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Robust Classification of Blurred Imagery

Deepa KundurMember, IEEEDimitrios HatzinakosSenior Member, IEEEand Henry LeungMember, IEEE

Abstract—in this paper, we present two novel approaches for distinguish between our use of the terms “fusion” and “classi-
the classification of blurry images. It is assumed that the blur is  fication."Multisensor data fusiomefers to the acquisition, pro-
linear and space invariant, but that the exact blurring function is cessing, and synergistic combination of information from var-

unknown. The proposed fusion-based approaches attempt to per- . . .
form the simultaneous tasks of blind image restoration and clas- ious knowledge sources to provide a better understanding of the

sification. We call such a problemblind image fusion The tech- Situation under consideration [4Flassificationis an informa-

niques are implemented using the nonnegativity and support con- tion processing task in which specific entities are mapped to
straints recursive inverse filtering (NAS-RIF) algorithm for blind  general categories. For the classification of multispectral im-
image restoration and the Markov random field (MRF)-based fu- ages, the specific goal is to assign each vector-valued pixel of

sion method for classification by Schistad-Solbergt al. Simula- th bined i tral i to it iat t
tion results on synthetic and real photographic data demonstrate '€ cOMbined mulliSpectral image 1o ItS appropriate category

the potential of the approaches. The algorithms are compared with Using tonal and/or textural data; the result is a single color-
one another and to situations in which blind blur removalis notat- coded image showing the several types of classes in the scene.

tempted. In this paper, image classification is the specific goal we wish to
Index Terms—Blind image restoration, classification, multispec- achieve and data fusion is the process by which we accomplish
tral image fusion. the task.

The accuracy of image classification is often highly de-
pendent on the quality of the restored imdg&¥e argue that
performing blind image restoration prior to and separately from

HE inaccuracy of many image classification strategiesassification results in suboptimal solutions. We attempt to

often results from attempting to fuse data that exhibitsombine both processes using multisensor data fusion strategies
motion-induced blurring or defocusing effects. Compensatiao produce a more regularized solution; we call this process
for such blurring is inherently sensor-dependent and is naplind image fusiorfor classification. The problem has appli-
trivial as the exact blur is often time-varying and unknown [1kations to many areas of image analysis, such as robot vision,
In such a situation, restoration is frequently performed on themote sensing for land-use classification and medical imaging,
degraded data prior to classification. A major obstacle arisetong others. The imagery may be multisensor/multispectral
when the exact blurring function is unknown. This may be ovein nature or can consist of a single sensor image band.
come by using blind image restoration algorithiBénd image The main contributions of this paper are as follows.
restorationrefers to the dual process of blur identification and 1) Theintegration of blind image restoration with traditional
image restoration and is used only when partial information ~ §ata fusion concepts to provide a more optimal image
about the image degradation process is available. It is suited |assification. Two novel approaches based on different

the imaging system may be unknown due to their time-varying  jmage fusion.

nature. A recent survey of such algorithms can be found in [2].

The weakness of most blind restoration techniques stems
from numerical instability; there is often insufficient informa-
tion to provide an accurate regularized solution to the problem
and noise amplification may result [3]. In addition, it may be
impractical for a human observer to supervise the restorations
to prevent instability. This may result in an unreliable image
estimate, which in turn can effect the accuracy of subsequent
higher-level processing tasks such as classification.

In this paper, we consider the classification of blurred and
noisy images using data fusion strategies. It is important that we

. INTRODUCTION

a) In our first technique we take a new perspective on
the image estimates at each iteration of a recursive
restoration algorithm. Each estimate is treated as a
different reading of an image sensor and the esti-
mates are simultaneously fused to produce a more
regularized classified image.

b) In the second approach we define an error metric
which uses the results from intermediate-level
image fusion and classification to produce an
appropriateé termination point for the restoration
algorithm.

2) The implementation of the two architectures to assess the
Manuscript received May 4, 1998; revised April 28, 1999. The associate ed-  practical feasibility of blind image fusion. The authors
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The blind image restoration and classification problem. The sensor images are assumed to be degraded according to the linear degtadhtea mode

images are used to produce a classification of the scene using partial information about the undistorted imaged scene, and the blurring process.

3)

In the next section we define the specific problem to addre (-
and discuss our assumptions. In Section Il we propose the t B

restoration and fusion and assess the potential of the te: ;NJLJ')

nology. NL

A comparative study of the effects of blur removal fol IMAGE
image classification. / ESTIMATE
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novel approaches for blind image fusion. Implementation issu imace Aid) e(i)

are discussed in Section IV. Simulation results and comparisc
with existing techniques are given in Section V, and final re OPTIMIZATION
marks are conveyed in Section VI.

Assumption Set 1 (General Assumptions for the Blind Image
Fusion Problem)

1)

2)

3)

4)

ALGORITHM

Fig. 2. NAS-RIF algorithm for blind image deconvolution.

paper and that addressed in other literature on image classifica-
Multisensor images of the same scene are registeredtidh [5]-[9] is that we explicitly account for the blurring degra-
the images are, for example, the different color bands détion in the image while other approaches do not. We focus on
a color image, then it is safe to assume that the imagé® design of techniques for the simultaneous restoration and
are registered. Otherwise, a registration algorithm musassification of blurred imagery using fusion-based strategies.
be applied to the images prior to processing. We consider the scenario in which we hakiedifferent de-

The blurring process obeys the linear degradation modghded registered sensor imagesgs, - - - , gx, WhereK > 1,

of (1). This model is successfully used in imagin®f a given scene. Each acquired imagds assumed to be de-
applications in which the blurring processisoplantic graded according to the following linear degradation model.
(i.e., the blurring operation is linear and shift invariant). o o o o

The model makes the solution to the image restoration 914, 3) = fie(t, 7) % (4, ) + (e, 7) @)

problem tractable [10]. , , _ wheregy (i, 7) is the blurred noisy image from tHeth sensor,

Partial qurmgtlon about the'lmaget':i scene is gva!lable}%(i7j) is the undistorted true image of the scelg(, 7) is the

perform blind image restoration. This information is Spes)ring function also known as the point-spread function (PSF),

cific to th_e_ algorithm _employed. Section IV-Al prowdeswk (i,4) is zero-mean additive white Gaussian noise, arep-

the specific assumptions for the NAS-RIF algorithm.  o5ens the two-dimensional (2-D) linear convolution operator.

