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Robust Classification of Blurred Imagery
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Abstract—In this paper, we present two novel approaches for
the classification of blurry images. It is assumed that the blur is
linear and space invariant, but that the exact blurring function is
unknown. The proposed fusion-based approaches attempt to per-
form the simultaneous tasks of blind image restoration and clas-
sification. We call such a problemblind image fusion. The tech-
niques are implemented using the nonnegativity and support con-
straints recursive inverse filtering (NAS-RIF) algorithm for blind
image restoration and the Markov random field (MRF)-based fu-
sion method for classification by Schistad-Solberget al.. Simula-
tion results on synthetic and real photographic data demonstrate
the potential of the approaches. The algorithms are compared with
one another and to situations in which blind blur removal is not at-
tempted.

Index Terms—Blind image restoration, classification, multispec-
tral image fusion.

I. INTRODUCTION

T HE inaccuracy of many image classification strategies
often results from attempting to fuse data that exhibits

motion-induced blurring or defocusing effects. Compensation
for such blurring is inherently sensor-dependent and is non-
trivial as the exact blur is often time-varying and unknown [1].
In such a situation, restoration is frequently performed on the
degraded data prior to classification. A major obstacle arises
when the exact blurring function is unknown. This may be over-
come by using blind image restoration algorithms.Blind image
restorationrefers to the dual process of blur identification and
image restoration and is used only when partial information
about the image degradation process is available. It is suited
for situations in which the blurring and noise characteristics of
the imaging system may be unknown due to their time-varying
nature. A recent survey of such algorithms can be found in [2].

The weakness of most blind restoration techniques stems
from numerical instability; there is often insufficient informa-
tion to provide an accurate regularized solution to the problem
and noise amplification may result [3]. In addition, it may be
impractical for a human observer to supervise the restorations
to prevent instability. This may result in an unreliable image
estimate, which in turn can effect the accuracy of subsequent
higher-level processing tasks such as classification.

In this paper, we consider the classification of blurred and
noisy images using data fusion strategies. It is important that we
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distinguish between our use of the terms “fusion” and “classi-
fication.”Multisensor data fusionrefers to the acquisition, pro-
cessing, and synergistic combination of information from var-
ious knowledge sources to provide a better understanding of the
situation under consideration [4].Classificationis an informa-
tion processing task in which specific entities are mapped to
general categories. For the classification of multispectral im-
ages, the specific goal is to assign each vector-valued pixel of
the combined multispectral image to its appropriate category
using tonal and/or textural data; the result is a single color-
coded image showing the several types of classes in the scene.
In this paper, image classification is the specific goal we wish to
achieve and data fusion is the process by which we accomplish
the task.

The accuracy of image classification is often highly de-
pendent on the quality of the restored images1. We argue that
performing blind image restoration prior to and separately from
classification results in suboptimal solutions. We attempt to
combine both processes using multisensor data fusion strategies
to produce a more regularized solution; we call this process
blind image fusionfor classification. The problem has appli-
cations to many areas of image analysis, such as robot vision,
remote sensing for land-use classification and medical imaging,
among others. The imagery may be multisensor/multispectral
in nature or can consist of a single sensor image band.

The main contributions of this paper are as follows.

1) The integration of blind image restoration with traditional
data fusion concepts to provide a more optimal image
classification. Two novel approaches based on different
philosophies are proposed to address the problem of blind
image fusion.

a) In our first technique we take a new perspective on
the image estimates at each iteration of a recursive
restoration algorithm. Each estimate is treated as a
different reading of an image sensor and the esti-
mates are simultaneously fused to produce a more
regularized classified image.

b) In the second approach we define an error metric
which uses the results from intermediate-level
image fusion and classification to produce an
appropriate2 termination point for the restoration
algorithm.

2) The implementation of the two architectures to assess the
practical feasibility of blind image fusion. The authors
are unaware of other advanced research into combining

1This is especially true if the classification technique is trained on or uses
models fof nonblurred imagery.

2By the termappropriatewe mean that the image estimate at termination
results in an accurate classification. This termination point is not always the
best image estimate visually or in the mean square sense.
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Fig. 1. The blind image restoration and classification problem. The sensor images are assumed to be degraded according to the linear degradation model. These
images are used to produce a classification of the scene using partial information about the undistorted imaged scene, and the blurring process.

restoration and fusion and assess the potential of the tech-
nology.

3) A comparative study of the effects of blur removal for
image classification.

In the next section we define the specific problem to address
and discuss our assumptions. In Section III we propose the two
novel approaches for blind image fusion. Implementation issues
are discussed in Section IV. Simulation results and comparisons
with existing techniques are given in Section V, and final re-
marks are conveyed in Section VI.

