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ABSTRACT 

In this paper, the authors present a convergence analysis for 
the NAS-RIF algorithm used in blind image restoration. A 
novel approach is presented to determine sufficient condi- 
tions for the global convergence of the technique. The ap- 
proach is general to many signal processing algorithms and 
incorporates Lyapunov’s direct method used commonly in 
nonlinear system analysis. 

The sufficient conditions for convergence are determined 
to be in the form of constraints on the blurred image pixels 
which can be tested for prior to the use of the NAS-RIF 
algorithm. An apparent trade-off between the quality of 
the restoration and the uniqueness of the solution is found. 

1. INTRODUCTION 

In many image processing applications the degradation of 
an image can be represented as the convolution of the true 
image with a blurring function also known as a point-spread 
function (PSF). Neglecting noise, the blurred image can be 
expressed by the following linear relationship [l]: 

where g(z, y) is the blurred image, f(z,  U) is the undistorted 
true image, and h(z ,  y) is the PSF. The coordinates (z, y) 
represent the discrete pixel locations, and * is the discrete 
linear convolution operator. In classical image restoration 
the true image f(z, y) is recovered by using a method to in- 
vert the effect of the PSF. However, in applications such as 
astronomical speckle imaging and medical imaging, explicit 
information about the PSF is often difficult to obtain, and 
the image must be estimated by using blind image restora- 
tion methods. Blind image restoration is the simultane- 
ous identification of the true image and the PSP from the 
blurred observation. A review of available techniques can 
be found in [2]. The major drawback of most existing blind 
image restoration algorithms is that they possess poor con- 
vergence properties: they often exhibit ill-convergence or 
require high computational complexity. The NAS-RIF al- 
gorithm is one of the most promising techniques for blind 
image restoration because it has superior convergence prop- 
erties to those of its class [3]. In [3] convexity of the NAS- 
RIF cost function for an infinite and finite number of filter 
parameters has been discussed, however, uniqueness of the 
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solution is not guaranteed. We show here the conditions 
under which a unique solution is guaranteed for a finite 
number of filter parameters. 

Because of the nonlinear nature of the technique, we ex- 
ploit nonlinear system analysis concepts to determine suf- 
ficient conditions for proper convergence of the scheme. In 
Section 2 we provide a brief review of Lyapunov’s direct 
method for nonlinear system analysis. In Section 3 we in- 
troduce the NAS-RIF algorithm and analyze its stability 
properties. Sufficient conditions for the stability of the SO- 

lution are determined, and an apparent trade-off between 
the accuracy and the uniqueness of the solution is discussed. 
Conclusions and final comments are presented in Section 4. 

2. NONLINEAR SYSTEM ANALYSIS 

2.1. Algorithm Stability 

The convergence of a signal processing algorithm is related 
to its stability. In this section, we introduce some prelimi- 
nary concepts used for our stability analysis. 

We focus on discrete time systems described by a recur- 
sive time domain relationship of the form 

(2) U k + i  = F k ( U k )  

where Uk E E”, and Fk : an + 2” for all k 2 0. The 
structure of Eq. (2) guarantees that there is a unique se- 
quence { u k }  associated with a specific initid condition uo. 
In most signal processing algorithms we try to find the pa- 
rameter set U* for which the algorithm “converges”. This 
implies that we want to find a U* such that it i s  invariant 
under the mapping F k  (i.e., U* = Fk(u*)). Such a param- 
eter set is called an equilibrium solution of (2). 

Given an initial condition UO, one is often concerned 
with whether or not the recursion will Lad to an equilibrium 
solution U*. Furthermore, one would like the recursion to  
converge to U’ given any u o .  As we will see, this property is 
related to the global asymptotic stability properties of the 
specific algorithm. 

A system of the form of Eq. (2) is asymptotically stable 
if for every e > 0 there exists a 6 such that 

lluo - u*ll < S implies l l u k  - u*II < t 

lluo - 1.1~11 < q implies l l u k  - u*ll + O 

(3) 

(4) 

for all k >_ 0, and there exists a 0 > 0 such that 
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Figure 1: Simulation Results of Blind Deconvolution Algorithms to Demonstrate Stability Properties 

as k -+ m, where (1 + 11 is the Euclidean norm. 
Condition (3) guarantees what is called stability in the  

sense  of Lyapunov  (isL), and Condition (4) guarantees at- 
tractability of the algorithm. When both of these conditions 
hold for any choice of UO, the system is globally asymptot- 
ically stable, and the algorithm is guaranteed to converge 
to the equilibrium solution for any initial condition. 