Statistical information about the undistorted images §f \ye neglect the noise term in (1), the process of recovering

the scene is available for classification. This informatio (i, ) from gi(i, 7) is calledblind image deconvolutiorOur

is also specific to the particular classification aPPfoanbm is to effectively combine the information in these degraded

implemented. Section IV-A2 provides the specifics fofn 565 to provide an accurate classification of the sczreny

the MRF classification algorithm. training or reference data used for classification is assumed to
apply to the undistorted imagées. Fig. 1 gives an overview of
the problem.

Il. PROBLEM FORMULATION . L . .
3The PSF models imperfection in the system such as motion blurring from

. the movement of satellites or from the use of out-of-focus cameras; the additive

We addres; the issue of the robust classification of k_)lum?d 'mise term models nonidealities in sensor equipment and electronic instrumen-
agery. The difference between the problem we consider in tkdsgon [10].
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TABLE |
STATISTICAL MRF FUSION METHOD USING THE ICM ALGORITHM

1. Initialization:
For each pixel (4,7),
Perform a search to choose the class C(4,7) that
minimizes the sensor-specific image statistic function
Zi‘:l s Ugata(8s, C (4, 7)) where Ujers is given by Equa-
tion (9).
2. For k = 1,2,...,N10M
For each pixel (4,7),
Perform a search to choose the class C(i, ) that mini-
mizes the following equation:

Ulgr 82 ---,8x,C(1,7))
K

= Z asUdata(gS7 C(’v])) + USP(C(ivj)v Ck—l)

s=1

where Ugqq is given by Equation (9), and Usp is an approximation of Us, such that the
classification of pixel (i, j) depends on the square neighbourhood G(; ;) centered about
(i,7) of the previous classification estimate Cy_;. That is,

Un(Cli,5),Crot) =By D I(C(i,5), Cuca(k,1), (19)

(kDEGG 5

where G(; j) is the set of all pixels adjacent and diagonal to (i,7), I(-,-) is given by
Equation (11), and 8, is a user-specified scalar parameter as specified in Equation (10).
Nicas is the number of iterations in the ICM algorithm [16]. The use of U, term makes
estimating the global minimum of Equation (8) less computationally complex, but may
result in a suboptimal solution. This is the trade-off proposed by the ICM algorithm.

We list the general assumptions made in our problem form@- Blurring as Signal-Dependent Noise
lation below. More specific assumptions are made during imple- | this section, we demonstrate how a restored image esti-

mentation as specific algorithms are employed for blind imaggate is considered to suffer from both signal-dependent and
fusion. These assumptions are discussed in Sections IV-Al @Wjependent additive noise processes. We assume that image

IV-A2. restoration is performed by the process of inverse filtering (i.e.,
the filtering of g(¢, 7) to produce an estimate ¢f(z, 7)).4 As-
suming the linear degradation model of (1), the restored image

[Il. BLIND IMAGE FUSION f(i,5) is given by
The two major considerations in the design of our blind image f(i,j) = g(4,7) *u(i, 5) )

fusion scenarios was the portability of the techniques to dif-

ferent applications and the ease of implementation. As a re-

sult, we have designed our methods such that they can incorpo- o o o o o

rate existing iterative blind image restoration and classification = f(2,5) % h(2, ) * u(i, j) +w(@, j) * u(i, j) ®)
algorithms. This allows the flexibility to select the algorithms

most appropriate for a given application. In addition, the use of

well-known and well-documented methods makes implementa- = f(4,7) + [h(4,7) xu(i,j) — 6, 5)] * f(4,7)
tion and testing easier, and allows a user to predict and assess (i, §) *uli, 5) (4)
the behavior of the overall blind fusion scheme to a greater de- ) )
gree.
The selection of the data fusion approach is based on existing
research demonstrating the success of fusion in effectively com- = f(i,5) +3(¢,5) + (i, 4) 5)

bining complementary and redundant information (see [1], [@1\1

and references therein). In addition, the authors’ previous rebere&(z,yﬁg the Krc‘)n‘eckerqelbta‘functlo‘(z,.j) - [.h(.z’j)*
: - - , uli, j) — 6, )]+ f(i,5) and (i, j) = w(@, ) = u(i, j). A

search into data fusion suggests its promise for the processi g . .

. ; . WE can see, the restored image estimate suffers from two er-
of data exhibiting signal-dependent noise [11]. In the next sec- 7, . ~. L ) . .
. . ; rs: §(4, ) which is a signal-dependent noise process (i.e., de-
tion we show how a restored image can be considered to Su{%rndent onf(i, §)), andi(i, j) which is a signal-independent
from signal-dependent noise. In Section 11I-B we discuss e 30 Wi 9 P

general scenarios. 4nverse filtering is a common approach to perform blind deconvolution [12].
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random process. Th&:, j) term represents the degree of par- images of the scene. This information that is fed back to

tial blurring that remains in the restored result aind, ;) is the the restoration stage to enhance the image estimate.

filtered additive noise term. The advantage of this technique is that the process of
The goal of blind image restoration is to find a filtef:, j) selecting a good image estimate for classification is algo-

which minimizes the overall restoration ertéft, j) + w(3, j). rithmic. However, as the classification result makes use

Ideally, if the blurred image does not contain additive noise (i.e.,  of only one image estimate, the solution is not as regular-

w(i,7) = 0 for all (i,7)), thenw(i,j) = h~1(4,;), where ized as in our first approach.

h~1(4, ) is the inverse of the PSHninimizes the restoration

error such thag(i,j) = 0 and f(¢,5) = f(¢,4). In practice, IV. | MPLEMENTATION OF THE ARCHITECTURES

hOWGVGI’,w('L,j_)IIS. npt.neghglble ana(i, j) is IO\.N pass V\.'hlc.h A. Restoration and Classification Algorithms
suggests thdt—* (¢, j) is high pass. As a result, inverse filtering

will amplify the noise process so that(4, j) becomes signifi-  In each of the approaches proposed the blind image restora-
cant. tion and classification stages are distinct, but interconnected.
In fact, it is well-known that a tradeoff exists between the dé=or the implementation of the techniques we make use of the
gree of deblurring and the extent of noise amplification [13NAS-RIF algorithm and the MRF classification technique by
Many classification methods perform poorly as a result of papchistad-Solbergt al..
tial blurring or excessive noise amplification in the restored re- 1) The NAS-RIF Algorithm for Blind Image Restora-
sult. Regularization techniques can be employed to find an dj¢n: The nonnegativity and support constraints recursive
propriate compromise. The question arises as to how to find theerse filtering (NAS-RIF) algorithm [14] is applicable to
degree of regularization which will produce the best classifigdtuations in which an object of finite support is imaged

result. against a uniform background. Fig. 2 gives an overview
of the algorithm. The blurred image pixelg(é,;j) are
B. The Fusion-Based Strategies input to a 2-D variable coefficient finite impulse response