Assumption Set 1 (General Assumptions for the Blind Image
Fusion Problem)

1) Multisensor images of the same scene are registered. If
the images are, for example, the different color bands of
a color image, then it is safe to assume that the images
are registered. Otherwise, a registration algorithm must
be applied to the images prior to processing.

2) The blurring process obeys the linear degradation model
of (1). This model is successfully used in imaging
applications in which the blurring process isisoplantic
(i.e., the blurring operation is linear and shift invariant).
The model makes the solution to the image restoration
problem tractable [10].

3) Partial information about the imaged scene is available to
perform blind image restoration. This information is spe-
cific to the algorithm employed. Section IV-A1 provides
the specific assumptions for the NAS-RIF algorithm.

4) Statistical information about the undistorted images of
the scene is available for classification. This information
is also specific to the particular classification approach
implemented. Section IV-A2 provides the specifics for
the MRF classification algorithm.

II. PROBLEM FORMULATION

We address the issue of the robust classification of blurred im-
agery. The difference between the problem we consider in this

Fig. 2. NAS-RIF algorithm for blind image deconvolution.

paper and that addressed in other literature on image classifica-
tion [5]–[9] is that we explicitly account for the blurring degra-
dation in the image while other approaches do not. We focus on
the design of techniques for the simultaneous restoration and
classification of blurred imagery using fusion-based strategies.

We consider the scenario in which we havedifferent de-
graded registered sensor images where
of a given scene. Each acquired imageis assumed to be de-
graded according to the following linear degradation model.

(1)

where is the blurred noisy image from theth sensor,
is the undistorted true image of the scene, is the

blurring function also known as the point-spread function (PSF),
is zero-mean additive white Gaussian noise, andrep-

resents the two-dimensional (2-D) linear convolution operator.3

If we neglect the noise term in (1), the process of recovering
from is calledblind image deconvolution. Our

goal is to effectively combine the information in these degraded
images to provide an accurate classification of the sceneAny
training or reference data used for classification is assumed to
apply to the undistorted images Fig. 1 gives an overview of
the problem.

3The PSF models imperfection in the system such as motion blurring from
the movement of satellites or from the use of out-of-focus cameras; the additive
noise term models nonidealities in sensor equipment and electronic instrumen-
tation [10].
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TABLE I
STATISTICAL MRF FUSION METHOD USING THE ICM ALGORITHM

We list the general assumptions made in our problem formu-
lation below. More specific assumptions are made during imple-
mentation as specific algorithms are employed for blind image
fusion. These assumptions are discussed in Sections IV-A1 and
IV-A2.

III. B LIND IMAGE FUSION

The two major considerations in the design of our blind image
fusion scenarios was the portability of the techniques to dif-
ferent applications and the ease of implementation. As a re-
sult, we have designed our methods such that they can incorpo-
rate existing iterative blind image restoration and classification
algorithms. This allows the flexibility to select the algorithms
most appropriate for a given application. In addition, the use of
well-known and well-documented methods makes implementa-
tion and testing easier, and allows a user to predict and assess
the behavior of the overall blind fusion scheme to a greater de-
gree.

The selection of the data fusion approach is based on existing
research demonstrating the success of fusion in effectively com-
bining complementary and redundant information (see [1], [4]
and references therein). In addition, the authors’ previous re-
search into data fusion suggests its promise for the processing
of data exhibiting signal-dependent noise [11]. In the next sec-
tion we show how a restored image can be considered to suffer
from signal-dependent noise. In Section III-B we discuss the
general scenarios.

A. Blurring as Signal-Dependent Noise

In this section, we demonstrate how a restored image esti-
mate is considered to suffer from both signal-dependent and
-independent additive noise processes. We assume that image
restoration is performed by the process of inverse filtering (i.e.,
the filtering of to produce an estimate of .4 As-
suming the linear degradation model of (1), the restored image

is given by

(2)

(3)

(4)

(5)

where is the Kronecker delta function,
and As

we can see, the restored image estimate suffers from two er-
rors: which is a signal-dependent noise process (i.e., de-
pendent on and which is a signal-independent

4Inverse filtering is a common approach to perform blind deconvolution [12].
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random process. The term represents the degree of par-
tial blurring that remains in the restored result and is the
filtered additive noise term.

The goal of blind image restoration is to find a filter
which minimizes the overall restoration error
Ideally, if the blurred image does not contain additive noise (i.e.,

for all then where
is the inverse of the PSF,5 minimizes the restoration

error such that and In practice,
however, is not negligible and is low pass which
suggests that is high pass. As a result, inverse filtering
will amplify the noise process so that becomes signifi-
cant.