For reliable algorithm performance, it is not sufficient 
for the parameters of an algorithm to stay bounded. They 
must converge to the equilibrium solution. Figure l(d) (cen- 
ter] bottom) shows the mean square error (MSE) of the 
image estimate at each iteration of the Iterative Blind De- 
convolution (IBD) Algorithm [4] for a random initial image 
estimate. The algorithm oscillates, but does not converge 
to a solution. The restoration shown in Figure l(c) (cen- 
ter,top) is the best estimate in the mean square sense of‘ 
the IBD algorithm at the 4775th iteration. The problem 
is in deciding which solution to choose as the best image 
estimate without prior knowledge of the true image. In 
contrast, Figure l(f)  (right, bottom) shows the MSE of the 
image estimate for the NAS-RIF algorithm with an initial 
inverse filter setting of one in the center and zero elsewhere. 
The algorithm converges to a good estimate of the true im- 
age. The NAS-RIIF algorithm exhibits asympto t ic  stability 
from this particular initial inverse filter setting because it 
converges to a good estimate of the true image. In this pa- 
per, we find conditions which guarantee that the NAS-RIF 
algorithm will converge to a good image estimate from any 
initial condition and for an arbitrary blurred image. That 
is, we want to determine the conditions to guarantee global 
asymptotic stability of the algorithm, which is essential for 
the reliability of a blind deconvolution algorithm. 

2.2. Introduction to Lyapunov9s Direct Method for 
Discrete Time Systems 

Lyapunov’s direct method is a powerful analysis technique 
which has broad application to nonlinear systems. It can 
be used to  provide sufficient conditions for asymptotic sta- 
bility of a given nonlinear system of the form of Eg. (2). 
A comprehensive explanation of Lyapunov theory is found 

Lyapunov analysis entails the selection of an “energy” 
function commonly referred to as a Lyapunov function V : 
R” -+ R, which maps the parameter states of a given non- 

in 151. 

linear system to a scalar quantity. If a function V can be 
found which exhibits certain properties, which we will ex- 
plain, then the nonlinear system is globally asymptotically 
stable. That is, convergence o f  the algorithm to the equilib- 
rium solution from any initial condition is guaranteed. We 
use the following theorem to find sufficient conditions for 
global asymptotic stability of the NAS-RIF algorithm. 

Theorem 1 (Global Asymptotie Stability) T h e  equi- 
l ibrium U* of E¶. (2) i s  globally asymptotically stable if 
there is a func t ion  V : R” -+ R such tha t  

(2) there are continuous,  strictly increasing func t ions  a : 
R -+ R, and p : R -+ R where cr(0) = p(0)  = 0 and 

(1) V(u*)  = 0. 

4 l u  - u*ll) 5 V(U) 5 P(IIu - u*ll) ( 5 )  
f o r  all U E R”. 

(3) V is radially unbounded. i.e., V(u) 3 03 as  [lull -+ 00. 

(4) AM = V(uk+~) - V(u,) < 0 f o r  all k 2 0. 

3. THE NAS-RIP ALGORITHM 

3.1. General Algorithm Description 

The Nonnegativity and Support Constraints Recursive In- 
verse Filtering (NAS-RIF) tec9migue [3] is applicable to 
situations in which an object,of finite support is imaged 
against a uniformly grey background. It is comprised of a 
2-D variable FIR filter u(z ,  y) of dimension Nzu x Ngu with 
the blurred image pixels g(z,y) as input. The output of 
this filter represents an estimate of the true image f(z, y)* 
This estimate is passed through a nonlinear gilter whicR uses 
a non-expansive mapping to  project the estimated image 
into the space representing the known characteristics of the 
tAme image. T& difference between this projected image 
f ~ ~ ( z , y )  and f(r, y )  is used as the error signal to update 
the variable filter u(z ,y) .  Figure 2 gives an overview of 
the scheme. The image is assumed to be nonnegative with 
known support, so the NL block of Figure 2 represents the 
projection of the estimated image onto the set of images 
that are nonnegative with given finite support.. The cost 
function used in the restoration procedure is defined as: 
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where f(z, y) = g(z, y) * u ( x ,  y), and sgn(f) = -1 if f < 0 
and sgn(f) = 1, if f 2 0. DsuLis the set of all pixels in- 
side the region of support, and Ddug is the set of all pixels 
outside the region of support. The variable in third term 
of Eq. (6) is nonzero only when LB is zero, i.e., the beck- 
ground colour is black. The third term is used to constrain 
the parameters away from the trivial all-zero global mini- 
mum for this situation. A descent optimization algorithm is 
used for the minimization of Eq. (6). Analysis shows that 
the global minimum u'(3,y) of J can be made arbitrarily 
close to the inverse of the PSF (under ideal, noiseless con- 
ditions) by increasing the size of the dimensions of the FIR 
filter u(z,y) [6]. 