. . . FIR) filter w(¢,7) whose output represents an estimate
We investigate two general architectures for the robust clas F the true image denote(f(i /). This estimate is then

ficgtion of blurred images which exploit the concepts of ima%apped to the set of all nonnegative images of given finite
fusion. The two approaches are as follows. support by replacing the negative pixels with zero and the
1) Our first approach involves exploiting the complememixels outside the region of support with the appropriate
tarity of distinctly regularized restorations. We treat thgackground pixel color valueL; to produce fu (i, ).
restored images as the outputs of different bands of #Re difference betweerf and fv; is used to update the
image sensor; the bands are assumed to experience agiglly 1, The algorithm involves the minimization of the

images in the classification stage we can attempt to ex-

tract the salient features from each of the different restoragy — Z [fNL (i,5) — f(i,j)]Q
tions to produce a more regularized overall result. The fu- V(i.5)
sion process is applied to the selected image estimates of ) I—s r(f(i ")
a given degraded image band as well as any other avail- — Z f2(i,4) l#]
able imagery from other sensors. (i,5)€Dsup 2
The approach provides the user with the flexibility 2

to choose the restorations to fuse for classification. The Y 2 .
major disadvantage is that the image selection process is + Z [f7) = Lal" + Z u(i, j) =1
ad hoc. (4,4)ED s up V(4,5)
2) Based on the limitation of our first approach, we inves- (6)
tigate a technique to automate the process of choosin A .
J i b Rere f(i.3) = g(i, j) xu(i,5). and sgif) = 1 if f < 0

a good restoration for classification. The selectiol S , . .
technique is not straight-forward as the visually mo nd sgif) =1, if J > 0. Dyup 1S the set of all pixels inside

appealing restoration does not necessarily produce & region offsupportt, aﬁ? sup 1S th(ta S e:jo::_ all dp|xeltshout5|d(T| i
most accurate classification. We base our approach region of support. The support IS defined as the smalfles

the premise that feedback from the classification stal gtangle which can 'com'pletely encompass the tT“e unblurred
to enhance the iterative restoration process can res ect. The varl_ablev n tr_nrd term of the equation is nonzero
in a more optimal overall classification. We devise Ey mh?jn tLB IS z€ro, (;et the bflCI_(gr;)hund color ItS black.
technigue (which uses a quantitative figure of merit) t € third term 1S used fo constrain the paramelers away
assess the restoration that produces the most accu the trivial all-zero global minimum for this situation
classification. Image fusion is applied at the classificati - The user-specified parameters in the algorithm are the

stage which incorporates information from an interm ~IR filter dimensions, the u'nblurr(.ed object support and the
§rametery. The parametey is set in general to 1 when the

diate image estimate as well as other available sen% _ _— . S

g ackground color is black. The initial setting fe«(z, 7) is
5If the PSF is noninvertible then we may considler' (4, 7) to be thepseudo- the d'screte_un't 'mpU|Se ("e" a value of one in the Cen_ter
inverse[3]. of the FIR filter parameters and zero elsewhere). Assuming
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volution algorithm requires eeferenceo perform decon-
volution. The reference is often in the formapriori in-

I P
£

Blind Image
N Restoration formation about the true undistorted image. In the case of
&(ip) using the i R .
NAS-RIF the NAS-RIF algorithm, the information assumed about

A
Algorithm £, )

Mg
Blurred and noisy

image

the true image is the nonnegativity of the pixels and the
known finite extent of the original undistorted objéct.

Distinct Restorations MRF Fusion clij) 2) The support of the image is known or estimadgatiori.
8,6id) D o o This information can be obtained from undistorted ver-
assification | (yacsified . 3 .
sions of different sensor images of the same scene or by

Image

the use of support-finding algorithms [14].
The main advantage of the NAS-RIF method is its superior con-

8pli) D———— vergence properties to other techniques of its class [2]. In addi-

tion it is based on well-developed theory and is not computa-

Imagery from other tionally complex [15]. The major disadvantage is the excessive
sensors noise amplification that results due to the ill-posed nature of the
Fig. 3. Blind Image Fusion Method 1: The simultaneous merging of dlstm(ptlmd deconvolution problem. One successful method of com-
restorations. bating the numerical instability is to terminate the algorithm be-
fore excessive noise occurs in the restored output [15].
TABLE || 2) Statistical MRF Fusion for ClassificationThe MRF clas-

PERCENTAGE CLASSIFICATION ACCURACIES FOR THESYNTHETIC DATA. IMAGE  gjfication a|gorithm is attractive because it allows the incorpo_

21S AN ADDITIONAL REGISTEREDIMAGE OF THE SAME ISLAND-LIKE SCENE : . . . . .
WHICH IS DEGRADED SOLELY BY ADDITIVE WHITE GAUSSIAN NOISE ration of spatlal, SpeCtraI and temporal information in a uni-

WITH A SNROF 20 dB. THE boldface rowsRePReSENT THEREsULTs oF  fied framework. A previous investigation by the authors [11]

THE PROPOSEDAPPROACH suggests that the MRF method is successful in classifying im-
Image(s) Fused Overall | Class 1| Class 2 | Class 3 | Class 4 H H :
Blarved Tmnge (Fiz. 500 | 77 | 613 | 633 | 16 1 556 ages degraded by non-Gaussian signal-dependent and nonaddi-
Rest. T (Fig 5(c)) 91.4 | 861 | 909 | 754 [ 960 tive noise. This implies that MRF fusion may also perform well
Rest. 11 (Fig. 5(d)) 62.6 9.2 100.0 0.0 99.3 . o . . ; .
Rest. T& 11 93.8 | 881 | 952 | 75.0 | 987 in the classification of restored images which we can consider
Image 2 (not shown) 92.2 83.7 98.5 49.5 100.0 ibi i - i i i -
e T e L I L tp exhibit a type of signal-dependent noise as discussed in Sec
Rest. 11 & Image 2 962 | 983 | 1000 | 0.0 | 1000 tion IlI-A.
Rest & IL & Image 2| 98.3 | 98.8 | 985 | 65.7 | 100.0 Markov random field (MRF) models provide a methodolog-