In fact, it is well-known that a tradeoff exists between the de-
gree of deblurring and the extent of noise amplification [13].
Many classification methods perform poorly as a result of par-
tial blurring or excessive noise amplification in the restored re-
sult. Regularization techniques can be employed to find an ap-
propriate compromise. The question arises as to how to find the
degree of regularization which will produce the best classified
result.

B. The Fusion-Based Strategies

We investigate two general architectures for the robust classi-
fication of blurred images which exploit the concepts of image
fusion. The two approaches are as follows.

1) Our first approach involves exploiting the complemen-
tarity of distinctly regularized restorations. We treat the
restored images as the outputs of different bands of an
image sensor; the bands are assumed to experience addi-
tive and correlated signal-dependent noise. By fusing the
images in the classification stage we can attempt to ex-
tract the salient features from each of the different restora-
tions to produce a more regularized overall result. The fu-
sion process is applied to the selected image estimates of
a given degraded image band as well as any other avail-
able imagery from other sensors.

The approach provides the user with the flexibility
to choose the restorations to fuse for classification. The
major disadvantage is that the image selection process is
ad hoc.

2) Based on the limitation of our first approach, we inves-
tigate a technique to automate the process of choosing
a good restoration for classification. The selection
technique is not straight-forward as the visually most
appealing restoration does not necessarily produce the
most accurate classification. We base our approach on
the premise that feedback from the classification stage
to enhance the iterative restoration process can result
in a more optimal overall classification. We devise a
technique (which uses a quantitative figure of merit) to
assess the restoration that produces the most accurate
classification. Image fusion is applied at the classification
stage which incorporates information from an interme-
diate image estimate as well as other available sensor

5If the PSF is noninvertible then we may considerh (i; j) to be thepseudo-
inverse[3].

images of the scene. This information that is fed back to
the restoration stage to enhance the image estimate.

The advantage of this technique is that the process of
selecting a good image estimate for classification is algo-
rithmic. However, as the classification result makes use
of only one image estimate, the solution is not as regular-
ized as in our first approach.

IV. I MPLEMENTATION OF THE ARCHITECTURES

A. Restoration and Classification Algorithms

In each of the approaches proposed the blind image restora-
tion and classification stages are distinct, but interconnected.
For the implementation of the techniques we make use of the
NAS-RIF algorithm and the MRF classification technique by
Schistad-Solberget al..

1) The NAS-RIF Algorithm for Blind Image Restora-
tion: The nonnegativity and support constraints recursive
inverse filtering (NAS-RIF) algorithm [14] is applicable to
situations in which an object of finite support is imaged
against a uniform background. Fig. 2 gives an overview
of the algorithm. The blurred image pixels are
input to a 2-D variable coefficient finite impulse response
(FIR) filter whose output represents an estimate
of the true image denoted This estimate is then
mapped to the set of all nonnegative images of given finite
support by replacing the negative pixels with zero and the
pixels outside the region of support with the appropriate
background pixel color value to produce
The difference between and is used to update the
filter The algorithm involves the minimization of the
following convex cost function with respect to :

sgn

(6)

where and sgn if
and sgn if is the set of all pixels inside
the region of support, and is the set of all pixels outside
the region of support. The support is defined as the smallest
rectangle which can completely encompass the true unblurred
object. The variableγ in third term of the equation is nonzero
only when is zero, i.e., the background color is black.
The third term is used to constrain the parameters away
from the trivial all-zero global minimum for this situation
[15]. The user-specified parameters in the algorithm are the
FIR filter dimensions, the unblurred object support and the
parameterγ. The parameterγ is set in general to 1 when the
background color is black. The initial setting for is
the discrete unit impulse (i.e., a value of one in the center
of the FIR filter parameters and zero elsewhere). Assuming
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Fig. 3. Blind Image Fusion Method 1: The simultaneous merging of distinct
restorations.

TABLE II
PERCENTAGECLASSIFICATION ACCURACIES FOR THESYNTHETIC DATA. IMAGE

2 IS AN ADDITIONAL REGISTEREDIMAGE OF THE SAME ISLAND-LIKE SCENE

WHICH IS DEGRADED SOLELY BY ADDITIVE WHITE GAUSSIAN NOISE

WITH A SNROF 20 dB. THE boldface rowsREPRESENT THERESULTS OF

THE PROPOSEDAPPROACH

the steepest-descent minimization routine, the update law for
is given by

(7)

where is the update step-size, is the unit step
function, is the value of the filter at the th itera-
tion, and Alternatively, the conju-
gate gradient routine may also be implemented to minimize

Convergence using this approach is usually faster than
the steepest-descent method. The specifics are provided in
[15].

The assumptions of the NAS-RIF algorithm are as follows.