L 

3.2. Stability Analysis 

A numerical descent optimization algorithm is used for the 
minimization of (6). A good survey of the various descent 
routines available is found in [7]. The algorithm can be 
represented by the following update law: 

u k + l  = u k  + P k d ( U k )  (7) 
where u k  is the lexicographically ordered vector of the FIR 
filter coefficients a t  the kth iteration, and p k  is the associ- 
ated step size a t  the kth iteration. d(uk) is the "direction" 
vector related to the particular numerical descent routine 
employed; it is often related to the gradient of J at  U k ,  and 
ensures that J ( u k + l )  5 J ( u k ) .  Since, the algorithm of (7) 
is in the same form as that of (2), we apply Theorem 1 to 
evaluate its stability properties. 

We choose a Lyapunov function V(u) and determine the 
conditions under which the algorithm is globally asymptot- 
ically stable. Because the NAS-RIF algorithm incorporates 
the minimization of the cost function J(u) a good choice 
for V(u) is 

\ ,  

V(u) = J(u) - J(U*) (8) 
where U* is the desired global minimum of J(u). The global 
minimum is an equilibrium solution of the descent proce- 
dure of Eq. (7) because d(u*) = 0 since no modification of 
U* can further reduce the cost. 

To ensure global asymptotic stability, we must restrict 
V(u), or equivalently J(u) - J(u*>, to the four conditions 
outlined in Theorem 1. From this, we can obtain constraints 
on the blurred image pixels g(z, U) to ensure proper conver- 
gence. In other words, given the NAS-RIF algorithm, we 
will determine a set of blurred images for which proper con- 
vergence to a good image estimate can be achieved. 

The conditions given in Theorem 1 easily translates to 
the following constraints on J(u): 

(31) ~ ( I I U  - u*ll) + +*) L J(u)  5 P ( l b  - u*llj + J(u*) 
for all U E R", where a(.) and p(.) are as stated in 
(2) of Theorem 1. 

(J2) J(u) + 00 as llull + 00. 

(53) AV;, = J ( u k + l )  - J ( u k )  < 0 for all k 2 0 where 
U k  # U * .  

Thus, given a set of blurred images for which the asso- 
ciated cost function of Eq. (6) follows the three constraints 
listed above, convergence of the algorithm to the best image 
estimate for a given inverse filter size is achieved. 

In this paper, we propose that the set of blurred images 
that satisfy the matrix condition 

where 

g,, = [g(z, U) g(z, 1/ - 1). . .g(z - Nxu + 1, Y - Nyu 9 1)IT 

ensures global asymptotic stability of the NAS-RIF algo- 
rithm. Before we show this, we present some definitions 
and theorems relevant to our analysis [8]. 

Definition 1 (Hessian of a function) TRe Hessian of a 
function J : R" + R is  defined as 

V2J(Z)  = 

where z is  an n-dimensional vector of comprised of compo- 
nents 21, ZZ, * .  . 
Definition 2 (Convex and Strictly Convex Functions) 
A function J : R" + R is said to be convex on R" when 
for all a €10, I[ and zI # 82 there ho& 

J(az1 9 (1 - a ) z z )  I (YJ(z1) -k (a  - a)Y(z2) 

J ( 0 l Z l  4- (1 - cy)%) < aJ(z1)  4- (1 - a)J ( z2 )  

(10) 

(11) 

I t  is strictly convex if 

Theorem 2 Let J ( z )  be twice diflerentiable cn R". Then, 
1. J i s  convex for  all z E R" if V2 J ( z )  is positive semi- 

2. J is strictly convex f o r  all z E R" if V2 J ( z )  is posi- 
definite (i.e., V2J(z) > 0).  

tive definite (i.e., V2J(z) > 0) .  
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It can be shown that the Hessian of the cost function 
defined in Eq. (6) is given by 

where f(z, y) = g(z, y) * u(z, U), and voner is a N,,N,, x 1 
column vector with all elements equal to  1. 