ical framework which allows the images from the different sen-
the steepest-descent minimization routine, the update law s to be merged statistically in a consistent way. The MRF

w(i,j) is given by classification method [5] uses the MRF models to form a likeli-
hood function. The goal of the method is to find a classification
upy1(2,7) =ur(i, ) — 2n that maximizes the posterior (MAP) distribution of the likeli-
hood function. Determination of this MAP estimate requires the
glm —i,n— ,)f (m,n)s minimization of a sum oénergy functionfs]. The overall func-

tion originally proposed in [5] is more complex than that imple-

(m, n)&Dsup
mented and discussed in this paper. The simplification arises

f’“ m,n) R because we assume that all images used for classification are
+ > g(m —i,n = j)[fulm,n) — Lp] taken at the same time instant and that there are no old ground
(m,n)CDoup truth maps available to aid classification.
Specifically, our MAP classification estimate requires the
+ 5 Z w(m,n) — 1 (7) minimization of the following function
V(m,n)

where 7 > 0 is the update step-size(-) is the unit step Ulg g2, 85, C) = ) @:Uiara(8s, C) + Usp(C) (8)

function, u (¢, 7) is the value of the filters at thekth itera-

tion, and fi (i, 7) = g(4, j)*ux(i, §). Alternatively, the conju- where the subscript denotes data from a particular seng,

gate gradient routine may also be implemented to minimiigthe number of sensors to be fusggd,s = 1,2, .- -, K are the

J. Convergence using this approach is usually faster thaansor images (in lexicographical ordet), is the sensor-spe-

the steepest-descent method. The specifics are providedcific reliability factor (usually taken to be the individual sensor

[15]. classification accuracy), ard is the classification of the scene
The assumptions of the NAS-RIF algorithm are as follows.and is the same dimensions as the sensor imagery. Each element

of C is an integer representing a particular class. Itis a value be-
Assumption Set 2 (Assumptions Specific to the NAS-RIF  tween 1 andV.;,,s WhereN.;,.- is the total number of classes
Algorithm) in a given scenel/y,;, andUs, are called the sensor-specific

1) The imaged scene is comprised of a finite extent objeClrp;s information can be obtained in astronomy and satellite remote sensing
against a uniform background. In general, a blind decoagplications.
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Fig. 4. Blind Image Fusion Method 2: The use of a fusion-based stopping criterion for blind image restoration.

(a) Undistorted Image (b) Degraded Image whereB, is the number of bands for sensgp., andg,, are the
covariance matrix and the mean value vector of the radiance for
classC(i, j) for the bands in image sens@rrespectively, and
gs(4, j) is the image pixel vector corresponding to pixely).8

The parameter sefs. andu, are assumed to be known prior to
fusion. The spatial context function, which promotes regions of
uniform classification, is given by [5]

Up(C) =By >, I(C(i,5),Ck, 1)  (10)
(k,DCGi gy

where 3, is a user-specified nonnegative scalar parameter,
(c) Restoration | (d) Restoration I G, is the set of all pixels adjacent and diagona{ig), and
I(-,-) is given by

_ —17 if C] = Co
I(clch) - {O7 If c1 # Co. (11)

The overall algorithm we implemented is shown in Table I.
The value of3;, is selected through experience. For the simu-
lations in this paper the values were selected as suggested in [5].

I 5 Test A 1T evel The technique performs pixel-level fusion {6y, = 0° and in-
e o o felmediate-lovel fusion ot > 0. Equaion (8) s ot convex
BSNR of 40 dB, (c) restoration at sixth iteration, and (d) restoration at severd® Jsp > 0. The Uy, term implies that the classification of a
iteration. pixel atlocation(¢, 7) is dependent on all other pixels in a square
neighborhood=(; ;, centered abouti, j). This makes deter-
dﬁl,ining the global minimum of (8) computationally complex.
To reduce the complexity, we implement the minimization rou-
ine using Besag'’s iterate conditional modes (ICM) algorithm

] as suggested in [5]. The algorithm can become potentially
trapped in local minima, but this was not a problem during the
actual simulations performed.

It should be noted that if a single image is used for classifi-

B. .. cation, then no fusion is performed by the MRF technique. The

Udata(8s, C(1,)) = 9 lim |27, | algorithm merely classifies the image.

image statistic function and the spatial context energy functi
respectively.

In the simulations performed we assumed that the ima g
noise statistics can be modeled by a normal distribution a
that the noise processes are independent from one ariother.

As a resultU,,:, is given by

[

+ _(gs (/7 1) — NC)TEZI(gS (i7 1) — ,,,c) 8Because there aB, bands for the image sensor, each pixel can be consid-
ered to have an associated vector whose elements consist of the radiance values
(9) from each of the bands.
9f B,, = 0, thenU,, = Ugqu:a. Therefore, it can be seen from (9) that the
minimum of Uy, With respect taC'(s, ) only depends on the corresponding
"This was successfully done by Schistad-Solbetgl. for non-Gaussian pixel value of each of the sensor images and, hence, the classification procedure
noise in [5]. involves pixel-level fusion.

[\)
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(a) True Classification (b) Classification of Restoration | (a) Undistored Image (b) Degraded Image

(b) Classification of Restoration 1 (d) Fusion of | and Il (c) Restoration | (d) Restoration Il

Fig. 6. Classification results for Approach 1 on synthetic data. The fofmg. 7. Photographic color image data. The images represent the red band of
different grey-levels represent each of the different classes in the image. Bolor photograph of chalk. (a) Original, (b) degraded image with BSNR of 40
white, black, light grey and dark grey colors denote classes 1, 2, 3, anddB, (c) restoration at first iteration, and (d) restoration at eleventh iteration.
respectively.

(a) True Classification (b} Classification of Restoration |

The specific assumptions made by the algorithm are provided
below.

Assumption Set 3 (Assumptions Specific to the MRF
Classification Method)

1) The mean and (co-)variances of the radiance of the dif-
ferent classes in the scene are known or estimated from
similar (nonblurred) data. The tonal and textural informa-
tion about each class is used by the MRF method to seg-
ment the image into different regions. This information  (c) Classification of Restoratior ~ (d) Classification of I and II
can be gathered from the use of image data containing
similar types of regions [5].

2) The multispectral images are of the same dimensions. In-
terpolation methods may be used to resize the images to
one size. The classified image result is the dimensions as
the interpolated images.