Assumption Set 2 (Assumptions Specific to the NAS-RIF
Algorithm)

1) The imaged scene is comprised of a finite extent object
against a uniform background. In general, a blind decon-

volution algorithm requires areferenceto perform decon-
volution. The reference is often in the form ofa priori in-
formation about the true undistorted image. In the case of
the NAS-RIF algorithm, the information assumed about
the true image is the nonnegativity of the pixels and the
known finite extent of the original undistorted object.6

2) The support of the image is known or estimateda priori.
This information can be obtained from undistorted ver-
sions of different sensor images of the same scene or by
the use of support-finding algorithms [14].

The main advantage of the NAS-RIF method is its superior con-
vergence properties to other techniques of its class [2]. In addi-
tion it is based on well-developed theory and is not computa-
tionally complex [15]. The major disadvantage is the excessive
noise amplification that results due to the ill-posed nature of the
blind deconvolution problem. One successful method of com-
bating the numerical instability is to terminate the algorithm be-
fore excessive noise occurs in the restored output [15].

2) Statistical MRF Fusion for Classification:The MRF clas-
sification algorithm is attractive because it allows the incorpo-
ration of spatial, spectral and temporal information in a uni-
fied framework. A previous investigation by the authors [11]
suggests that the MRF method is successful in classifying im-
ages degraded by non-Gaussian signal-dependent and nonaddi-
tive noise. This implies that MRF fusion may also perform well
in the classification of restored images which we can consider
to exhibit a type of signal-dependent noise as discussed in Sec-
tion III-A.

Markov random field (MRF) models provide a methodolog-
ical framework which allows the images from the different sen-
sors to be merged statistically in a consistent way. The MRF
classification method [5] uses the MRF models to form a likeli-
hood function. The goal of the method is to find a classification
that maximizes the posterior (MAP) distribution of the likeli-
hood function. Determination of this MAP estimate requires the
minimization of a sum ofenergy functions[5]. The overall func-
tion originally proposed in [5] is more complex than that imple-
mented and discussed in this paper. The simplification arises
because we assume that all images used for classification are
taken at the same time instant and that there are no old ground
truth maps available to aid classification.

Specifically, our MAP classification estimate requires the
minimization of the following function

(8)

where the subscript denotes data from a particular sensor,
is the number of sensors to be fused, are the
sensor images (in lexicographical order), is the sensor-spe-
cific reliability factor (usually taken to be the individual sensor
classification accuracy), and is the classification of the scene
and is the same dimensions as the sensor imagery. Each element
of is an integer representing a particular class. It is a value be-
tween 1 and where is the total number of classes
in a given scene. and are called the sensor-specific

6This information can be obtained in astronomy and satellite remote sensing
applications.
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Fig. 4. Blind Image Fusion Method 2: The use of a fusion-based stopping criterion for blind image restoration.

Fig. 5. Synthetic Image Data to Test Approach 1. The grey-levels represent
the actual simulated radiance of the scene. (a) Original, (b) degraded image with
BSNR of 40 dB, (c) restoration at sixth iteration, and (d) restoration at seventh
iteration.

image statistic function and the spatial context energy function,
respectively.

In the simulations performed we assumed that the image
noise statistics can be modeled by a normal distribution and
that the noise processes are independent from one another.7

As a result, is given by

(9)

7This was successfully done by Schistad-Solberget al. for non-Gaussian
noise in [5].

where is the number of bands for sensor and are the
covariance matrix and the mean value vector of the radiance for
class for the bands in image sensorrespectively, and

is the image pixel vector corresponding to pixel .8

The parameter sets and are assumed to be known prior to
fusion. The spatial context function, which promotes regions of
uniform classification, is given by [5]

(10)

where is a user-specified nonnegative scalar parameter,
is the set of all pixels adjacent and diagonal to and
is given by

if
if

(11)

The overall algorithm we implemented is shown in Table I.
The value of is selected through experience. For the simu-

lations in this paper the values were selected as suggested in [5].
The technique performs pixel-level fusion for 9 and in-
termediate-level fusion for Equation (8) is not convex
for The term implies that the classification of a
pixel at location is dependent on all other pixels in a square
neighborhood centered about This makes deter-
mining the global minimum of (8) computationally complex.
To reduce the complexity, we implement the minimization rou-
tine using Besag’s iterate conditional modes (ICM) algorithm
[16] as suggested in [5]. The algorithm can become potentially
trapped in local minima, but this was not a problem during the
actual simulations performed.

It should be noted that if a single image is used for classifi-
cation, then no fusion is performed by the MRF technique. The
algorithm merely classifies the image.

8Because there areB bands for the image sensor, each pixel can be consid-
ered to have an associated vector whose elements consist of the radiance values
from each of the bands.