Since V O ~ ~ ~ V ~ ~ ~ ~  and g,,g:, are positive semi-definite 
matrices, and the sum of positive semi-definite matrices is 
also positive semi-definite, we conclude that V2J (u )  is pos- 
itive semi-definite. (i.e., V2J(u) 2 0 ) .  Furthermore, using 
the proposed matrix condition of (9), the second term of 
Eq. (12) is positive definite. Thus, we find that 

T 

V”(u) > 0.  (13) 

Using Theorem 2, it can be shown that J(u) is strictly con- 
vex and is, therefore, governed by the inequality of (11). 
Based on this, we will now show that J(u) follows the Con- 
ditions (J1)- (53). 

From (11) we see that J(u) increases along any ray orig- 
inating from U*. In addition, it can be seen from (6) that 
J(u) is finite for all finite U. Thus, there exist constants 
0 < K < X < co such that 

~ l l u  - u*1I2 5 J(u) - J(u*) 5 X l l u  - u*1I2. (14) 

This fulfils Condition (Jl). Furthermore, the increasing 
magnitude of J ( u )  along any ray originating from U* en- 
sures that J(u) -+ co as llull -+ co (Condition (J2)). 

Condition ( J 3 )  is also f m e d  as the update law of (7) 
ensures that S(u) is always decreased. Again, based on 
the inequality of (11), it is always possible to decrease the 
cost using a descent routine update law, until it reaches the 
equilibrium U*. Therefore, 

J(UkS1) - J ( U k )  < 0 

for dl k where uk # U*. 
Thus, from Theorem 1, Condition (9) ensures that the 

NAS-RIF algorithm is globally asymptotically stable. This 
condition is analogous to the requirement of persistence of 
ezcitatzon encountered in adaptive control; the blurred im- 
age must “excite” the system sufficiently, or equivalently 
stated, it must contain enough information to construct a 
good estimate of the true image. If Condition (9) does not 
hold, then V2J(u) 2 0 and the solution may not be unique. 
This arises from Eq. (10) which implies that the cost fmc- 
tion could be potentially flat at the global minimum. That 
is, there may be an infinitum of equilibrium soldtions that 
globally minimize the cost function. Because the dimension 
of M in Eq. (9) is equal to the total number of FIR filter co- 
efficients, a larger size filter U makes it more difficult to f a 1  
Condition (9). However, as stated in Section 3.1 (the rele- 
vant analysis can be found in [6]) ,  this reduces the accuracy 
of our image estimate. Thus, as we go farther from a good 
image estimate, it is easier for us to  fulfil the conditions that 

guarantee a unique solution. The matrix inequality of (9) 
provides a testable condition to evaluate the convergence 
properties of the algorithm prior to  the restoration. From 
our Lyapunov analysis, a FIR filter of selected dimensions 
N,, x N,, can be chosen to guarantee a unique solution 
using the following general procedure: 
1. Select an initially small size for the filter U. 

2. Build the matrix M given in Eq. (9). 
3. Test the rank of M. If M is full rank, increase the 

size of U and go to 2. Otherwise, stop and use the 
preceding Rlter size tested as the size of U in the NAS- 
RIF algorithm. 

4. CONCLUSIONS 

In this paper, we use a novel method of analyzing the con- 
vergence properties of iterative nonlinear signal processing 
algorithms. The general analysis technique makes use of 
Lyapunov’s Direct method and is a powerful method of de- 
termining sufficient conditions for global algorithm conver- 
gence and stability. The technique has potential for the 
design of nonlinear algorithms with superior convergence 
and stability properties. 

The approach was applied to determine a sufficient con- 
dition for the global convergence of the NAS-RIF algorithm 
used in blind image restoration. This condition can be 
tested for prior to the use of the NAS-RIF algorithm to 
determine an optimal recursive filter size to guarantee a 
unique image estimate. 
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