3) The individual sensor reliability factors for each image
are known prior to blind image fusion. This may be pro-
vided by the sensor manufacturer or can be approximated

by the individual sensor image classification accuracy [Sig. 8. classification results for Approach 1 on photographic data. The five

different grey-levels represent each of the different classes in the image. The
white, light grey, medium grey, dark grey and black colors denote classes 1, 2,
3, 4, and 5, respectively.

B. The Two Approaches

1) Approach 1: Simultaneous Fusion of Distinct Restora-
tions: We consider for simplicity the classification of aclassification, then there will be an overall regularizing effect
single noisy blurred image, although the method can easily be the output.
extended to the situations in which other sensor images ardhe second stage fuses the various image estimates into a
available. The technique is comprised of two stages. The firdassified image using the MRF classification method. The fu-
stage of the technique involves the blind restoration of thlson process takes into account the correlation in noise among
image using the NAS-RIF algorithm. We hypothesize that the various image estimates. Fig. 3 gives an overview of the pro-
we treat each restoration at a selected set of iterations as filbeed architecture. We fuse several image estimates, which ex-
output of a different image sensor band and fuse the results fdbit various degrees of blur removal and noise amplification,
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TABLE Il the classification are fed back to the first stage to enhance

PERCENTAGE CLASSIFICATION ACCURACIES FOR THEPHOTOGRAPHICDATA. the restoration. We make use of the smoothness propﬂérties
THE boldface row REPRESENT THERESULTS OF THEPROPOSEDAPPROACH e . .

Image(s) Fused Overall | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 of the classified Image to prOVIde an estimate of the suc-

Bhlrrl{iih?a(%ei (F;g( )7)(b)) Zg; ggi gzz g‘:i §0-; 100.0 cess of the blind image restoration stage. Often the visual
Rt T (P T sir i 5097 zs s~ Quality of the restored image is not a good indicator of the
Rest. 1 & 11 864 | 95.0 | 46.6 | 95.6 | 61.0 | 93.8 reliability of higher-level processing tasks such as classifi-
cation. Therefore, to improve the reliability of the fusion
process, it is important to make use of information from

to produce a more reliable classified output. Assuming that wee higher-level processing stage to enhance the restoration
use the restorations &t different iterations of the NAS-RIF al- stage. Fig. 4 gives a summary of the proposed approach.

gorithm, each image estimate can be represented as For simplicity we consider the fusion of a blurred image
aq1(i,7) and a noisy image of the same scemgi,j). At
Filing) = g(i, ) % up(i. §) each iteration of the NAS-RIF algorithm, the restoration of

g1(4, ) denotedflk(i,j) (wherek is the current iteration) is
passed through the MRF classification method. Classification
of f1x(i,j) andgs(4, 7) is performed twice using two different
wherek = 1,2,---, B, and (12) follows directly from (5). 3., values:3,, = 0 andf,, = S, wheref, > 0. We

If we assume that the blurred imagé:, j) has a moderate denote the classification results corresponding4p = 0 and
to high blurred signal-to-noise ratio, and that we obtain a seriggp = B by Cé’“) and C(Lk)7 respectively. The value of;, is
of B restorations such thit: ™! (i, j) — ur(i, j)|| < ¢, where ,qer defined. Experience shows that any values between 0.5
¢ > Ois smalland| - || represents the Euclidean norm, we cagnq ten work well in simulations. A measure of the difference
neglects, (¢, 7). Thus, we can consider the restored images to lB%tweenCé’“) and C(Lk) is used to determine the possibility of

corrupted primarily byi.(z, j). Since the family of noise pro- noise amplification effecting the fusion results. This measure
cessedwy(i,j)} fork =1,2,---, Bareallfiltered versions of g given by

w(t, §), it can be easily shown that if we assumé, j) is zero
mean Gaussian and white with variangg°the associated co-
variance matrix is given by

Err(CY, CP)y

S (€ 6,5), S 6 4))

E{%(i, )% (i,7)} = 04 R, (13) G = x 100  (15)

where VAV(LaJ) = [wl(LvJ)wQ(LaJ)wF)'(LvJ)]Ta E{} is
the expectation operator, amtl,, is the covariance matrix of
{ur (4, j)} whose elements are given by

whereM is the number of pixels i€ or C;,, andZ(co, cr,) =

0if g = ¢r, andZ(co,cr) = 1 otherwise. If this difference
increases dramatically from one iteration to the next (a measure
which is user-defined as explained in Section V-B), then the

Ru)im = Z wp(4, J)um (4, 5) (14) algorithm is terminated and the classified output is taken to be
¥(5:3) C(Lk_l) wherek is the current iteration.

As discussed in Section 1V-A2, the fusion procedure involves

fori,m = 1,2,---, B. We consider each restored image to bthe minimization of (8) which is comprised of two terms: a
originating from a different band of the same sensor exhibitiregnsor-specific component involvirig,,., and a spatial con-
correlated noise as described by the covariance matrix of{13)ext functionU,,. The 3., parameter governs the relative im-
and make use of the MRF classification method to fuse the mertance of/,,. If we consider the case whefg,, = 0, then
sults. The estimation of the parameters required for classifidhe classification process is equivalent to pixel-level fusion as
tion are discussed in Section V-B. discussed in Section IV-A2. Whe#,, > 0, the classification

2) Approach 2: Restoration Stopping Criterion based ois equivalent to an intermediate-level fusion in which the clas-
Fused Classifications:1n our second approach, we investigatsification of a pixel depends on that of its eight nearest neigh-
an error measure to determine a good stopping point foors. The larger the values 8f,, the stronger the effect df,
restoration. We desire a restored image which not necessasifyd the smoother and more regularized the classificatitin.
provides a good classification on its own, but which wheis reasonable to assume that if noise amplification significantly
combined with other available sensor imagery produces eafiects the classification, then the relative difference between
accurate classification. Cék) andCEk) at iterationk will be large. The MRF classifica-

We consider a three stage scheme in which restorationtiiz method assumes knowledge of the variance of the additive
performed in the first stage, and the data is fused and clamise for each restored image. Using similar approximations as
sified in the second stage. In the third stage, the results of

12The smoothness properties give a good indication of the extent of noise
10This assumption can be justified using the central limit theorem, and pr@amplification and, therefore, somewnhat indicate the degree of accuracy of the
suming that the image undergoes additive noise from a number of independestored result.

sources. 13This is due to the fact thaf,,, promotes uniformly classified neighborhood
11The reader should note that the elementRqfare calculated usingl4).  regions.
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V. SIMULATION RESULTS