9If � = 0; thenU = U : Therefore, it can be seen from (9) that the
minimum ofU with respect toC(i; j) only depends on the corresponding
pixel value of each of the sensor images and, hence, the classification procedure
involves pixel-level fusion.
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Fig. 6. Classification results for Approach 1 on synthetic data. The four
different grey-levels represent each of the different classes in the image. The
white, black, light grey and dark grey colors denote classes 1, 2, 3, and 4,
respectively.

The specific assumptions made by the algorithm are provided
below.

Assumption Set 3 (Assumptions Specific to the MRF
Classification Method)

1) The mean and (co-)variances of the radiance of the dif-
ferent classes in the scene are known or estimated from
similar (nonblurred) data. The tonal and textural informa-
tion about each class is used by the MRF method to seg-
ment the image into different regions. This information
can be gathered from the use of image data containing
similar types of regions [5].

2) The multispectral images are of the same dimensions. In-
terpolation methods may be used to resize the images to
one size. The classified image result is the dimensions as
the interpolated images.

3) The individual sensor reliability factors for each image
are known prior to blind image fusion. This may be pro-
vided by the sensor manufacturer or can be approximated
by the individual sensor image classification accuracy [5].

B. The Two Approaches

1) Approach 1: Simultaneous Fusion of Distinct Restora-
tions: We consider for simplicity the classification of a
single noisy blurred image, although the method can easily be
extended to the situations in which other sensor images are
available. The technique is comprised of two stages. The first
stage of the technique involves the blind restoration of the
image using the NAS-RIF algorithm. We hypothesize that if
we treat each restoration at a selected set of iterations as the
output of a different image sensor band and fuse the results for

Fig. 7. Photographic color image data. The images represent the red band of
a color photograph of chalk. (a) Original, (b) degraded image with BSNR of 40
dB, (c) restoration at first iteration, and (d) restoration at eleventh iteration.

Fig. 8. Classification results for Approach 1 on photographic data. The five
different grey-levels represent each of the different classes in the image. The
white, light grey, medium grey, dark grey and black colors denote classes 1, 2,
3, 4, and 5, respectively.

classification, then there will be an overall regularizing effect
on the output.

The second stage fuses the various image estimates into a
classified image using the MRF classification method. The fu-
sion process takes into account the correlation in noise among
the various image estimates. Fig. 3 gives an overview of the pro-
posed architecture. We fuse several image estimates, which ex-
hibit various degrees of blur removal and noise amplification,



250 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 09, NO. 2, FEBRUARY 2000

TABLE III
PERCENTAGECLASSIFICATION ACCURACIES FOR THEPHOTOGRAPHICDATA.
THE boldface rowREPRESENT THERESULTS OF THEPROPOSEDAPPROACH

to produce a more reliable classified output. Assuming that we
use the restorations at different iterations of the NAS-RIF al-
gorithm, each image estimate can be represented as

(12)

where and (12) follows directly from (5).
If we assume that the blurred image has a moderate

to high blurred signal-to-noise ratio, and that we obtain a series
of restorations such that where

is small and represents the Euclidean norm, we can
neglect Thus, we can consider the restored images to be
corrupted primarily by Since the family of noise pro-
cesses for are all filtered versions of

it can be easily shown that if we assume is zero
mean Gaussian and white with variance,10 the associated co-
variance matrix is given by

(13)

where is
the expectation operator, and is the covariance matrix of

whose elements are given by

(14)

for We consider each restored image to be
originating from a different band of the same sensor exhibiting
correlated noise as described by the covariance matrix of (13),11

and make use of the MRF classification method to fuse the re-
sults. The estimation of the parameters required for classifica-
tion are discussed in Section V-B.

2) Approach 2: Restoration Stopping Criterion based on
Fused Classifications:In our second approach, we investigate
an error measure to determine a good stopping point for
restoration. We desire a restored image which not necessarily
provides a good classification on its own, but which when
combined with other available sensor imagery produces an
accurate classification.

We consider a three stage scheme in which restoration is
performed in the first stage, and the data is fused and clas-
sified in the second stage. In the third stage, the results of

10This assumption can be justified using the central limit theorem, and pre-
suming that the image undergoes additive noise from a number of independent
sources.

11The reader should note that the elements ofR are calculated using(14).

the classification are fed back to the first stage to enhance
the restoration. We make use of the smoothness properties12

of the classified image to provide an estimate of the suc-
cess of the blind image restoration stage. Often the visual
quality of the restored image is not a good indicator of the
reliability of higher-level processing tasks such as classifi-
cation. Therefore, to improve the reliability of the fusion
process, it is important to make use of information from
the higher-level processing stage to enhance the restoration
stage. Fig. 4 gives a summary of the proposed approach.

