS-RIF method, is discussed 
and compared to existing techniques. The proposed NAS- 
RIF algorithm has superior convergence properties than ex- 
isting methods of its class. Simulation results demonstrate 
the more reliable performance and faster convergence of the 
met hod. 

In situations in which the support of the true image is 
unknown, a support-finding algorithm is proposed. The 
algorithm shows promise for practical blind image restora- 
tion. 
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