(a) Image 1

A. Figure of Merit
We assess the success of the proposed algorithms using a pop-

ular quantitative figure of merit known as the classification ac-
curacy (CA). CA is defined as:

. : : A Number of correctly classified image pixels
50 100 150 200 250 50 100 150 200 250 ~ Total number of pixels in the classified image
x 100, (17)

(c) True Classification

or more formally

Z(C,C)

CA(C) = i

x 100 (18)

whgreC is the classification estimat&/ is the number of pixels
in C, C is thetrue classification, andl(é,¢) = 1if ¢ = ¢
E\Qntdl(é, ¢) = 0 otherwise. The true classificatiddl is known

50 100 150 200 250

Fig. 9. Synthetic image data to test approach 2. Synthetic image data to {es . . . . .
approach 2. (a) Blurred image, (b) noisy image degraded by multiplicatif@!” Synthetic data. For our simulations involving real data, we

chi-squared noise, (c) true classification of the scene. The black, dark grestimate it by passing an undistorted, but registered image of the

light grey and white shades denote classes 1, 2, 3, and 4, respectively.  gcane through the MRF classification method. The resultis then
modified, if necessary, by a user to correct any pixels determined
to be misclassified by the human eye.

(a) Classif. Acc. vs. Ilteration (b) Err vs. lteration

_ 100 30 B. Evaluation of Results

§ %0 Each proposed blind fusion approach is tested on synthetic
2 g2 and real photographic data. For each technique we provide re-
g 80 g sults for a synthetic image set and a photographic image set.

= o Yo 1) Results for Approach 1Fig. 5 shows one set of synthetic

§ data used to test our first approach. An undistorted synthetic

image [shown in Fig. 5(a)] is blurred with & x 7 Gaussian

[+]
(=]
(=]

S AL S L PSR4, White Gaussian noise is added to the resulting image to

(c) Image 1 Restoration, k=6 (d) Classification at k=6 produce a qurreq signa_l-to—noise. rati_o (BSNR) of 40 dB. The
overall degraded image is shown in Fig. 5(b). The NAS-RIF al-
gorithm is applied to the blurred and noisy image using an FIR
filter size of 5 x 515 and assuming an accurate support size of
68 x 130. The restoration algorithm was terminated when exces-
sive noise amplification was observed visually. The two image
estimates prior to termination are used for classification. The
. o 250 . images are shown in Fig. 5(c) and (d), and correspond to the
50 100 150 200 250 50 100 150 200 250  sixth and seventh iterations of the NAS-RIF algorithm, respec-
tively. We call the restoration at the sixth iteration, “restoration
Fig. 10. Classification results for Approach 2 on synthetic data. (§)» ; ; “ ; » :
Classification accuracy versus iteration of the NAS-RIF algorithm. (b) Tr? and that atthe 7th |t§rat|on, restoration “'. We can ‘,"Sua"Y
stopping criterion error as a function of iteration. (c) Restored image 1 at ti@termine that restoration | shows some residual blurring while
sixth iteration of the NAS-RIF algorithm. (d) Classification result for the sixtirestoration Il is clearer, but exhibits noise amplification.
iteration (corresponds to the result with the highest classification accuracy). The classification results are provided in Fig. 6 The scene
was classified into four different kinds of regions delineated by
four distinct grey levels. Fig. 6(a) shows the true classification,

discussed at the end of Section IV-B1 in the formulation of (13nd Fig. 6(b) and (c) the classifications for restorations | and II,

and (14), we can show that the variance of the associated ad@fpectively. The resulting classification for our first approach
tive noise of the restored image can be approximated as which performs fusion on both of the restorations is shown in

Fig. 6(d). The mean value of each class was taken directly from
the image in Fig. 5(a). The noise was assumed to be the same

2 2 205
of =oh > u’(ig). (16)
V(i,5) 14A Gaussian PSF is commonly found in astronomical applications.

15This filter size has been found through experience to produce fast conver-
gence for noisy images, [17].
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for all classes and the covariance matrix was estimated us (a) Image 1 (b) Image 2
(13). The value o&2, was estimated from the blurred and nois
image, by measuring it from a block in the uniform backgroun »q
of the image.

Table Il summarizes the classification accuracies. The MF
classification method was applied assignifig = 0.5 (aswas 60
used in [5]). The two restorations show widely varying CA's
Classification of restoration | is shown to significantly improve
CA over that of classifying the blurred image; classification ¢ 100
restoration I, however, reduces the CA over that of the blurre 1og

40

80

image. When we fuse the two images using our first approa 20 40 €0 80 100 20 40 60 80 100
we see that the classification accuracy is further improved o\ o
that of classifying restoration I solely. The results demonstrz (c) Image 3 (d) True Classification

how the proposed approach can improve the classification

degraded images. Table Il also provides results for the class 20

cation of the degraded image with a second noisy (but unblurr

image) with an SNR of 20 dBWe see that our fusion approact

still improves CA, but the improvement is less exaggerated d 60

to the presence of the second noisy image. 80
We perform the same simulations on photographic color de

of chalk, shown in Fig. 7. Five distinct classes are to be ide 190

tified: four correspond to each of the colored chalk and a fift

to the background. The undistorted red band of the image ...

Fig. 7(a) is P'“”ed to. prOdL.jce the effect of an OUt'Of'foculgig.ll. Photographic color image data to test Approach 2. Photographic color

camera. White Gaussian noise was added to the result to pfge data to test Approach 2. (a) Blurred red band of the original image, (b)

duce a BSNR of 40 dB. The restorations after the 1st and 11ah resolution (by a factor of four) image of the green band, (c) low resolution

iteration of the NAS-RIF algorithm are denoted “restoration Iﬁ}’eac}c:gg;{ccgtifg#?é?;acﬁgticr’]fg;ggﬁé‘éea?:ig?di?g%‘grgfesgfs'f'ca“0” results.