For simplicity we consider the fusion of a blurred image
and a noisy image of the same scene At

each iteration of the NAS-RIF algorithm, the restoration of
denoted (where is the current iteration) is

passed through the MRF classification method. Classification
of and is performed twice using two different

values: and where We
denote the classification results corresponding to and

by and respectively. The value of is
user-defined. Experience shows that any values between 0.5
and ten work well in simulations. A measure of the difference
between and is used to determine the possibility of
noise amplification effecting the fusion results. This measure
is given by

Err

(15)

where is the number of pixels in or and
if and otherwise. If this difference

increases dramatically from one iteration to the next (a measure
which is user-defined as explained in Section V-B), then the
algorithm is terminated and the classified output is taken to be

where is the current iteration.
As discussed in Section IV-A2, the fusion procedure involves

the minimization of (8) which is comprised of two terms: a
sensor-specific component involving and a spatial con-
text function The parameter governs the relative im-
portance of If we consider the case where then
the classification process is equivalent to pixel-level fusion as
discussed in Section IV-A2. When the classification
is equivalent to an intermediate-level fusion in which the clas-
sification of a pixel depends on that of its eight nearest neigh-
bors. The larger the values of the stronger the effect of
and the smoother and more regularized the classification.13 It
is reasonable to assume that if noise amplification significantly
effects the classification, then the relative difference between

and at iteration will be large. The MRF classifica-
tion method assumes knowledge of the variance of the additive
noise for each restored image. Using similar approximations as

12The smoothness properties give a good indication of the extent of noise
amplification and, therefore, somewhat indicate the degree of accuracy of the
restored result.

13This is due to the fact thatU promotes uniformly classified neighborhood
regions.
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Fig. 9. Synthetic image data to test approach 2. Synthetic image data to test
approach 2. (a) Blurred image, (b) noisy image degraded by multiplicative
chi-squared noise, (c) true classification of the scene. The black, dark grey,
light grey and white shades denote classes 1, 2, 3, and 4, respectively.

Fig. 10. Classification results for Approach 2 on synthetic data. (a)
Classification accuracy versus iteration of the NAS-RIF algorithm. (b) The
stopping criterion error as a function of iteration. (c) Restored image 1 at the
sixth iteration of the NAS-RIF algorithm. (d) Classification result for the sixth
iteration (corresponds to the result with the highest classification accuracy).

discussed at the end of Section IV-B1 in the formulation of (13)
and (14), we can show that the variance of the associated addi-
tive noise of the restored image can be approximated as

(16)

V. SIMULATION RESULTS

A. Figure of Merit

We assess the success of the proposed algorithms using a pop-
ular quantitative figure of merit known as the classification ac-
curacy (CA). CA is defined as:

Number of correctly classified image pixels
Total number of pixels in the classified image

(17)

or more formally

(18)

where is the classification estimate, is the number of pixels
in is the true classification, and if
and otherwise. The true classification is known
for synthetic data. For our simulations involving real data, we
estimate it by passing an undistorted, but registered image of the
scene through the MRF classification method. The result is then
modified, if necessary, by a user to correct any pixels determined
to be misclassified by the human eye.

B. Evaluation of Results

Each proposed blind fusion approach is tested on synthetic
and real photographic data. For each technique we provide re-
sults for a synthetic image set and a photographic image set.

1) Results for Approach 1:Fig. 5 shows one set of synthetic
data used to test our first approach. An undistorted synthetic
image [shown in Fig. 5(a)] is blurred with a Gaussian
PSF14. White Gaussian noise is added to the resulting image to
produce a blurred signal-to-noise ratio (BSNR) of 40 dB. The
overall degraded image is shown in Fig. 5(b). The NAS-RIF al-
gorithm is applied to the blurred and noisy image using an FIR
filter size of 15 and assuming an accurate support size of

The restoration algorithm was terminated when exces-
sive noise amplification was observed visually. The two image
estimates prior to termination are used for classification. The
images are shown in Fig. 5(c) and (d), and correspond to the
sixth and seventh iterations of the NAS-RIF algorithm, respec-
tively. We call the restoration at the sixth iteration, “restoration
I,”and that at the 7th iteration, “restoration II.” We can visually
determine that restoration I shows some residual blurring while
restoration II is clearer, but exhibits noise amplification.

The classification results are provided in Fig. 6 The scene
was classified into four different kinds of regions delineated by
four distinct grey levels. Fig. 6(a) shows the true classification,
and Fig. 6(b) and (c) the classifications for restorations I and II,
respectively. The resulting classification for our first approach
which performs fusion on both of the restorations is shown in
Fig. 6(d). The mean value of each class was taken directly from
the image in Fig. 5(a). The noise was assumed to be the same

14A Gaussian PSF is commonly found in astronomical applications.
15This filter size has been found through experience to produce fast conver-

gence for noisy images, [17].
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for all classes and the covariance matrix was estimated using
(13). The value of was estimated from the blurred and noisy
image, by measuring it from a block in the uniform background
of the image.

Table II summarizes the classification accuracies. The MRF
classification method was applied assigning (as was
used in [5]). The two restorations show widely varying CA’s.
Classification of restoration I is shown to significantly improve
CA over that of classifying the blurred image; classification of
restoration II, however, reduces the CA over that of the blurred
image. When we fuse the two images using our first approach
we see that the classification accuracy is further improved over
that of classifying restoration I solely. The results demonstrate
how the proposed approach can improve the classification of
degraded images. Table II also provides results for the classifi-
cation of the degraded image with a second noisy (but unblurred
image) with an SNR of 20 dB.16 We see that our fusion approach
still improves CA, but the improvement is less exaggerated due
to the presence of the second noisy image.

We perform the same simulations on photographic color data
of chalk, shown in Fig. 7. Five distinct classes are to be iden-
tified: four correspond to each of the colored chalk and a fifth
to the background. The undistorted red band of the image in
Fig. 7(a) is blurred to produce the effect of an out-of-focus
camera. White Gaussian noise was added to the result to pro-
duce a BSNR of 40 dB. The restorations after the 1st and 11th
iteration of the NAS-RIF algorithm are denoted “restoration I”
[shown in Fig. 7(c)] and “restoration II” [shown in Fig. 7(d)],
respectively. The NAS-RIF algorithm was run using a FIR filter
size of and a support size of estimated from
an unblurred green band of the image. The MRF classification
method was applied to the blurred image, and the individual
and combined restored images. The mean and variances (due
to texture) of each of the classes were estimated from a similar,
but unblurred version of the scene, and was set to 0.5. The
overall variance of each class was estimated to be the sum of the
variance due to the texture and the variance of the filtered noise

given by (13). The results are shown in Fig. 8. The ap-
proach has difficulty distinguishing between Class 2 and Class
4 because both colors of chalk exhibit similar luminance values
in the red band [see Fig. 7(a)]. Incorporation of information in
the green band, for example, can solve the ambiguity; such an
example is shown in the next section.

The results demonstrate the potential of the fusion approach
for robust classification. An improvement in CA of 1% to 2%
is observed over that of classifying restoration I or II alone (i.e.,
without fusion). Thus, in some situations the added complexity
of the fusion process gives a relatively small improvement. We
believe that our proposed method is useful in situations in which
accuracy is of primary concern. The suitability of the additional
computational load is an application-dependent issue. If com-
putational load is a concern, then the fusion scheme as we have
presented it may not be a practical solution.

2) Results for Approach 2:Our second approach was tested
on synthetic and photographic data to assess its potential for
robust classification. Figs. 9 summarize the results for a syn-

16This image is not displayed in any figures.

Fig. 11. Photographic color image data to test Approach 2. Photographic color
image data to test Approach 2. (a) Blurred red band of the original image, (b)
low resolution (by a factor of four) image of the green band, (c) low resolution
(by a factor of four) image of the blue band, and (d) true classification results.
The classifications are distinguished according to grey-level.

Fig. 12. Classification results for Approach 2 on photographic data. (a)
Classification accuracy versus iteration of the NAS-RIF algorithm. (b) The
stopping criterion error as a function of iteration. (c) Restored image 1 at the
fourteenth iteration of the NAS-RIF algorithm. (d) Classification result for the
14th iteration.

thetic data set. A synthetic image is degraded using a Gaussian
PSF and noise to produce a BSNR of 50 dB; the result (denoted
Image 1) is shown in Fig. 9(a). A second registered image of the
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TABLE IV
SUMMARY OF CHARACTERISTICS OF THEPROPOSEDBLIND FUSION METHODS FORIMAGE CLASSIFICATION

scene (denoted Image 2) is to be fused with the first to produce
an overall classification of the scene. The second image is un-
blurred, but suffers from multiplicative chi-squared noise with
eight degrees of freedom. The true classification of the scene is
shown in Fig. 9(c). The four different grey levels denote the four
classes in the scene.

Our second approach was applied to classify the images. An
FIR filter size of and an image support size of
accurately estimated from Image 2 were used for the NAS-RIF
algorithm stage. Parameter settings of andThreshold

Err were used in the MRF classification
and termination stages, respectively. The value ofwas se-
lected based on our previous investigation of the MRF classifi-
cation method [11]. The classification results are shown in Fig.
10. As we can see, our proposed error metric of (15) indicates
that iteration 6 of the NAS-RIF algorithm is the appropriate
stopping point for an accurate classification. From Fig. 10(a),
we see that indeed iteration 6 produces the optimal classifica-
tion accuracy.