[shown in Fig. 7(c)] and “restoration II” [shown in Fig. 7(d)],

respectively. The NAS-RIF algorithm was run using a FIR filter

size of5 x 5, and a support size dfl5 x 110 estimated from

an unblurred green band of the image. The MRF classificatii (@ Classit Acc.vs. feration 20 (6) Err vs. lteration

20 40 60 80 100 20 40 60 80 100

method was applied to the blurred image, and the individu
and combined restored images. The mean and variances ( % 90 15
to texture) of each of the classes were estimated from a simil < E
but unblurred version of the scene, aiig was setto 0.5. The £ * 2"
overall variance of each class was estimated to be the sumof 3 ,, s
variance due to the texture and the variance of the filtered no
w(4,7) given by (13). The results are shown in Fig. 8. The af €0 s o = 0 e 1o T
proach has difficulty distinguishing between Class 2 and Cla Iteration lteration
(c) Image 1 Restoration, k=14 (d) Classification at k=14

4 because both colors of chalk exhibit similar luminance valu
in the red band [see Fig. 7(a)]. Incorporation of information i
the green band, for example, can solve the ambiguity; such
example is shown in the next section.

The results demonstrate the potential of the fusion approe
for robust classification. An improvement in CA of 1% to 2%
is observed over that of classifying restoration | or Il alone (i.€
without fusion). Thus, in some situations the added complexi 20 40 60 80 100 50 40 60 80 100
of the fusion process gives a relatively small improvement. We
believe that our proposed method is useful in situations in whi€ly. 12. Classification results for Approach 2 on photographic data. (a)

accuracy is of primary concern. The suitability of the addition&j/assification accuracy versus iteration of the NAS-RIF algorithm. (b) The
Stopping criterion error as a function of iteration. (c) Restored image 1 at the

computational load is an application-dependent issue. If CORjarteenth iteration of the NAS-RIF algorithm. (d) Classification result for the
putational load is a concern, then the fusion scheme as we hadb iteration.

presented it may not be a practical solution.
2) Results for Approach 20ur second approach was tested

on synthetic and photographic data to assess its potential toétic data set. A synthetic image is degraded using a Gaussian

robust classification. Figs. 9 summarize the results for a SyIQSF and noise to produce a BSNR of 50 dB; the result (denoted
This image is not displayed in any figures. mage 1) iIs shown In Fig. 9(a). A second registered image of the
16 I 1)issh inFig. 9(a). A dregi di fth
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SUMMARY OF CHARACTERISTICS OF THEPROPOSEDBLIND FUSION METHODS FORIMAGE CLASSIFICATION

TABLE IV

Classification Scenarios

Method 1

Method 2

How improved perfor-
mance over non-fused
classification is achieved

Fusion of different restora-
tions regularizes the classi-
fication result by exploiting
the complementarity in dif-
ferent restorations.

Automatic termination of
the iterative restoration
stage is dependent on the
fused classification result so
that an image estimate is
selected which is appropri-
ate for classification.

Disadvantages of the
methods

Selection of the different
restorations to fuse is an ad
hoc procedure.

Only one restoration of the
image band is used for
classification so the com-
plementarity of different
restorations is not directly
exploited for classification.

Effect of fusing the re-
stored data with differ-
ent sensor imagery

Improvement from the fu-
sion of different restorations
is reduced when other com-
plementary imagery (from
different bands) is included
in the classification process.

The weakness of Method
2 against Method 1 is di-
minished when other sensor
data is available for classi-
fication because the fusion
of the different types of tm-
agery regularizes the classi-
fication result.

Observations on algo-
rithm performance

Performance is a func-
tion of the complementar-
ity among the restorations

Improvement is a func-
tion of the behaviour of
the iterative blind restora-
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to be fused. Both restora- | tion algorithm employed.
tions should be fairly ac- | The more accurate the
curate, but should exhibit | restoration stage, the more
distinct properties (such as | successful the classification
slight noise amplification & | output.

mild residual blurring) for
the classification to be suc-
cessful.

Behaviour for low SNRs | If the SNR of the degraded | Low SNR data causes
image data is low then it is | unpredictable behaviour in
often disadvantageous to in- | the restoration stage which

clude the restored data in | makes the termination
the fusion process of classi- | point unreliable.
fication.

scene (denoted Image 2) is to be fused with the first to produselect3; = 15, and Threshold = 2E7’7'(Cék_1), Cg“_l)) de-
an overall classification of the scene. The second image is uarmined from observing th&rr vs. iteration function shown
blurred, but suffers from multiplicative chi-squared noise witin Fig. 12(b). We fuse the same blurred photographic red band
eight degrees of freedom. The true classification of the scenénsage discussed in Section V-B1 and fuse it with low resolu-
shown in Fig. 9(c). The four different grey levels denote the fotion (four times undersampled) versions of the green and blue
classes in the scene. bands. As we can see, the technique determines the 14th itera-
Our second approach was applied to classify the images. #ian to be an appropriate stopping point. Fig. 12(a) shows that
FIR filter size of5 x 5, and an image support size 236 x 256  this produces a CA of 93.3%. It should be noted that the algo-
accurately estimated from Image 2 were used for the NAS-RIfhm was not terminated exactly at the peak CA. The peak of
algorithm stage. Parameter settinggpf= 5andThreshold = 95.3% was found at iteration 10, however, the termination point
10E«r-fr(Cék_1),Cék_1)) were used in the MRF classificationdid produce a fairly reliable estimate. The improved accuracy of
and termination stages, respectively. The valugpfwas se- the second approach over to the first for the photographic data is
lected based on our previous investigation of the MRF classiflue to the additional information provided by the low resolution
cation method [11]. The classification results are shown in Figreen and blue bands of the image.
10. As we can see, our proposed error metric of (15) indicatedf we do not make use of the green and blue bands in our
that iteration 6 of the NAS-RIF algorithm is the appropriatsecond approach, the algorithm terminates at iteration 3 which
stopping point for an accurate classification. From Fig. 10(g)roduces a classification accuracy of 85.1%. It should be em-
we see that indeed iteration 6 produces the optimal classifigdrasized that our results demonstrate that although the use of
tion accuracy. Method 2 provides an appropriate termination point, the results
Similar results are obtained when our second approach is ape not as successful as fusing two different restorations of the
plied to the same photographic color data previously used to asd band. As shown in Table Il fusing the restorations at itera-
sess our first approach. Figs. 11 and 12 show the results. Agdions 1 and 11 produces an accuracy of 86.4% which is higher
we use an FIR filter size df x 5, and an accurate image supportiue to the regularizing effect of the fusion process for classifi-
size of115 x 100 estimated from the unblurred green band. Weation.
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C. Discussion statistical threshold for Method 2 by modeling the progression
of noise amplification in the blind restoration process.
Although our first approach often improves CA, experience
with simulation results reveals that the method is not always pre- VI. CONCLUSIONS

dictable or successful. For example, fusing a restoration Which.l_ . . . .
. . . wo architectures for the simultaneous blind deblurring and
produces a high CA with one which produces a poor CA can

result in a slight reduction in the overall fused CA. Selection cgassmcatlon of Imagery are _p_rop.osed. The first approach at-
empts to regularize the classification process by fusing restora-

the appropriate restorations to fuse is an ad hoc procedure. AS a . - )

. ions of the blurred image exhibiting complementary informa-

rule of thumb, the authors observed that fusing complement . ) ) .

. ) . : . . 1lon. The second technique determines a good blind restoration
restorations (e.g. fusing an image which has mild noise amplifi-

) ) . o ; Lo ermination point to produce a reliable classification. The tech-

cation with one which exhibits residual blurring) improves CA” .
e . . nigues are shown to produce promising results.
over nonfused classification. In addition, we found that fusing
a poor restoration (possibly exhibiting severe blurring and/or
noise amplification) with a “good” restoration reduces the CA o o _ _
over that of a nonfused classification of the “good restoration.” [t M. A Abidiand R. C. Gonzalez)ata Fusion in Robotics and Machine
. Intelligence New York: Academic, 1992.

The authors also observed that if complementary nonblurrediz] p. kundur and D. Hatzinakos, “Blind image deconvolutionEEE
but possibly noisy information of the scene was available, then  Signal Processing Magvol. 13, pp. 43-64, May 1996. '
the degree of improvement of our first approach was diminished 3] g'r §,;jfgl.FaT|”d1§§§”ta'S of Image Processingenglewood Cliffs, NJ:
The complementary mformatlo.n, which could be in the form of 4] p. K. varshney, “Scanning the issu®toc. IEEE vol. 85, pp. 3-5, Jan.
another image of the scene, raised the overall CA. However, the  1997. _ . o
improvement in CA by fusing two or more restorations (instead [®! A- H. S. Solberg, T. Text, and A. K. Jain, "Multisource classification of

. . L. . remotely sensed data: Fusion of landsat tm and sar imag&s=' Trans.
of just one) with the additional imagery was reduced; for ex-  Geosci. Remote Sensingl. 34, pp. 100-113, Jan. 1996.

ample, instead of a 1% improvement in CA, a 0.1% improve- [6] A.H.S. Solberg, A. K. Jain, and T. Taxt, “A Markov random field model
ment was found for classification of multisource satellite imager{yZEE Trans. Geosci.

. . . . Remote Sensingol. 32, pp. 768—778, July 1994.
Our second approach allows algorithm termination at a point;7; m. c. Dodson, L. E. Pierce, and F. T. Ulaby, “Knowledge-based

of the NAS-RIF algorithm which produces a good classification  land-cover classification using ers-l/jers-1 sar composittSEE
e ; Trans. Geosci. Remote Sensingl. 31, pp. 83-99, Jan. 1993.

accuraCY’ however’ this is not alw.ays the most optlmal reSl'Ilt'[8] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network ap-
In our simulations, we found that inclusion of complementary proaches versus statistical methods in classification of multisource re-
nonblurred imagery improved the performance of the algorithm  mote sensing dataJEEE Trans. Geosci. Remote Sensingl. 28, pp.
; ; PR ; 540-552, July 1990.
(ie.a more. opfumal (.:IaS.SIf.Icatlon Wa?‘ obtained). [9] S.B. Serpico and F. Roli, “Classification of multisensor remote-sensing

The termination criteria is user-defined and depends on the ~ images by structured neural networktEEE Trans. Geosci. Remote
kinds of images fused for classification. We found through  Sensingvol. 33, pp. 562-577, May 1995.

simulations that threshold values d)OErr(Cék), C(rfc)) and [10] CérrrégKaltgg?gelolegltal Image Restoration New York: Springer-

2E’I"I'(C(()k), C(Lk)) worked well for high SNR synthetic and real [11] D. Hatzinakos and D. Kunker, “Blind image fusion for surveillance,”
image data, respectively. For low SNR’s (i.e., approximately _Dept. National Defense, Tech. Rep. W7714-6-9990, 1997.
;112] S. Haykin,Blind Deconvolution Englewood Cliffs, NJ: Prentice-Hall,

20 dB and lower), the thresholds were often not reached. 1N jgg4
such situations, it was found through experience that inclusiofi3] J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods
of the degraded image data did not improve the classification _ for image deblurring,Proc. IEEE vol. 78, pp. 856-883, May 1990.

Th . b includ he d d 4] D.Kundurand D. Hatzinakos, “Blind image restoration via recursive fil-
faccuracy_' us, '_t was Dbetter not to include the degrade tering using deterministic constraints,”1oc. IEEE Int. Conf. Acoust.,
imagery in the fusion process. Speech, Signal Processint96.

The results presented |n th|S paper Correspond to CIaSS|f|C§‘5] E—— “A nC.)Vellinnd dECOnVOIUtiC)‘n scheme for image restoration uSing
. f hiah SNR bl . Simulati | recursive filtering,”|IEEE Trans. Signal Processingol. 46, Feb. 1998.
tion of hig l'!rry 'mag(:j's' imulations We.re as_o p?r'[16] J. Besag, “On the statistical analysis of dirty picturdsR. Stat. Soc. B
formed for degraded images with low SNR’s. Our investigation vol. 48, pp. 259-302, 1986.
revealed that the restorations of low SNR blurred images do ndt7] D. Kundur, “Blind deconvolution of still images using recursive inverse
. . . filtering,” M.S. thesis, Univ. Toronto, Toronto, Ont., Canada, 1995.
improve the classification accuracy and in many cases degrade
the quality of the classification results. The authors have ob-
served that this is due in part to the poor performance of the
NAS-RIF algorithm for low SNR’s. Noise amplification is al-
most immediately apparent during the restoration procedure.
such situation, the authors would recommend excluding the ¢ 4
graded data from the fusion process.

A summary of the main characteristics of each classificatic
scenario is pr_owded in Tab.Ie_ IV. The authors believe that futu digital watermarking for electronic commerce and
work should involve combining the two approaches propos content-based multimedia signal processing. Her
in this paper to define a quantitative figure of merit to assess _ research also encompasses blind image restoration
h tential of a set of restorations to produce an optimal fusan data fusion for the classification of remote sensing imagery. Her consulting
the potenti p p erience includes the development and implementation of algorithms for the

CA. In addition, it would be useful to approximate a reliabl®efense Research Establishment Ottawa and Vaytek, Inc.
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