Similar results are obtained when our second approach is ap-
plied to the same photographic color data previously used to as-
sess our first approach. Figs. 11 and 12 show the results. Again,
we use an FIR filter size of and an accurate image support
size of estimated from the unblurred green band. We

select andThreshold Err de-
termined from observing theErr vs. iteration function shown
in Fig. 12(b). We fuse the same blurred photographic red band
image discussed in Section V-B1 and fuse it with low resolu-
tion (four times undersampled) versions of the green and blue
bands. As we can see, the technique determines the 14th itera-
tion to be an appropriate stopping point. Fig. 12(a) shows that
this produces a CA of 93.3%. It should be noted that the algo-
rithm was not terminated exactly at the peak CA. The peak of
95.3% was found at iteration 10, however, the termination point
did produce a fairly reliable estimate. The improved accuracy of
the second approach over to the first for the photographic data is
due to the additional information provided by the low resolution
green and blue bands of the image.

If we do not make use of the green and blue bands in our
second approach, the algorithm terminates at iteration 3 which
produces a classification accuracy of 85.1%. It should be em-
phasized that our results demonstrate that although the use of
Method 2 provides an appropriate termination point, the results
are not as successful as fusing two different restorations of the
red band. As shown in Table III fusing the restorations at itera-
tions 1 and 11 produces an accuracy of 86.4% which is higher
due to the regularizing effect of the fusion process for classifi-
cation.
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C. Discussion

Although our first approach often improves CA, experience
with simulation results reveals that the method is not always pre-
dictable or successful. For example, fusing a restoration which
produces a high CA with one which produces a poor CA can
result in a slight reduction in the overall fused CA. Selection of
the appropriate restorations to fuse is an ad hoc procedure. As a
rule of thumb, the authors observed that fusing complementary
restorations (e.g. fusing an image which has mild noise amplifi-
cation with one which exhibits residual blurring) improves CA
over nonfused classification. In addition, we found that fusing
a poor restoration (possibly exhibiting severe blurring and/or
noise amplification) with a “good” restoration reduces the CA
over that of a nonfused classification of the “good restoration.”

The authors also observed that if complementary nonblurred,
but possibly noisy information of the scene was available, then
the degree of improvement of our first approach was diminished.
The complementary information, which could be in the form of
another image of the scene, raised the overall CA. However, the
improvement in CA by fusing two or more restorations (instead
of just one) with the additional imagery was reduced; for ex-
ample, instead of a 1% improvement in CA, a 0.1% improve-
ment was found.

Our second approach allows algorithm termination at a point
of the NAS-RIF algorithm which produces a good classification
accuracy, however, this is not always the most optimal result.
In our simulations, we found that inclusion of complementary
nonblurred imagery improved the performance of the algorithm
(i.e., a more optimal classification was obtained).

The termination criteria is user-defined and depends on the
kinds of images fused for classification. We found through
simulations that threshold values ofErr and
Err worked well for high SNR synthetic and real

image data, respectively. For low SNR’s (i.e., approximately
20 dB and lower), the thresholds were often not reached. In
such situations, it was found through experience that inclusion
of the degraded image data did not improve the classification
accuracy. Thus, it was better not to include the degraded
imagery in the fusion process.

The results presented in this paper correspond to classifica-
tion of high SNR blurry images. Simulations were also per-
formed for degraded images with low SNR’s. Our investigation
revealed that the restorations of low SNR blurred images do not
improve the classification accuracy and in many cases degrade
the quality of the classification results. The authors have ob-
served that this is due in part to the poor performance of the
NAS-RIF algorithm for low SNR’s. Noise amplification is al-
most immediately apparent during the restoration procedure. In
such situation, the authors would recommend excluding the de-
graded data from the fusion process.

A summary of the main characteristics of each classification
scenario is provided in Table IV. The authors believe that future
work should involve combining the two approaches proposed
in this paper to define a quantitative figure of merit to assess
the potential of a set of restorations to produce an optimal fused
CA. In addition, it would be useful to approximate a reliable

statistical threshold for Method 2 by modeling the progression
of noise amplification in the blind restoration process.

VI. CONCLUSIONS

Two architectures for the simultaneous blind deblurring and
classification of imagery are proposed. The first approach at-
tempts to regularize the classification process by fusing restora-
tions of the blurred image exhibiting complementary informa-
tion. The second technique determines a good blind restoration
termination point to produce a reliable classification. The tech-
niques are shown to produce promising results.
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